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Shape memory and pseudoelastic effects are thermomechanical phenomena associated with
martensitic phase transformations, presented by shape memory alloys. The dynamical analy-
sis of intelligent systems that use shape memory actuators involves a multi-degree of freedom
system. This contribution concerns with the chaotic response of shape memory systems. Two
different systems are considered: a single and a two-degree of freedom oscillator. Equations
of motion are formulated assuming a polynomial constitutive model to describe the restitution
force of oscillators. Since equations of motion of the two-degree of freedom oscillator are associ-
ated with a five-dimensional system, the analysis is performed considering two oscillators, both
with single-degree of freedom, connected by a spring-dashpot system. With this assumption,
it is possible to analyze the transmissibility of motion between two oscillators. Results show
some relation between the transmissibility of order, chaos and hyperchaos with temperature.
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1. Introduction

Shape memory alloys (SMAs) are a family of metals
with the ability of changing shape depending on
their temperature. SMAs undergo thermoelas-
tic phase transformations, which may be induced
either by temperature or stress. Shape mem-
ory and pseudoelasticity are effects presented by
these alloys which are associated with these phase
transformations.

When a specimen of SMA is stressed at a
constant temperature, inelastic deformation is ob-
served above a critical stress. This inelastic process,
however, fully recovers during the subsequent un-
loading. The stress–stain curve, which is the macro-

scopic manifestation of the deformation mechanism
of the martensite, forms a hysteresis loop. At a
lower temperature, some amount of strain remains
after complete unloading. This residual strain may
be recovered by heating the specimen. The first
case, is the pseudoelastic effect [Fig. 1(a)], while
the last is the shape memory effect (SME) or one-
way SME [Fig. 1(b)] [Tanaka, 1990]. These effects
are inter-related in the sense that, if the hystere-
sis cycle in the pseudoelastic case is not completed
when applied stress is removed, then reversion of
the residual martensite must be induced upon heat-
ing, by employing the SME [Sun & Hwang, 1993].
In the process of returning to their remembered
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Fig. 1. (a) Pseudoelastic effect; (b) Shape memory effect.

shape, alloys can generate large forces which may
be useful for actuation [Rogers, 1995].

After subjecting the specimen to a “training
routine”, such as a series of SME cycles or a series
of stress induced martensite cycles, it is possible to
obtain changes in shape in both directions as a func-
tion of temperature (heating and cooling). There-
fore, both high and low temperature shapes may
be remembered. This phenomenon is the two-way
SME [Zhang et al., 1991; Perkins, 1984].

The SME and other related thermoelastic pro-
cesses associated with martensitic phase transfor-
mations have been known since at least 1938. But it
has been the investigations of Buehler et al. [1963]
on phase changes in Ni–Ti alloys that instigated
the technological interest in the SMAs. The al-
loys Ni–Ti, Cu–Zn, Cu–Zn–Al, Mg–Cu, Fe–Mn–Si,
Cr–Ni are some of the SMAs. Their properties are
very sensitive to composition and processing vari-
ables. Ni–Ti (Nitinol) is the most popular SMA as
a consequence of a combination of shape memory
response with good engineering properties. Strains
that elongate up to 8% can be reversed by heating
the alloy, typically with electric current [Tuominen
& Biermann, 1988].

Due to such remarkable properties, SMAs
have found a number of applications in engi-
neering sciences. They are ideally suited for use
as fastener, seals, connectors and claps [Borden,
1991]. Self-actuating fastener, thermally actua-
tors switches, a number of bioengineering devices

are some examples of these applications [Schetky,
1979]. The use of SMAs can help to solve important
problems concerning space saving in aerospace: self-
erectable structures, stabilizing mechanisms, so-
lar batteries, nonexplosive release devices are some
possibilities [Pacheco & Savi, 2000; Chernyavsky
et al., 1993; Busch et al., 1992; Schetky, 1979].
Micromanipulators and robotics actuators are us-
ing SMAs to mimic the smooth motions of human
muscles [Rogers, 1995]. Also, SMAs are being used
as actuators for vibration control of flexible struc-
tures. SMAs wires embedded in composite materi-
als have been used to modify vibrational character-
istics [Rogers, 1995; Rogers et al., 1991]. The main
drawback of SMAs is their slow rate of change.

