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Chaos control may be understood as the use of tiny perturbations for the stabilization of unsta-
ble periodic orbits embedded in a chaotic attractor. Since chaos may occur in many natural
processes, the idea that chaotic behavior may be controlled by small perturbations of some
physical parameter allows this kind of behavior to be desirable in different applications. In gen-
eral, it is not necessary to have a mathematical model to achieve the control goal since all control
parameters may be resolved from time series analysis. Therefore, state space reconstruction is
an important task related to chaos control. This contribution analyzes chaos control performed
using a semi-continuous method based on OGY approach and proposes the use of extended state
observers in order to perform state space reconstruction. The use of extended state observers
allows a direct application of the control method. Comparing with the delay coordinates method,
extended state observers avoids the calculation of parametric changes related to delayed Poincaré
sections that influence the system dynamics. The proposed procedure is applied in the control
of chaos in a nonlinear pendulum, showing that it may be used to control chaos in mechanical
systems.
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1. Introduction

Chaos control is based on the richness of responses
of chaotic behavior. A chaotic attractor has a dense
set of unstable periodic orbits (UPOs) and the
system often visits the neighborhood of each one
of them. Moreover, chaotic response has sensitive
dependence to initial condition, which implies that
the system’s evolution may be altered by small
perturbations. Therefore, chaos control may be
understood as the use of tiny perturbations for

the stabilization of an UPO embedded in a chaotic
attractor, which allows this kind of behavior to be
desirable in a variety of applications, since one of
these UPOs can provide better performance than
others in a particular situation.

The experimental analysis of nonlinear dynam-
ical systems furnishes a scalar sequence of measure-
ments, which may be analyzed using state space
reconstruction and other techniques related to non-
linear analysis. The basic idea of the state space
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reconstruction is that a signal contains informa-
tion about unobserved state variables that can
be used to predict the present state. Basically,
there are two ways of addressing this general
problem: one employs delay coordinate embedding
technique while the other uses the derivative coordi-
nates technique [Packard et al., 1980; Takens, 1981;
Broomhead & King, 1986; Ruelle, 1979]. Therefore,
a scalar time series may be used to construct a
vector time series that is equivalent to the system
dynamics from a topological point of view.

Recently, tools usually related to control theory
are being employed in the analysis of chaotic behav-
ior. Among others, one could mention extended
state observers (ESO) for the determination of
nonobserved state of a dynamical system [So et al.,
1994; Ramirez & Villamil, 1995; Femat et al., 1997;
Cao, 2000; Bowong & Kakmeni, 2003].

The main purpose of this contribution is the
use of extended state observers to perform state
space reconstruction in order to be applied to chaos
control in a nonlinear pendulum. This pendulum
has both torsional stiffness and damping and was
previously analyzed by Franca and Savi [2001] and
Pinto and Savi [2003]. Pereira-Pinto et al. [2004]
considered the chaos control of the cited pendu-
lum using the close-return (CR) method [Auerbach
et al., 1987] to determine the UPO embedded in
the attractor, and a variation of the OGY technique
called semi-continuous control (SCC) method, pro-
posed firstly by Hübinger et al. [1994] and extended
by Korte et al. [1995]. All signals are generated
numerically by the integration of the mathematical
model equations, which uses experimentally iden-
tified parameters. The cited article analyzes the
chaos control considering the analysis with either
all state variables or just a single scalar time series
are available. When a single time series is avail-
able, state space reconstruction is done employing
delay coordinates method. Here, the control analy-
sis considers that only a scalar time series is avail-
able and the state space reconstruction is done by
the use of extended state observers. Results show
the potentiality of the use of ESO for state space
reconstruction, especially when chaos control is of
concern.

2. Chaos Control Method

The control of chaos can be treated as a two-stage
process. The first stage is composed by the identi-
fication of UPO and is named as “learning stage”.

Since UPO are system invariants, they can be ana-
lyzed from state space reconstructed from a scalar
time series [Gunaratne et al., 1989].

This article considers the close-return (CR)
method [Auerbach et al., 1987] for the detection of
UPO embedded in the attractor. The basic idea is
to search for a period-P UPO in the time series
represented by vectors {ui}N

i=1. The identification
of a period-P UPO is based on a search for pairs
of points in the time series that satisfy the condi-
tion |ui − ui+P |(N−P )

i=1 ≤ r1 where r1 is the toler-
ance value for distinguishing return points. After
this analysis, all points that belong to a period-P
cycle are grouped together. During the search, the
vicinity of a UPO may be visited many times, and
it is necessary to distinguish each orbit, remove any
cycle permutation and to average them in order to
improve estimations as shown by Otani and Jones
[1997].

