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a b s t r a c t

Global warming is the observed increase of the average temperature of the Earth. The primary cause of
this phenomenon is the release of the greenhouse gases by burning of fossil fuels, land cleaning, agricul-
ture, among others, leading to the increase of the so-called greenhouse effect. An approach to deal with
this important problem is the time series analysis. In this regard, different techniques can be applied
to evaluate the global warming dynamics. This kind of analysis allows one to make better predictions
increasing our comprehension of the phenomenon. This article applies nonlinear tools to analyze tem-
perature time series establishing state space reconstruction and prediction. Since noise contamination
is unavoidable in data acquisition, it is important to employ robust techniques. The method of delay
ime series
onlinear prediction
tate space reconstruction
onlinear dynamics

coordinates is employed for state space reconstruction and delay parameters are evaluated using the
method of average mutual information and the method of false nearest neighbors. Afterwards, the sim-
ple nonlinear prediction method is employed to estimate temperatures of the future. Temperature time
series from different places of the planet are used. Initially, the approach is verified considering known
parts of the time series and afterwards, results are extrapolated for future values estimating tempera-
ture until 2028. Results show that these techniques are interesting to estimate temperature time history,

atio
presenting coherent estim

. Introduction

The observation of climate system allows one to identify two
istinct phenomena related to the system evolution: climate
hange, usually related to human activities, and climate variability,
sually associated with natural causes (UNFCCC, 1992).

Climate variability denotes deviations of climate conditions over
period of time due to natural phenomena (WMO, 2010). There

re many examples of these anomalies as the Interdecadal Pacific
scillation (IPO) that causes decadal changes in climate averages;

he El Niño-La Ninã Southern Oscillation (ENSO) that causes much
ariability throughout many tropical and subtropical regions; and
he North Atlantic Oscillation (NAO) that provides climate pertur-
ations over Europe and Northern Africa (Salinger, 2005). Climate
hange, on the other hand, is usually associated with anthropogenic
auses and is associated with permanent changes.

Global warming is one aspect of climate change and, actually, is

nduced either by natural processes or by human activities. In brief,
lobal warming is the observed increase in the average temperature
f the Earths’ atmosphere and oceans. The primary cause of this
henomenon is the release of greenhouse gases by the burning of
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fossil fuels and the large-scale deforestation, leading to the increase
of the so-called greenhouse effect that arises as a consequence of
the unbalanced presence of greenhouse gases in the atmosphere.
Among others, the greenhouse gases are the carbon dioxide, the
methane and the nitrous oxide (Houghton, 2005).

From industrial revolution on, the amount of greenhouse gases
in the atmosphere has significantly increased. Based on Intergov-
ernmental Panel on Climate Change data (IPCC, 2007), the carbon
dioxide has increased by more than 30% and is still increasing at
a rate of 0.4% per year. Other greenhouse gases are also increas-
ing and there are evidences pointing to the anthropogenic cause
of this phenomenon. During the 20th century, the Earth’s sur-
face mean temperature has increased approximately 0.4–0.8 ◦C.
Most of this increase has occurred in two periods: from 1910 to
1945 (0.14 ◦C/decade) and since 1976 (0.17 ◦C/decade) (Salinger,
2005). The consequences of the global warming are unpredictable;
however, one could mention climate sensitivity and other changes
related to the frequency and intensity of extreme weather events
(IPCC, 2001).

Climate change analysis is important in order to define differ-
ent scenarios whose knowledge is important for several purposes.

In the same way, global warming analysis is important to estab-
lish models that can predict the evolution of greenhouse gases and
Earth’s temperature. Besides, it is important to evaluate the con-
sequences of the effects of these variations in global balance and
in life. Literature presents several efforts dealing with this kind
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f analysis. Concerning modeling effort one could establish the
ollowing classification (Alexiadis, 2007): general circulation mod-
ls (GCMs); model-based methods (MBMs) or empirical models;
lanet’s dynamics models (PDMs). Moreover, we can highlight the
xistence of models built upon time series analysis (TSA). Regarding
ore general dynamical systems, it is possible to present a differ-

nt classification that, actually, is in agreement with the previous
ne (Aguirre, 2007; Aguirre and Lettelier, 2009): white-box models,
ased on physical argues; black-box models, based on time series;
nd gray-box models that mixture both ideas.