Since the phenomena associated with marten-
sitic transformation are intrinsically nonlinear, its
dynamical response may present some characteris-
tics not observed in linear systems. As an example
one could mention chaotic motion which study con-
siders proper mathematical and geometrical aspects
[Alligood et al., 1997; Hilborn, 1994; Mullin, 1993;
Ott, 1993; Moon, 1992; Kapitaniak, 1991; Wiggins,
1990; Thompson & Stewart, 1986; Guckenheimer
& Holmes, 1983]. Savi and Braga [1993a, 1993b]
discussed the chaotic response of shape memory os-
cillators where the restitution force is provided by
SMA helical springs.

The dynamical analysis of intelligent systems
and structures that use SMA as actuators involves
multi-degree of freedom systems. High-dimensional
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dynamical systems show intricate behavior either
for temporal or spatial evolution properties. In
the past, most of the work on chaotic dynam-
ics has been concentrated on temporal behavior of
low-dimensional systems. Recently, spatiotemporal
chaos has attracted much attention due to its the-
oretical and practical applications [Lai & Grebogi,
1999; Shibata, 1998; Barreto et al., 1997; Thompson
& Van der Heijden, 1997; Umberger et al., 1989].
The present contribution concerns with the nonlin-
ear dynamics of shape memory systems considering
single and two-degree of freedom oscillators. Equa-
tions of motion are formulated using polynomial
constitutive model to describe the restitution force
of the oscillator. The prospect of chaotic behavior is
of concern and, since the equations of motion of the
two-degree of freedom oscillator are associated with
a five-dimensional system, the analysis is performed
by considering two oscillators, both with single-
degree of freedom, connected by a spring-dashpot
system. With this assumption, it is possible to an-
alyze the transmissibility of motion between the two
oscillators. Results show some relation between the
transmissibility of order and chaos with tempera-
ture. The existence of hyperchaos is another inter-
esting characteristic of these systems. Despite the
deceiving simplicity of the model used, the authors
agree that this analysis may contribute to the un-
derstanding of the nonlinear dynamics of shape
memory systems.

2. Polynomial Constitutive Model

Shape memory and pseudoelastic effects may be
modeled either by microscopic or macroscopic point
of view. Constitutive equations may be formu-
lated within the framework of continuum mechanics
and the thermodynamics of irreversible processes,
by considering thermodynamic forces, defined from
the Helmholtz free energy, ψ, and thermodynamic
fluxes, defined from the pseudo-potential of dissipa-
tion, φ [Lemaitre & Chaboche, 1990].

The formulation of phenomenological constitu-
tive models to describe SMAs behavior is based
on different assumptions on the free energy and
the pseudo-potential of dissipation [Savi & Braga,
1993a]. There are many different works dedicated to
the constitutive description of the thermomechani-
cal behavior of shape memory alloys, however, this
is not a well established topic [James, 2000; Birman,
1997; Bertram, 1982; Souza et al., 1998; Auricchio

& Lubliner, 1997; Auricchio & Sacco, 1997; Auric-
chio et al., 1997; Tanaka & Nagaki, 1982; Liang
& Rogers, 1990; Brinson, 1993; Boyd & Lagoudas,
1994; Ivshin & Pence, 1994; Fremond, 1987, 1996;
Abeyaratne et al., 1994].

Polynomial constitutive model is based on De-
vonshire theory proposed by Falk [1980]. This
is a one-dimensional model which represents the
shape memory and pseudoelastic effects consider-
ing a polynomial free energy that depends on the
temperature and on the one-dimensional strain, E,
i.e. ψ = ψ(E, T ). No other internal variables are
considered and this characteristic makes this model
a simple alternative to describe SMAs behavior.

The form of the free energy is chosen in such
a way that the minima and maxima points repre-
sent stability and instability of each phase of the
SMA. As it is usual on one-dimensional models
proposed for SMAs [Savi & Braga, 1993a], three
phases are considered: Austenite (A) and two vari-
ants of martensite (M+, M−). Hence, the free
energy is chosen such that for high temperatures
it has only one minimum at vanishing strain, rep-
resenting the equilibrium of the austenitic phase.
At low temperatures, martensite is stable, and the
free energy must have two minima at nonvanishing
strains. At intermediate temperatures, the free en-
ergy must have equilibrium points corresponding to
both phases. These restrictions are satisfied by the
following polynomial expression:

ρψ(E, T ) =
1

2
a(T − TM )E2

− 1

4
bE4 +

1

6
eE6 (1)

where a, b and e are positive constants, while TM is
the temperature below which the martensitic phase
is stable and ρ is the mass density. If TA is de-
fined as the temperature above which the austenite
is stable, and the free energy has only one minimum
at zero strains, it is possible to write the following
condition,

TA = TM +
1

4

b2

4ae
(2)

Therefore, the constant e may be expressed
in terms of other constants of the material. By
definition [Savi & Braga, 1993a], the stress–strain
relation is given by,

σ = ρ
∂ψ

∂E
= a(T − TM )E − bE3 + eE5 (3)
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Fig. 2. Single-degree of freedom shape memory oscillator.