After the identification of a UPO, one can pro-
ceed to the next stage of the control process that is
the stabilization of the desired orbit. Chaos control
methods may be classified as discrete or continu-
ous techniques. The first chaos control method had
been proposed by Ott et al. [1990], nowadays known
as the OGY (Ott–Grebogi–Yorke) method. On the
other hand, continuous methods are exemplified by
the so-called delayed feedback control, proposed by
Pyragas [1992], which states that chaotic systems
can be stabilized by a feedback perturbation pro-
portional to the difference between the present and
a delayed states of the system.

The OGY [Ott et al., 1990] approach is
described considering a discrete system of the form
of a map ξi+1 = F (ξi, p), where p ∈ � is an
accessible parameter for control. This is equiva-
lent to a parameter dependent map associated with
a general surface, usually a Poincaré section. Let
ξF = F (ξF , p0) denote the unstable fixed point on
this section corresponding to an orbit in the chaotic
attractor that one wants to stabilize. Basically, the
control idea is to monitor the system dynamics until
the neighborhood of this point is reached. After
that, a proper small change in the parameter p
causes the next state ξi+1 to fall into the stable
direction of the fixed point.

The semi-continuous control (SCC) method
[Hübinger et al., 1994] lies between the continu-
ous and the discrete time control. This introduces
as many intermediate Poincaré sections, viewed as
control stations, as it is necessary to achieve sta-
bilization of a desirable UPO. Therefore, the SCC
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method is based on measuring transition maps of
the system and provides a more effective control,
necessary for systems with large instability orbits,
for example. These maps relate the state of the sys-
tem in one Poincaré section to the next. In order to
use N control stations per forcing period T , one
introduces N equally spaced successive Poincaré
sections Σn, n = 0, . . . , (N − 1). Let ξn

F ∈ Σn be
the intersections of the UPO with Σn and F (n,n+1)

be the mapping from one control station Σn to the
next one Σn+1. Hence, one considers the map

ξn+1
F = F (n,n+1)(ξn

F , pn). (1)

A linear approximation of F (n,n+1) around ξn
F and

p0 is considered as follows:

δξn+1 ∼= Anδξn + wnδpn, (2)

where δξn+1 = ξn+1 − ξn+1
F , δpn = pn − p0,

An = DξnP (n,n+1)(ξn
F , p0), and wn = (∂P (n,n+1)/

∂pn) (ξn
F , p0).

Hübinger et al. [1994] analyzed the possibility
of the eigenvalues of An to be complex numbers and
then they used the fact that the linear mapping
An deforms a sphere around ξn

F into an ellipsoid
around ξn+1

F . Therefore, a singular value decompo-
sition (SVD),

An = UnW n(V n)T

= {un
u un

s}
[

σn
u 0
0 σn

s

]
{vn

u vn
s }T , (3)

is employed in order to determine the directions vn
u

and vn
s in Σn which are mapped onto the largest,

σn
uun

u, and shortest, σn
s un

s , semi-axis of the ellipsoid
in Σn+1, respectively. Here, σn

u and σn
s are the sin-

gular values of An.
Korte et al. [1995] established the control target

as being the adjustment of δpn such that the direc-
tion vn+1

s on the map n + 1 is obtained, resulting
in a maximal shrinking on map n + 2. Therefore,
it demands δξn+1 = αvn+1

s , where α ∈ �. Hence,
from Eq. (2) one has that

Anδξn + wnδpn = αvn+1
s , (4)

which is a relation from which α and δpn can be
conveniently chosen.

3. State Space Reconstruction Using
Extended State Observers

A state observer may be understood as an auxiliary
system that is employed to estimate a nonobserved
state [Luenberger, 1964, 1966; Kalman, 1960]. The

observer is a very useful tool for receiving informa-
tion of the variables of a system that are otherwise
unknown. For this reason, it is usually employed in
control systems where knowledge of the plant sys-
tem is necessary from an incomplete observation.
In general, the use of state observers is related to
estimating, controlling and also detecting and iden-
tifying failures in dynamical systems.

This contribution uses the idea of extended
state observers to promote state space reconstruc-
tion. In order to introduce the basic ideas of
this procedure, consider a general nonlinear system
given by:


ẋ1 = x2

ẋ2 = f(x1, x2, w(x, t)) + b0u(x, t)
y = x1

(5)

where f is a nonlinear function that represents the
dynamics of the system and the disturbance, w(x, t)
is the external unknown input disturbance, u(x, t)
is the control signal and y is the observable output.
Notice that y = x1 is the only measured variable
and the parameter b0 is known. Therefore, it is nec-
essary to estimate x2 in order to determine the full
state of the system.