GCMs consider physical aspects of system dynamics including
onservation of mass, energy and momentum. An important char-
cteristic of this kind of modeling is the high computational effort
elated to simulations (Friedlingstein et al., 2003; Cox et al., 2000;
oos et al., 2001). Houghton (2005) presented an overview of mod-
ls based on physical principles. Regional climate models (RCMs)
onstitute an alternative approach based on GCMs (Alpert et al.,
008; Kueppers et al., 2008). Among other alternative approaches,

t should be highlighted models that try to reduce uncertainties
sing statistical considerations (Ghila et al., 2008; Lopez et al.,
006).

MBMs use some empirical observations and/or statistical tools
rom experimental time series and therefore, do not deal with sys-
em’s physics directly (Kaufmann and Stern, 1997; Loehle, 2004;
rivova and Solanki, 2004). Stringham et al. (2003) presented a
eview of conceptual models pointing out the inconsistencies in the
pplication of non-equilibrium ecology concepts. Young and Ratto
2009) proposed a unified approach to the modeling of environ-

ental systems by considering information from analysis of real
ata. The idea was to connect MBM and GCM approaches.

PDM are based on a simplified description of the system dynam-
cs and falls between the previous two categories (Moore, 2007; Kay
t al., 2009). Daisyworld, originally proposed by Lovelock (1992),
s a prototype of this kind of approach. In brief, daisyworld estab-
ishes the self-regulation of the planetary system representing life
y daisy populations while the environment is represented by tem-
erature. The daisyworld is an archetypal of Earth and is able to
escribe the global regulation that can emerge from the interaction
etween life and environment (Lenton and Lovelock, 2000, 2001).

Finally, the time series analysis tries to build a model from
xperimental data. Alexiadis (2007) considered time series analy-
is based on control theory, using system identification techniques
o determine the transfer functions that approximate the system
ynamics. Qin et al. (2008) employed the continuous wavelet trans-
orm technique to analyze water vapor and carbon dioxide fluxes in
gricultural lands investigating global warming potentials. Capilla
2008) employed a local polynomial regression fitting and wavelet

ethods in order to identify trends in a Mediterranean urban
rea. Rybski and Bundea (2009) employed the detrended fluctua-
ion analysis to quantify underlying trends in long-term correlated
ecords. Temperature time series are of concern using different
ools for the analysis.

Subba and Antunes (2003) presented a review of space-time
utoregressive moving average (STARMA) models. The STARMA
orecast performance is compared with ARMA models, using real
ata. Afterward, Antunes and Subba (2006) proposed statistical
ests comparing space-time autoregressive processes and multi-
ariate autoregressive processes. Koçak et al. (2004) employed
onlinear techniques for time series prediction using a polynomial
pproximation. Romilly (2005) employed the autoregressive-
ntegrated-moving average model (ARIMA) together with more

ecent developments to analyze global mean temperature dataset.
ounda et al. (2004) employed statistical methods for temperature
ime series observing trends and extreme events in Athens seasons
rom 1897 to 2001. Grieser et al. (2002) used statistical methods to
ecompose temperature time series into a sum of trend, annual
ling 221 (2010) 1964–1978 1965

cycles, episodic and harmonic components, extreme events and
noise.

Literature also presents efforts related to several aspects of eco-
logical modeling. Among others, one can cite Urban (2005) that
discussed the multi-scale aspects related to the modeling of eco-
logical systems. Kettleborough et al. (2007) described a method to
estimate the uncertainty in global mean temperature change. Jacob
and Winner (2009) described the impact of climate change on air
quality.