It should be emphasized that this model consid-
ers one free energy, with no extra internal variable,
to represent phase transformations on SMAs with
an austenitic phase and two variants of martensite.
This model describes both the shape memory and
pseudoelastic effects qualitatively well in a simple
way. The absence of experimental data evaluat-
ing material constants is one of the drawbacks to
its use.

3. Single-Degree of Freedom
Oscillator

In order to perform the dynamical analysis of
mechanical systems with SMA elements, a single-
degree of freedom shape memory oscillator, de-
picted in Fig. 2, is considered. It consists of a
mass, m, supported by a SMA element and a
linear damper with coefficient c, being harmonically
excited by a force F = F sin(Ωt).

Shape memory behavior is described consider-
ing polynomial constitutive model. Therefore, the
restoring force is given by,

K = K(u, T ) = a(T − TM )u− bu3 + eu5 (4)

where

a =
aA

L
; b =

bA

L3
; e =

eA

L5
(5)

and variable u represents the displacement associ-
ated with the SMA element, L is its length while A
is its area. By establishing the equilibrium of the
system, equations of motion are written as follows

y′0 = y1

y′1 = δ sin(ωτ)− ξy1 − (θ − 1)y0 + βy3
0 − εy5

0

(6)

where the following definitions are considered:

ω2
0 =

aATM
mL

; τ = ω0t ; ( )′ = d( )/dτ ;

y0 = u/L ; y1 = u′/L ; ω = Ω/ω0 ;

δ =
F

mLω2
0

; ξ =
c

mω0
; β =

bA

mLω2
0

;

ε =
eA

mLω2
0

; θ =
T

TM

(7)

Numerical simulations are performed employ-
ing a fourth-order Runge–Kutta method for nu-
merical integration and time steps less than ∆τ =
2π/200ω present good results. The characterization
of chaotic motion is done regarding Lyapunov ex-
ponents, and its estimation employs the algorithm
proposed by Wolf et al. [1985].

In all simulations one considers a unitary mass
and ω = 1, ξ = 0.1, β = 1.3e3 and ε =
4.7e5. Notice that θA = 1 + β2/4ε, and therefore,
θA = 1.9.

3.1. Free vibration

In this section, the free response of the shape mem-
ory oscillator is discussed. This is done by letting
δ vanish in the nondimensional equation of motion
(6). The system has different equilibrium points
depending on temperature. Denoting by (y0, y1)
a point that makes the right-hand sides of equa-
tions of motion vanish, the following possibilities
are found,

y0 = 0 and y1 = 0

y0 = ±

√√√√2(θA − 1)

β

[
1±

√
θA − θ
θA − 1

]
and y1 = 0

(8)

Of these five possibilities, only those that corre-
spond to real numbers have physical meaning. Sta-
bility of these equilibrium configurations may be
determined by the behavior of the system in their
neighborhood. An analysis of the eigenvalues of
the Jacobian matrix of the system reveals its local
stability. Therefore,

(a) θ ≤ 1, the system has three fixed points: The
origin of the phase space is a saddle point. The
other two fixed points are centers when ξ = 0
and stable spirals when ξ > 0. This is consis-
tent with the low temperature behavior of SMA,
where two martensitic phases are stable.
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(b) 1 < θ < θA, the system has five fixed points:
The system has two saddle points in the phase
space. The remaining three fixed points are
centers when ξ = 0 and stable spirals when
ξ > 0. The existence of three stable fixed
points is explained by the stability of both
martensitic phases and austenite in this range of
temperature.

(c) θ = θA, the system has three fixed points: The
origin is a center when ξ = 0 and stable spirals
when ξ > 0. The other two fixed points are
saddles.