Nonlinear systems have many types of uncer-
tainties, such as imperfections of mechanisms,
unknown nonlinearities and parameters, which
make impossible to obtain an exact function f .
Since classical state observer designs, including
high-gain and sliding-mode observers, depend on
the perfect knowledge of the system dynamics,
Han [1995] suggests an alternative method called
extended state observer as an approach to deal with
the estimation of states of dynamics that do not
have a mathematical model. With this aim, the sys-
tem (5) is augmented as

{
ẋ = Ax + Bu + Eh

y = Cx
(6)

where

A =




0 1 0
0 0 1
0 0 0


, B =




0
b0

0


,

C = {1 0 0}, E =




0
0
1



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Notice that, now, vector x is defined by, x =
{x1 x2 x3}T , where variable x3 = f(x1, x2,
w(x, t)) represents an extended state. It should be
pointed out that, both f and its derivative h = ḟ
are unknown. However, by making f as a state, it is
now possible to estimate it by using a state observer.
Han [1995] proposed the following form for the state
observer:

˙̂x = Ax̂ + Bu + LG(e) (7)

Here, x̂ = {x̂1 x̂2 x̂3}T are estimated values of
vector x. Notice that x̂3 represents an estimative
of f(x1, x2, w(x, t)), and e = x1 − x̂1 represents
the error associated with the estimation. More-
over, L is the observer gain vector, which can be
obtained using known method such as pole place-
ment method. In this equation, the following vectors
are used:

L =
{
β1 β2 β3

}T (8)
G(e) =

{
g1(e) g2(e) g3 (e)

}
(9)

The gain of the observer is chosen in order to
obtain a good estimative for the system variables.
Therefore, function gi is defined as a modified expo-
nential gain function [Wang & Gao, 2003]:

gi(e, αi, δ) =



|e|αi sign(e), |e| > δ

e

δ1−αi
, |e| ≤ δ

(10)

The parameter δ is a small number used to limit
the gain in the neighborhood of the origin. This
procedure prevents excessive gain when the error
is small avoiding high frequency chattering [Gao
et al., 2001]. Therefore, when 0 < αi < 1, gi yields
high gain for small errors, |e| ≤ δ. On the other
hand, when αi < 0, a reduction of the observed
error occurs.

The definition of the gain is closely related to
the dynamics characteristics of the system. Usu-
ally, the first trial considers a linear gain (αi = 1,
i = 1, 2, 3), gi(e, αi, δ) = e (i = 1, 2, 3). Under this
assumption, the pole placement method can be used
for the initial design of this observer. Nonlinearities
can be added in order to improve the performance
of the observer. Nevertheless, it is important to say
that nonlinear gain functions introduce higher com-
plexity in the estimation algorithm [Gao, 2003].

The stability of the observer is assured from an
appropriate choice of parameters βi. The stability
of a linear extended state observer can be analyzed
subtracting the observer equation (7) from system

equation (6). This procedure gives an equation for
the error dynamics:

ė = Aee + Eh (11)

where

Ae = A − LC =



−β1 1 0
−β2 0 1
−β3 0 0


.

The stability of the error dynamics is associ-
ated with the roots of the characteristic polynomial
of Ae, since h is bounded:

λ(s) = s3 + β1s
2 + β2s + β3 = 0 (12)

In order to tune the linear ESO, the roots
must be all in the open left-half. Gao [2003] defines
the ωo-parameterization where all observer eigen-
values must be equal to −ωo. Therefore, L ={
β1 β2 β3

}T becomes a function of ωo, which is
denoted as the bandwidth of the observer. Then,

λ(s) = s3 + β1s
2 + β2s + β3 = (s + ωo)3 = 0 (13)

Solving this equation, one obtains the following
relationship between βi and ωo:

β1 = 3ωo, β2 = 3ω2
o , β3 = ω3

o (14)

4. Nonlinear Pendulum

As a mechanical application of the procedures pre-
sented in this article, a nonlinear pendulum is
considered. The motivation of the proposed pendu-
lum is an experimental set up, previously analyzed
by Franca and Savi [2001], Pinto and Savi [2003].
Pereira-Pinto et al. [2004] presented a mathemat-
ical model to describe the dynamical behavior of
the pendulum. Here, just the equations of motion
are shown. For more details, see the cited reference.