This contribution deals with time series analysis related to
the global warming dynamics. The idea is to model the system
dynamics from temperature time series that is considered as a
representative variable of the system. Since noise contamination
is unavoidable in data acquisition, it is important to employ robust
techniques (Franca and Savi, 2001, 2003). In this regard, the method
of delay coordinates is employed for the state space reconstruc-
tion and delay parameters, time delay and embedding dimension,
are respectively evaluated using the method of average mutual
information and the method of false nearest neighbors. The simple
nonlinear prediction is employed to model the system dynamics
evaluating the prediction of future values. This approach is veri-
fied by considering known parts of the time series and afterwards,
results are extrapolated for future values. The verification process is
of special interest since time series is contaminated by noise being
related to a system with high dimension characteristics that make
the application of nonlinear techniques a difficult task. Nonlinear
time series analysis employs the TISEAN package (Hegger et al.,
1999). Time series from different locations of the world are investi-
gated in order to characterize the global temperature. Specifically,
eight time series are of concern: Montreal (Canada), Los Angeles
(USA), Rio de Janeiro (Brazil), London (United Kingdom), Johan-
nesburg (South Africa), Beijing (China), Tokyo (Japan) and Albany
(Australia).

This paper is organized as follows. After the introduction, a
brief discussion about global warming is carried out showing some
temperature time series measured in different weather stations.
Nonlinear tools related to time series analysis are then presented
discussing state space reconstruction and prediction techniques.
The application of nonlinear time series analysis is discussed in the
next section considering different temperature time series of the
Earth. Basically, prediction analysis is split into two parts: model
verification and future forecast. In the first part, it is shown that pre-
diction techniques are able to capture the general behavior of time
series from known time series. Afterwards, future forecast is car-
ried out estimating temperature until 2028. Conclusions are then
presented at the end of the paper.

2. Global warming

Climate system has an inherent complexity due to different
kinds of phenomena involved. The equilibrium of this system is
a consequence of different aspects related to atmosphere, oceans,
biosphere, among others, and the sun activity provides the driving
force for this system. In brief, greenhouse gases may be absorbed
by the natural systems which are represented by the carbon cycle.
Oceans, rivers and forests are essential for this process. The human
influence tends to break this balance either by increasing the
amount of gases or by decreasing the natural capacity to absorb
them due to deforestation and pollution (IPCC, 2007).

The Earth’s heating mechanism may be understood as the bal-

ance between the radiation energy from the sun and the thermal
radiation from the Earth that is radiated out to space. The exces-
sive presence of greenhouse gases tends to break this balance since
they are transparent to the sun short wave radiation, however, they
absorb some of the longer infrared radiation emitted from the Earth.
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Fig. 1. W

herefore, the increase amounts of these gases introduce a difficulty
elated to the thermal balance, increasing the temperature of the
arth.

The global warming is a spatiotemporal phenomenon, however,
he analysis of temporal aspects of this system can provide impor-
ant information for its comprehension. All over the world, there
re numerous measurements concerning temperature time series.
he National Oceanic and Atmospheric Administration (NOAA) has
000 weather stations with measurements since 1929, but data
rom 1973 are more complete and include a great number of sta-
ions (NOAA, 2006).

In order to give an idea concerning the global warming phe-
omenon, eight different temperature time series from 1989 to
008 are considered: Montreal (Canada), Los Angeles (USA), Rio
e Janeiro (Brazil), London (United Kingdom), Johannesburg (South
frica), Beijing (China), Tokyo (Japan) and Albany (Australia). Fig. 1
resents the localization of the weather stations while Table 1
hows information about source of data. In Table 1, “USAF” means
S Air Force station number.

Fig. 2 shows temperature time series and their linear fit showing
he tendency of the temperature evolution. It should be observed
hat these time series present different patterns. The linear match
hows an increase of temperature in Montreal (+2.22 ◦C), Lon-
on (+0.64 ◦C), Johannesburg (+1.18 ◦C), Beijing (+0.10 ◦C), Tokyo
+0.95 ◦C) and Albany (+0.11 ◦C). Nevertheless, there is a decrease
f temperature in Los Angeles (−0.09) and Rio de Janeiro (−0.55).
nother important characteristic of these series is related to their
ange. Each one has minimum and maximum values that depend
n climatic aspects of its geographical region.
. Time series analysis

The basic idea of the state space reconstruction is that a signal
ontains information about unobserved state variables (Savi, 2006).

able 1
ource of data.