(d) θ > θA, the system has only one fixed point:
The origin is the only fixed point and it is ei-
ther a center or a stable spiral, again depending
on whether the system is dissipative or not. Un-
der this temperature range, austenite is the only
stable phase in the stress-free SMA.

In order to illustrate the free response of the
oscillator, a nondissipative system (ξ = 0) is consid-
ered. Results from simulations are presented in the
form of phase portraits. Figure 3 presents the free
response of the system at a temperature where the
martensitic phase is stable (θ = 0.7). There are, in
this case, three equilibrium points. From these, two
are stable while the other one is unstable. Now, by
considering a higher temperature, where austenitic
phase is stable in the alloy (θ = 3.5), the system
presents only one stable equilibrium point.

3.2. Forced vibration

The behavior of the forced system is far more com-
plex. In this section, different kinds of the shape
memory oscillator response are shown. In order
to start the analysis, bifurcation diagrams are pre-
sented (Fig. 4), showing the stroboscopically sam-
pled displacement values, y0, under the slow quasi-
static increase of the driving force amplitude, θ, and
different temperatures. Notice that there are pa-
rameter values associated with a cloud of points,
which are related to chaotic motion.

At this point, different responses are contem-
plated. Assuming θ = 3.5 and δ = 0.06, the sys-
tem presents a period-1 motion. Figure 5 shows
the phase space and the Poincaré section associ-
ated with this motion. Regarding the same forc-
ing parameter and a lower temperature, θ = 0.7,
where the martensitic phase is stable, the motion
becomes chaotic. The phase space and the Poincaré
section associated with this motion are presented

(a)

(b)

Fig. 3. Phase portrait. (a) θ = 0.7; (b) θ = 3.5.

in Fig. 6. Under this condition, a strange at-
tractor is identified and Lyapunov spectrum esti-
mated by the algorithm due to Wolf et al. [1985] is
λi = (+0.28, −0.42), presenting one positive expo-
nent. Decreasing the forcing amplitude parameter
to δ = 0.038, a period-3 motion is observed (Fig. 7)
and, once again, a period-1 response occurs when
δ = 0.02 (Fig. 8).

4. Two-Degree of Freedom Oscillator

In this section, a two-degree of freedom oscillator,
depicted in Fig. 9, is considered. It consists of two
masses, mi (i = 1, 2), supported by SMA elements
and linear dampers with coefficient ci (i = 1, 2, 3).
The system is harmonically excited by two forces
Fi = F i sin(Ωit) (i = 1, 2).

As discussed in the previous section, shape
memory behavior is described by considering
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(a) (b)

Fig. 4. Bifurcation diagrams. (a) θ = 0.7; (b) θ = 3.5.

(a) (b)

Fig. 5. Periodic motion. θ = 3.5 and δ = 0.06. (a) Phase space; (b) Poincaré section.

(a) (b)

Fig. 6. Chaotic motion: θ = 0.7 and δ = 0.06. (a) Phase space; (b) Strange attractor.
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(a) (b)

Fig. 7. Period-3 motion: θ = 0.7 and δ = 0.038. (a) Phase space; (b) Poincaré section.

(a) (b)

Fig. 8. Period-3 motion: θ = 0.7 and δ = 0.02. (a) Phase space; (b) Poincaré section.
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Fig. 9. Two-degree of freedom shape memory oscillator.
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polynomial constitutive model. Hence, establishing
the equilibrium of the system, equations of motion
are written as follows

y′0 = y1

y′1 = δ1 sin(ω1τ)− (ξ1 + ξ2α21µ)y1

+ ξ2α21µy3 − [(θ1 − 1) + α2
21µ(θ2 − 1)]y0

+ α2
21µ(θ2 − 1)y2 + β1y

3
0 − ε1y

5
0

− β2α
2
21µ(y2 − y0)3 + ε2α

2
21µ(y2 − y0)5

y′2 = y3

y′3 = α2
21δ2 sin(ω2τ) + ξ2α21y1

− (ξ2α21 + ξ3α21α32)y3 + α2
21(θ2 − 1)y0

− [α2
21(θ2 − 1) + α2

21α
2
32(θ3 − 1)]y2

+ β2α
2
21(y2 − y0)3 − ε2α

2
21(y2 − y0)5

+ β3α
2
21α

2
32y

3
2 − ε3α

2
21α

2
32y

5
2

(9)

where the following definitions are adopted,

ω2
1 =

a1ATM1

m1L
; ω2

2 =
a2ATM2

m2L
; ω2

3 =
a3ATM3

m2L
;