The considered nonlinear pendulum is shown
in Fig. 1. The right-hand side presents the exper-
imental apparatus while the left-hand side shows
a schematic picture. Basically, the pendulum con-
sists of an aluminum disc (1) with a lumped mass
(2) that is connected to a rotary motion sensor (4).
A magnetic device (3) provides an adjustable dis-
sipation of energy. A string-spring device (6) pro-
vides torsional stiffness to the pendulum and an
electric motor (7) excites the pendulum via the
string-spring device. An actuator (5) provides the
necessary perturbations to stabilize this system by
properly changing the string length.
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Fig. 1. Nonlinear pendulum. (a) Physical model. (1) Metallic disc; (2) Lumped mass; (3) Magnetic damping device; (4) Rotary
motion sensor; (5) Actuator; (6) String-spring device; (7) Electric motor. (b) Parameters and forces on the metallic disc.
(c) Parameters from driving device. (d) Experimental apparatus.

The equations of motion of this pendulum is given by [Pereira-Pinto et al., 2004]:{
φ̇

φ̈

}
=


 0 1

−kd2

2I
−ζ

I


 {

φ

φ̇

}
+




0

kd

2I
[
√

a2 + b2 − 2ab cos(�t) − (a − b) − ∆l] − mgD

2I
sin(φ)


 (15)

where � is the forcing frequency, a defines the posi-
tion of the guide of the string with respect to the
motor, b is the length of the excitation arm of the
motor, D is the diameter of the metallic disc and
d is the diameter of the driving pulley; I is the
total inertia of rotating parts, m is the lumped mass
and ζ is the dissipation parameter. The ∆l param-
eter is the length variation in the string provided
by the linear actuator (5) shown in Fig. 1(a). This

parameter is considered as the variation on the
accessible parameter for control purposes.

The determination of parameters in the equa-
tion of motion is done considering the experimen-
tal setup of Franca and Savi [2001]. Table 1 shows
the parameters that are evaluated from the exper-
imental setup. Moreover, values of the adjustable
parameters � and ζ are tuned to generate chaotic
response in agreement to the experimental work.

Table 1. Experimental parameters.

a (m) b (m) d (m) D (m) I (kg m4) k (N/m) m (kg)

1.6 × 10−2 6.0 × 10−2 2.9 × 10−2 9.2 × 10−2 1.876 × 10−4 4.736 1.6 × 10−2
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The ∆l parameter has a null value for the sys-
tem without control action. Therefore, using the
parameters presented in Table 2, it is possible to
use a fourth-order Runge–Kutta scheme in order to
perform numerical simulations of the equations of
motion. Figure 2 shows temporal evolution, phase
space and strange attractor related to this response.

Table 2. Adjustable parameters.

� (rad/s) ζ (kg · m2/s) ∆l (m)

5.15 5.575 × 10−5 0

Notice that the system presents a chaotic response
that can be assured evaluating Lyapunov expo-
nents. By employing the algorithm proposed by
Wolf et al. [1985], one obtains the following
spectrum that presents one positive value: λ =
{+19.21,−5.19}.

4.1. State space reconstruction

This section analyzes state space reconstruction
performed with the procedure of extended state
observers. It is assumed a scalar time series asso-
ciated with the pendulum position, x1 = φ,
which is generated by numerical integration of the

(a) (b)

(c)

Fig. 2. Chaotic response. (a) Temporal evolution. (b) Phase space. (c) Strange attractor.
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mathematical model. The reconstruction is done
assuming a linear ESO where gi(e, αi, δ) = e =
x1 − x̂1 (i = 1, 2, 3) in system (7).

In order to evaluate the sensitivity of the
extended state observer procedure to the gain
parameters, Fig. 3 shows different strange attrac-
tors related to the chaotic response of the pen-
dulum. Different gain parameters are considered,
imposing large variations of the bandwidth of the
observer, ωo: ωo = 1, ωo = 10, ωo = 40, ωo = 80. A
comparison with the real attractor, obtained from
all variables of the problem [Fig. 2(c)], shows that
ωo = 40 presents an equivalent response. There-
fore, it should be pointed out that the procedure

presents a small sensitivity related to large varia-
tions of gain parameters. Great variations of the
parameter ωo do not alter the topological charac-
teristic of the reconstructed attractor. Only ωo = 1
(40 times less than the ideal parameter) presents
different results. Although the parameter ωo is arbi-
trarily chosen here, there are procedures to per-
form an appropriated choice of this parameter. For
details see [Gao, 2003].

The state space reconstruction using extended
state observers has some advantages in chaos con-
trol. The method of delay coordinates, for exam-
ple, leads to a map F (n,n+1) that will depend on
all parametric changes that influence the system

(a) (b)

(c) (d)

Fig. 3. Reconstructed attractors considering different parameters. (a) ωo = 1, (b) ωo = 10, (c) ωo = 40, (d) ωo = 80.
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in the time interval tn − τ ≤ t ≤ tn, that
is, δpn, δpn−1, . . . , δpn−r with r being the largest
integer value such that δpn−r lies in this inter-
val [Pereira-Pinto et al., 2004; Dressler & Nitsche,
1992]. Therefore, the use of extended state observers
avoids these calculations, allowing a direct applica-
tion of the SCC method.