USAF Station name Latitu

716270 Montreal +454
722950 Los Angeles Intl. Arpt. +339
837550 Rio de Janeiro Aero −229
037720 London/Heathrow +514
683680 Johannesburg Intl. −261
545110 Beijing +399
476620 Tokyo +356
948020 Albany airport −349
stations.

Therefore, a scalar time series, Sn, may be used to construct a vec-
tor time series that is equivalent to the original dynamics from a
topological point of view. The state space reconstruction needs to
form a coordinate system to capture the structure of orbits in state
space, which could be done using lagged variables, Sn+� , where � is
the time delay. Then, it is possible to use a collection of time delays
to create a vector in a De-dimensional space:

U(t) = {Sn, Sn+�, . . . , Sn+(De−1)� }T (1)

The application of this approach is associated with the deter-
mination of delay parameters, time delay, �, and embedding
dimension, De. The mutual information method (Fraser and
Swinney, 1986) is a good alternative to evaluate the time delay, �.
The determination of embedding dimension, De, on the other hand,
may be evaluated from the method of the false nearest neighbors
(Kennel et al., 1992). This reconstructed space can be used for the
forecast and the simple nonlinear prediction is a good alternative
for this aim. Fig. 3 presents the sequence of the time series analysis
employed in this work. The forthcoming sections present a brief
discussion of the employed methods.

3.1. Method of average mutual information

The idea for the determination of proper time delay for state
space reconstruction is to obtain lagged variables as most indepen-
dent as possible. Fraser and Swinney (1986) established that the
time delay � is related to the first local minimum of the average
mutual information function I(�), which is defined as follows:

N−�∑ [ ]

I(�) =

n=1

� (Sn, Sn+�)log2
� (Sn, Sn+�)

� (Sn)� (Sn+�)
(2)

where � (Sn) is the probability of the measure Sn, � (Sn+�) is the
probability of the measure Sn+� , and � (Sn, Sn+�) is the joint proba-

de Longitude Elevation (.1M)

67 −73750 +00299
38 −118406 +00994
00 −043167 +00030
83 −000450 +00250
50 +028233 +17200
33 +116283 +00550
83 +139767 +00360
33 +117800 +00690
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Fig. 2. Temperature time series and linear fit.
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Fig. 3. Schematic of time series analysis.

ility of the measure of Sn and Sn+� . When the measures Sn and Sn+�

re completely independent, I(�) = 0. On the other hand, when Sn

nd Sn+� are equal, I(�) is maximum. Therefore, the analysis of the
(�) curve allows one to determine the best time delay to be used
n the state space reconstruction.

.2. Method of the false nearest neighbors

The method of the false nearest neighbors establishes that in an
mbedding dimension that is too small to unfold the attractor, not
ll points that lie close to one another will be neighbors because
f the dynamics. Some will actually be far from each other and
imply appear as neighbors because the geometric structure of the
ttractor has been projected down onto a smaller space (Kennel et
l., 1992). In order to use the method of the false nearest neigh-
ors, a D-dimensional space is considered where the point Un has
-th nearest neighbors, Ur

n. The square of the Euclidean distance
etween these points is:

2
D(n, r) =

D−1∑
k=0

[
Sn+k� − Sr

n+k�

]2
(3)

Now, going from dimension D to D + 1 by time delay, there is

new coordinate system and, as a consequence, a new distance

etween Un and Ur
n. When these distances change from one dimen-

ion to another, these are false neighbors. A proper space dimension
ay be obtained when there are no false neighbors after a dimen-

ion increase.

Fig. 5. Analyzed time series (solid line) and
Fig. 4. Time series prediction.