τ = ω1t ; ( )′ = d( )/dτ ; y0 = u1/L ;

y1 = u′1/L ; y2 = u2/L ; y3 = u′2/L ;

ω1 = Ω1/ω1 ; ω2 = Ω2/ω1 ;

θi = Ti/TMi (i = 1, 2, 3) ;

δ1 =
F 1

m1Lω
2
1

; δ2 =
F 2

m2Lω
2
2

;

ξ1 =
c1

m1ω1
; ξ2 =

c2
m2ω2

; ξ3 =
c3

m2ω3
;

α21 =
ω2

ω1
; α32 =

ω3

ω2
; µ =

m2

m1
;

β1 =
b1A

m1Lω
2
1

; β2 =
b2A

m2Lω
2
2

; β3 =
b3A

m2Lω
2
3

;

ε1 =
e1A

m1Lω
2
1

; ε2 =
e2A

m2Lω
2
2

; ε3 =
e3A

m2Lω
2
3

(10)

Again, numerical simulations are performed
employing a fourth-order Runge–Kutta method for
numerical integration and time steps less than ∆τ =
2π/200ω1 present good results. In all simulations,
similar mechanical properties are regarded for the
three spring-dashpot systems. A unitary mass is
assumed and ω1 = ω2 = 1, ξ1 = ξ2 = ξ3 = 0.1,
β1 = β2 = β3 = 1.3e3 and ε1 = ε2 = ε3 =
4.7e5. These informations allow one to conclude
that α21 = α32 = µ = 1, and θA1 = θA2 = θA3 =
1.9.

Since equations of motion are associated with a
five-dimensional system, the analysis is performed

by considering two oscillators, both with single-
degree of freedom, connected by a spring-dashpot
system. With this assumption, it is possible to an-
alyze the transmissibility of motion between the two
oscillators, constructing a phase subspace for each
mass. This transmissibility is evaluated studying
different temperatures on the connection system,
which causes different patterns on each phase
subspace.

At first, consider uncoupled systems excited in
such form that there is a chaotic motion on mass m1

(δ1 = 0.06 and θ1 = 0.7) and a null forcing ampli-
tude parameter on mass m2 (δ2 = 0 and θ3 = 0.7).
Therefore, Poincaré section related to mass m1,
subspace y0−y1, presents a strange attractor shown
in Fig. 6. On the other hand, Poincaré section
related to mass m2, subspace y2 − y3, is a point.
Next, systems are coupled introducing a connection
with θ2 = 0.7 where martensitic phase is stable.
Under this condition, a cloud of points is transmit-
ted to the phase subspace associated with mass m2,
while the strange attractor associated with mass m1

changes its pattern (Fig. 10). Lyapunov spectrum
estimated by the algorithm due to Wolf et al. [1985]
is λi ≡ (+0.50, +0.08, −0.34, −0.82), presenting
two positive exponents. The occurrence of two or
more positive Lyapunov exponents in a dynamical
system is called hyperchaos [Moon, 1992; Rossler,
1979]. This situation means that two or more direc-
tions in the phase space suffer stretching under the
dynamical process. When the temperature of the
connection is altered, θ2 = 3.5, austenitic phase be-
comes stable. Under this new condition, the trans-
missibility is quite different from the previous one
(Fig. 11). Notice that the strange attractor of mass
m1 becomes a point and similar situation occurs
on the phase space associated with mass m2. Now,
Lyapunov spectrum is λi ≡ (−0.09, −0.11, −0.16,
−0.20) where there is no positive exponent, mean-
ing a periodic motion.

A different excitation condition is now in focus.
Hence, consider an excitation that causes chaotic
motions on both masses (δ1 = δ2 = 0.06 and
θ1 = θ3 = 0.7) of two uncoupled systems. Introduc-
ing a connection with θ2 = 0.7, martensitic phase
is stable. The response of this system is similar to
the case where δ1 = 0.06 and δ2 = 0 associated
with Fig. 10, that is, a cloud of points is trans-
mitted to the phase space associated with mass m2,
while the strange attractor associated with mass m1

changes its pattern (Fig. 12). Lyapunov spectrum
is λi ≡ (+0.54, +0.17, −0.37, −0.92) presenting
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(a) (b)

Fig. 10. Phase space. δ1 = 0.06, δ2 = 0; θ1 = θ2 = θ3 = 0.7.