5. Chaos Control

The first stage of the control strategy is the identifi-
cation of UPOs embedded in the chaotic attractor.
The CR method [Auerbach et al., 1987] is employed
with this aim assuming a tolerance r1 = 0.006π
while r2 is set to be ten times r1. Figure 4 presents
a strange attractor of the motion showing points
in the Poincaré section #1 corresponding to some
identified UPOs that will be stabilized in the
next stage of control strategy. The application of
the SCC method considers three control stations
(named intermediate Poincaré section #2, #3, #4,
Fig. 5). Therefore, a total of four maps per forcing
period are considered.

After the identification of the UPOs embed-
ded in the Poincaré section #1, the piercing of the
same UPOs in the other three Poincaré sections
is determined. Then, the local dynamics expressed
by the Jacobian matrix and the sensitivity vector
of the transition maps in a neighborhood of the
fixed points are determined using the least-square
fit method [Auerbach et al., 1987; Otani & Jones,
1997]. After that, the SVD technique is employed

Fig. 4. Unstable periodic embedded in the attractor.

for determining the stable and unstable directions
near the next fixed point. The sensitivity vectors are
evaluated allowing the trajectories to come close to
a fixed point and then one perturbs the parameters
by the maximum permissible value. In this case, it is
assumed a perturbation ∆lmax = 20 mm, fitting the
resulting deviations [δξn+1(∆l) − Anδξn]/∆l from
the next piercing by the least square procedure.
After that, SCC method is employed to stabilize
unstable periodic orbits and the parameter changes
are calculated from Eq. (5).

The stabilization of UPOs is simulated con-
sidering the following sequence: during the first
500 forcing periods control is off. After that, it is

(a) (b)

Fig. 5. (a) Poincaré map #2, (b) Poincaré map #3, (c) Poincaré map #4.
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(c)

Fig. 5. (Continued )

stabilized at period-3 UPO between 500 and 1000
forcing periods. A period-6 UPO is then stabi-
lized between 1000 and 1500 forcing periods. After-
wards, it is stabilized at period-3 UPO, different
from the first one, between 1500 and 2000 forc-
ing periods and finally at period-6, from 2000 and
2500 forcing periods. Figure 6 shows the system’s
dynamics in the Poincaré section #1 during this
sequence of actuation. Notice that different times
are needed for the system to achieve the desired
stabilization on a particular UPO. This happens
because one must wait until the trajectory comes
close enough to a control point to perform the

necessary perturbation, exploiting the ergodicity
property of chaos. Moreover, it should be pointed
out that, as expected, results show that unstable
orbits are stabilized with small variations of control
parameter after a transient, less than 10 mm in this
case.

Figures 7–10 show details on stabilized orbits.
Phase space, time evolution of position and control
parameters are presented. Moreover, a comparison
between the unstable periodic orbit stabilized using
conventional control (all state variables are avail-
able) and observer-based control are shown, pre-
senting good agreements.

(a) (b)

Fig. 6. Response under control. (a) Temporal alternating of UPOs in Poincaré section #1. (b) Control signal.
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(a)

(b)

(c)

Fig. 7. Period-3 UPO.

(a)

(b)

(c)

Fig. 8. Period-6 UPO.
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(a)

(b)

(c)

Fig. 9. Period-3 UPO.

(a)

(b)

(c)

Fig. 10. Period-6 UPO.
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6. Conclusions

This contribution discusses the state space recon-
struction using extended state observers applied
to the control of chaos in a simulated nonlinear
pendulum. The use of extended state observers
showed to be effective in order to perform recon-
struction. In terms of control strategy, the first stage
uses the close-return method to identify unstable
periodic orbits (UPOs) embedded in the chaotic
attractor. After that, the semi-continuous control
(SCC) method is considered to stabilize desirable
orbits. Least-square fit method is employed to esti-
mate Jacobian matrixes and sensitivity vectors.
Moreover, SVD decomposition is employed to
estimate directions of unstable and stable mani-
folds in the vicinity of control points. The use of
extended state observers allows a direct application
of a SCC method. Compared with delay coordi-
nate method, this procedure avoids the calculation
of parametric changes related to delayed Poincaré
sections. Simulations of control procedure show that
SCC method is capable to perform stabilization of
the nonlinear pendulum.
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