3.3. Prediction

Prediction is a particular application related to system mod-
eling that uses a known time series called past, Sn, n = 1, . . . , N
to estimate future values, called future, Sn, n = N + 1, . . . , N +
p. This model establishes a way to estimate future series:
PN+1, PN+2, . . . , PN+p. Fig. 4 shows a schematic plot related to the
prediction problem. A verification procedure can be performed
using known parts of the series and establishing a comparison
between estimated values with future values associated with the
original series (Savi, 2006; Fraser and Swinney, 1986; Kennel et al.,
1992; Pinto and Savi, 2003). In general, prediction techniques may
be classified in linear and nonlinear methods or, alternatively, local
and global methods. An overview of the main aspects related to
nonlinear time series analysis and prediction is provided in refer-
ences (Aguirre, 2007; Pinto and Savi, 2003; Kantz and Schreiber,
1997; Abarbanel, 1995; Casdagli, 1989; Schreiber, 1999; Weigend
and Gershenfeld, 1994).

An alternative to the time series forecast is the simple nonlin-
ear prediction that is based on the state space reconstruction. After
the reconstruction, the prediction of a time instant �n (�n = 1, .., p)
ahead N, is done by defining a parameter ε that establishes the size
of the neighborhood Vε(UN) around point UN in the reconstructed
space. All points inside this neighborhood are used for the predic-
tion. Therefore, all points Un closer than ε to UN(Un ∈ Vε(UN)) are
employed for the prediction PN+�n. Different approaches can be
employed to estimate the prediction from these points. Here the
prediction is calculated from the average of the individual predic-
tions Sn+�n as follows:

∑

PN+�n = ∣∣Vε (UN)

∣∣
Un ∈ Vε(UN )

Sn+�n (4)

where
∣∣Vε(UN)

∣∣ denotes the number of elements of the neighbor-
hood Vε(UN). More details about this procedure could be found in

their prediction periods (dashed line).
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Fig. 6. Beijing (China) prediction, time series from 1999 to 2008. Delay parameters analysis; comparison between time series (light line) and prediction (dark line); error
analysis.

Fig. 7. Beijing (China) prediction, time series from 2000 to 2008. Delay parameters analysis; comparison between time series (light line) and prediction (dark line); error
analysis.
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antz and Schreiber (1997), Casdagli (1989), and Pinto and Savi
2003).

. Analysis of temperature time series of the earth

The analysis of temperature time series of the Earth is carried
ut in this section. Initially, a verification of the model is of concern
onsidering different situations defined by distinct parts of each
eries. Afterwards, results are extrapolated for the prediction of
uture values of the series. The idea of the verification is to use
ime series from 1989 to 1998 (10 years) performing the prediction
rom 1999 to 2008 (10 years). Since the period from 1999 to 2008
s known, it is possible to verify the capability of the procedure to
erform the forecast. The importance of the number of data points

s evaluated by considering a larger time series from 1976 to 1999
24 years) performing the prediction from 2000 to 2008 (9 years).
iltering procedures are also evaluated by considering the moving
verage filter. This filter is used to smooth time series being defined
s follows:

n = 1
m

(m−1)/2∑
k=−(m−1)/2

Sn+k (5)

here m is the factor (days) of the average filter used in the calcu-
ation. The factor used for this work is 7 days. After this verification,
different analysis is performed by considering a series from 1989
o 2008 (20 years) in order to predict future values from 2009 to
028 (20 years). It should be pointed out that some series has miss-

ng data points and we do not perform a special treatment for this
eries. Fig. 5 shows a time line of the model verification and the
uture forecast.

ig. 9. Beijing (China) prediction, time series from 1999 to 2008. Delay parameters anal
nalysis.
Fig. 8. Beijing (China), time series from 1999 to 2008. Original (light line) and filtered
(dark line) time series.

In order to establish the model verification, predicted results are
compared with time series and two errors are defined: the average
error and the daily error. The average error is defined as follows:

Ē =
∣∣S̄ − P̄

∣∣
¯

(6)

S

where S̄ is the average of the time series and P̄ is the average of the
prediction evaluated during the same period, both defined by con-
sidering Celsius scale. On the other hand, the daily error is defined

ysis; comparison between time series (light line) and prediction (dark line); error
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Fig. 10. Montreal (Canada) prediction. Delay parameters analysis; comparison between time series (light line) and prediction (dark line); error analysis.