(a) (b)

Fig. 11. Phase space. δ1 = 0.06, δ2 = 0; θ1 = θ3 = 0.7; θ2 = 3.5.

(a) (b)

Fig. 12. Phase space. δ1 = 0.06, δ2 = 0.06; θ1 = θ2 = θ3 = 0.7.
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two positive exponents, meaning that there is hy-
perchaos. Now, a different connection temperature
is considered, θ2 = 3.5, meaning that austenitic
phase becomes stable. Under this new condition,
the transmissibility is quite different from the pre-
vious one (Fig. 13). Notice that there are strange
attractors related to both masses, showing the ex-
istence of chaos. This conclusion is confirmed by

Lyapunov spectrum, λi ≡ (+0.30, −0.14, −0.29
−0.45), which presents only one positive exponent.

At this point, further figures are used to illus-
trate these behaviors. With this aim, consider a 3D
plot (y0−y1−y2) of the five-dimensional phase space
of the previous example. Figure 14 shows the case
where δ1 = δ2 = 0.06, and θ1 = θ2 = θ3 = 0.7,
representing a martensitic connection. This 3D

(a) (b)

Fig. 13. Phase space. δ1 = 0.06, δ2 = 0.06, θ1 = θ3 = 0.7; θ2 = 3.5.

Fig. 14. Poincaré section in the space y0–y1–y2 for δ1 = δ2 = 0.06, and θ1 = θ2 = θ3 = 0.7.
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Fig. 15. Poincaré section in the space y0–y1–y2 for δ1 = δ2 = 0.06, θ1 = θ3 = 0.7 and θ2 = 3.5.

projection shows a cloud of points and allows
one to observe the phase subspace of mass m1

(Fig. 12) projected on the y0–y1 plane. Observ-
ing the projections on planes, it is not possible to
see a cantor-like structure. The same behavior is
observed when the 3D plot considers other vari-
ables, y0–y1–y3, for example. When an austenitic
connection is conceived assuming δ1 = δ2 = 0.06,
θ1 = θ3 = 0.7 and θ2 = 3.5, the 3D plot (y0–y1–
y2) shows a strange attractor with a typical struc-
ture (Fig. 15). Projection on the y0–y1 plane allows
one to observe the strange attractor associated with
mass m1, presented in Fig. 13.

The preceding examples show that austenitic
connection, which occurs in higher temperatures
(θ2 = 3.5, for example), tends to preserve order in
contrast to the situation where a martensitic con-
nection is considered (θ2 = 0.7, for example). This
conclusion passes from the understanding that there
is an inherent order associated with the pattern of
the strange attractor.

Notice that Figs. 10 and 12, which are related
to martensitic connections, present chaotic behavior
where attractors have different patterns, showing no
order in these motions. On the other hand, Figs. 11
and 13, which are related to austenitic connections,
present respectively, a periodic and a chaotic mo-

tion. Both situations preserve order in the sense
that chaotic motion present a strange attractor with
a typical structure.

A further comment associated with the trans-
missibility of motion is related to Lyapunov spec-
tra. When an austenitic connection is regarded,
order is preserved and Lyapunov spectrum asso-
ciated with chaotic motion has only one positive
exponent. On the other hand, when a martensitic
connection is conceived, Lyapunov spectrum associ-
ated with chaotic motion has more than one positive
exponent, characterizing hyperchaos. Therefore,
one can infer that hyperchaos is related to the mech-
anism that breaks the order.

5. Conclusions

This contribution reports on the chaotic response of
shape memory systems where the restitution force
is described by polynomial constitutive model. Two
different systems are considered: a single and a
two-degree of freedom oscillator. Since equations
of motion of the two-degree of freedom oscillator
are associated with a five-dimensional system, the
analysis is performed considering two oscillators,
both with single-degree of freedom, connected by
a spring-dashpot system. With this assumption, it
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is possible to analyze the transmissibility of mo-
tion between two oscillators. Results show that
variations of the connection temperature alter the
transmissibility of motion between both masses. An
austenitic connection tends to preserve order in
contrast to the situation where a martensitic con-
nection is considered. Furthermore, hyperchaos is
related to the mechanism that breaks this order.
The authors agree that, despite the deceiving sim-
plicity of the model used, similar behavior may be
expected in other shape memory systems.
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