Fig. 11. Los Angeles (USA) prediction. Delay parameters; comparison between time series (light line) and prediction (dark line), from 1999 to 2008; error analysis.
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Fig. 12. Rio de Janeiro (Brazil) prediction. Delay parameters; comparison between time series (light line) and prediction (dark line), from 1999 to 2008; error analysis.

Fig. 13. London (UK) prediction. Delay parameters; comparison between time series (light line) and prediction (dark line), from 1999 to 2008; error analysis.



F.M. Viola et al. / Ecological Modelling 221 (2010) 1964–1978 1973

Fig. 14. Johannesburg (South Africa) prediction. Delay parameters; comparison between time series (light line) and prediction (dark line), from 1999 to 2008; error analysis.

Fig. 15. Tokyo (Japan) prediction. Delay parameters; comparison between time series (light line) and prediction (dark line), from 1999 to 2008; error analysis.
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Table 2
Summary of the verification procedure.

Time series Data points T De Average of time series (◦C) Average of prediction (◦C) Difference (%)

Montreal (Canada) 3652 63 28 7.57 7.17 5.28
Los Angeles (USA) 3651 46 26 17.11 17.22 0.64
Rio de Janeiro (Brazil) 3444 80 25 24.14 24.60 1.91
London (UK) 3652 68 25 11.67 11.34 2.83

15.9
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w
t
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Johannesburg (South Africa) 3651 77 23
Beijing (China) 3652 71 14
Tokyo (Japan) 3651 45 39
Albany (Australia) 3646 61 24

y the expression:

D
n =

∣∣Sn − Pn

∣∣
(Tmax − Tmin)

(7)

here Tmax and Tmin are, respectively, the maximum and minimum
emperatures of the time series.

.1. Model verification evaluating general aspects of the
rediction

The model verification is performed by considering known val-
es of the series in order to compare original and predicted values.

nitially, time series from Beijing (China) is considered as the
rchetypal of the system dynamics evaluating the general aspects
f the prediction and the number of data points treating two dif-

erent situations: 1989–1998 (10 years) predicting from 1999 to
008 (10 years); 1976–1999 (24 years) predicting from 2000 to
008 (9 years). The influence of filtering process is also evalu-
ted by considering smoothed time series to perform the forecast.
fterwards, other time series are treated considering the same pro-

Fig. 16. Albany (Australia) prediction. Delay parameters; comparison between time
2 15.68 1.51
9 13.08 0.69
9 16.48 1.26
8 14.60 1.22

cedure for series from 1989 to 1998 (10 years) predicting from
1999 to 2008 (10 years). These choices are based on the number
of data points and the possibility to consider data without missing
points.

Let us now consider a 10-year time series of Beijing (China) asso-
ciated with a period from 1989 to 1998, representing 3652 data
points. Delay parameters are analyzed in Fig. 6 (upper part) that
presents average mutual information and false nearest neighbors
analyses. This analysis indicates a time delay � = 71 defined by the
first minimum of the information curve and embedding dimen-
sion De = 14, defined by a value where the system does not present
false neighbors. These results are used to perform predictions from
1999 to 2008, representing 10 years. Fig. 6 (lower part) presents
the original time series together with the prediction made by the
simple nonlinear prediction and an error histogram that shows the

distribution of events related to daily error between the series and
the prediction. The forecast capture the general behavior of the
time series, presenting average values of 12.99 ◦C for the time series
and 13.08 ◦C for the prediction, which means a difference of 0.69%.
Besides, the daily error analysis shows that the majority of predic-

series (light line) and prediction (dark line), from 1999 to 2008; error analysis.
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de Janeiro (Brazil), London (United Kingdom), Johannesburg (South
Africa), Beijing (China), Tokyo (Japan) and Albany (Australia). Delay
parameters are evaluated and results are presented in Table 3.
Afterwards, simple nonlinear prediction is employed to predict

Table 3
Delay parameter analysis.

Time series Data points � De

Montreal (Canada) 7301 82 41
Los Angeles (USA) 7303 97 38
Rio de Janeiro (Brazil) 7083 80 25
F.M. Viola et al. / Ecological

ions have low errors. Note that 85% of points have errors less than
0%.

In order to evaluate the influence of the number of data points, a
ime series corresponding to 24 years with 8745 data points (from
976 to 1999) is of concern. The analysis starts by evaluating delay
arameters. Fig. 7 (upper part) presents average mutual informa-
ion and false nearest neighbors analyses. From these, it is possible
o conclude that time delay is � = 74 and embedding dimension is
e = 54. It should be highlighted that this series has missing data

hat does not receive special treatment. Afterwards, simple non-
inear prediction is employed to model the series predicting future
alues from 2000 to 2008 (9 years), as shown in Fig. 7 (lower part).
esults show a good agreement between the original and the pre-
icted series and it is important to note that both series has average
alues that are very close (respectively, 12.98 ◦C and 12.97 ◦C rep-
esenting a difference of 0.12%). Although this larger time series
resents better results in terms of average, the histogram presents
orst results.

The preceding analysis showed that time series from 1999 to
008 (10 years) is able to capture the behavior of this series for
orecast purposes. Therefore, this period is used for the analysis of
he other series. Before this, we investigate the influence of filtering
n time series analysis. Basically, the moving average filtering that
moothes time series is employed and, after that, state space recon-
truction and prediction are performed. Fig. 8 presents original
nd filtered time series. Fig. 9 shows prediction analysis show-
ng average mutual information and false nearest neighbors and
orecast. From delay parameters analysis, it is possible to conclude
hat time delay is � = 62 and embedding dimension is De = 34. Note
hat time delay is basically the same and embedding dimension
s reduced by the filtering. Afterwards, simple nonlinear predic-
ion is employed to model the series predicting future values from
000 to 2008 (9 years). Once again, results show a good agreement
etween the original and the predicted series. It is important to
bserve that results are basically the same of those without filter-
ng which encourage us to develop the analysis from original time
eries, without filtering.

.2. Model verification

The analysis of Beijing (China) showed that that time series
rom 1989 to 1998 (10 years) is able to capture the behavior of
his series for forecast purposes. Moreover, results of filtered series
re basically the same of those obtained without filtering. From
ow on, the same verification procedure employed for the Bei-

ing (China) series is considered for the following time series:
ontreal (Canada), Los Angeles (USA), Rio de Janeiro (Brazil), Lon-

on (United Kingdom), Johannesburg (South Africa), Tokyo (Japan)
nd Albany (Australia). Essentially, it is considered series with 10
ears (from 1989 to 1998) corresponding to approximately 3650
ata points and filtering process are not considered. The anal-
sis starts by evaluating delay parameters, presenting average
utual information and false nearest neighbors analyses. After-
ards, simple nonlinear prediction is employed to model the series
redicting future values from 1999 to 2008 (10 years). This pro-
edure is repeated for each time series and results are shown
n Figs. 10–16 and each figure presents a set of four pictures:
elay parameters analyses (average mutual information and false
earest neighbors curves); prediction analysis that includes the
riginal time series together with the prediction made by the sim-
le nonlinear prediction; and the error analysis that presents the

rror histogram that shows the distribution of events with the
orresponding daily error between the time series and its predic-
ion.

In order to organize results, let us summarize the list of figures
nd the corresponding time series: Montreal (Canada)—Fig. 10;
Fig. 17. Error analysis of the forecast.

Los Angeles (USA)—Fig. 11; Rio de Janeiro (Brazil)—Fig. 12; Lon-
don (UK)—Fig. 13; Johannesburg (South Africa)—Fig. 14; Tokyo
(Japan)—Fig. 15; Albany (Australia)—Fig. 16.

In general, results show good agreement between the origi-
nal and the predicted series and it is important to note that both
series has average values that are very close. Table 2 summarizes
the main results presenting the delay parameters and the aver-
age of the time series and the predicted values together with the
error between them (including Beijing (China)). Results show that
error related to average value varies from 0.64% to 5.28%. More-
over, histograms show that most of the prediction values have small
daily errors presenting a tendency to be concentrated in errors less
than 10%. Actually, the worst forecast presents 50% of the pre-
dictions with less than 10% while the best forecast presents 85%
of the predictions with less than 10%. Fig. 17 summarizes these
histograms giving a good idea of the general behavior. This analy-
sis shows that prediction procedure is able to capture the general
behavior of the time series, especially concerning the average val-
ues.

5. Forecast

Since the proposed procedure has captured the general behavior
of the temperature evolution, we are encouraged to make predic-
tions of the future. In this regard, we use a 20-year time series, from
1989 to 2008, establishing a prediction of 20 years (from 2009 to
2028). This forecast is established for each one of the eight time
series here considered: Montreal (Canada), Los Angeles (USA), Rio
London (United Kingdom) 7300 68 28
Johannesburg (South Africa) 7300 87 24
Beijing (China) 7303 92 61
Tokyo (Japan) 7302 41 58
Albany (Australia) 7291 81 24
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Fig. 18. Prediction from
uture temperature values. Temperature predictions are presented
n Fig. 18. By establishing a linear match, it is possible to observe an
ncrease in temperature for all analyzed time series, except Albany
Australia). Table 4 summarizes these results. By establishing an
verage value of these temperature increase it is observed an aver-
to 2028 and linear fit.
age increase of 0.29 C. This result is coherent with Houghton (2005)
that argued that the 21st century has a temperature increase in
the range of 0.15–0.6 ◦C per decade. Concerning the average value,
the forecast presents an average value of 15.15 ◦C related to this
period.
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Table 4
Prediction results and linear fit.

Time series Prediction from 2009 to 2028

Linear fit (◦C) Average (◦C)

Montreal (Canada) +0.72 7.72
Los Angeles (USA) +0.22 16.87
Rio de Janeiro (Brazil) +0.30 24.39
London (United Kingdom) +0.28 11.67
Johannesburg (South Africa) +0.28 16.01
Beijing (China) +0.39 13.16
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Tokyo (Japan) +0.38 16.57
Albany (Australia) −0.24 14.77

Global average +0.29 15.15

. Conclusions

This paper deals with the analysis of the global warming dynam-
cs from nonlinear time series. Temperature time series from

ontreal (Canada), Los Angeles (USA), Rio de Janeiro (Brazil),
ondon (UK), Johannesburg (South Africa), Beijing (China), Tokyo
Japan) and Albany (Australia) are used in order to represent the
eneral aspects of system dynamics. Since noise contamination is
navoidable and the high dimensional characteristic of the sys-
em, the application of nonlinear tools is not a trivial task. State
pace reconstruction is done using the method of delay coordi-
ates and delay parameters, time delay and embedding dimension,
re respectively calculated by the method of average mutual infor-
ation and the method of false nearest neighbors. Prediction is

erformed using the simple nonlinear prediction technique. Dif-
erent number of data points and the moving average filtering are
mployed for model verification. Verification procedure establishes
proper number of data points and the capability of the method

o represent the general behavior of time series without employ
ltering. The verification analysis shows that the average value of
he forecast is close to the real time series with differences that
re less than 6%. Besides, more than 50% of the daily predictions
resent errors less than 10%. After this verification, the procedure

s employed to establish prediction of future values. In this regard,
0 years forecast is performed evaluating the temperature until
028. These results present a general increase of temperature eval-
ated from linear match of the predictions: 0.72 ◦C in Montreal
Canada), 0.22 ◦C in Los Angeles (USA), 0.30 ◦C in Rio de Janeiro
Brazil), 0.28 ◦C in London (United Kingdom), 0.28 ◦C in Johannes-
urg (South Africa), 0.39 ◦C in Beijing (China) and 0.38 ◦C in Tokyo
Japan). Only Albany (Australia) presents a temperature decrease
f 0.24 ◦C. In this regard, the average temperature has an increase
f 0.29 ◦C that represents a coherent value related to perspectives
iscussed in literature. The authors agree that the nonlinear tools
mployed in this work can be useful for the analysis of global warm-
ng.
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