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Abstract
This paper proposes a novel model to estimate the effective elastic properties of unidirec-
tional composites with circular cross section fibers: VSPKc. Finite element method (FEM) 
and experimental data are employed as reference solutions in order to verify the model 
capability to estimate the elastic properties. Experimental data considers a set of 126 tests 
compiled from the literature. In addition, predictions of two alternative analytical models 
are evaluated to highlight the advantages of the proposed model: the classical Rule of Mix-
tures (ROM) and a ROM-based model with octagonal cross section fibers. Results show 
that the VSPKc model presents the best estimations compared with either FEM or experi-
mental data. The novel model highlights the importance of considering the fiber geometry 
on the estimation of elastic properties and establishes a simple set of closed-form formulas.
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1 Introduction

Due to a large number of variables involved in the composite design [1], the analytical 
approaches are fundamental tools for the design and optimization procedures [2, 3]. Some 
applications highlighting the importance of micromechanical models for multiscale analy-
sis are discussed for different structures as a pressure vessel [4] or notched plates [5, 6]. 
Composite materials have been applied in different scenarios to exploit their mechanical 
[7], thermal [8], chemical [9, 10] and dielectric [11] capabilities, as well as nanoscale tech-
nology [12, 13].

Micromechanical models can have a questionable accuracy due to unavoidable imper-
fections in the manufacturing process that include fiber nonuniform distribution [14] and 
the fiber surface influence on the fiber-matrix interface [15]. Ramos et al. [16] presented 
a discussion about interface modeling. On this basis, there are several research efforts to 
improve the accuracy of micromechanical modeling. In this regard, Vignoli et al. presented 
a general overview of micromechanical models to estimate the effective elastic properties 
and strength of composites, comparing with a large set of experimental data compiled from 
the literature [17–20].

In general, micromechanical models can be classified into three groups: models based 
on the Rule of Mixture (ROM-based); models based on the theory of elasticity; and trace-
based models. The ROM-based models are usually based on simple assumptions of 2D 
elements (see Fig. 1) associated in series for the longitudinal elastic modulus, E1

 , and in-
plane Poisson’s ratio, �

12
 ; or associated in parallel for transversal elastic modulus, E

2
 , in-

plane shear modulus, G
12

 , and plane strain bulk modulus, K
23

 [21]. The out-of-plane shear 
modulus, G

23
 , can be also calculated assuming that the lamina is transversally isotropic 

[17]. This kind of models presents good predictions for E
1
 and v

12
 , but the estimations for 

associations in parallel are poor due to perturbations on the stress and strain fields related 
to stress concentration around the inclusions [17].

Other ROM-based models have been proposed to improve results for E
2
 , G

12
 and G

23
 . 

Among these models, the most popular are Halpin–Tsai [22] and Chamis [23] models. 
Recently, Vignoli et al. [5, 17] proposed a modified version of ROM (VSPK – authors ini-
tials) that presents a better agreement with experimental data. The main drawback of these 
models is the requirement of calibration parameters.

Fig. 1  Coordinate system for composite material properties
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Huang et al. [24] developed a novel model assuming square symmetry of the unit cell 
and octagonal geometry of fibers. The load distribution analysis considers only strength 
of materials hypothesis for elements associated in series or in parallel, but a considerable 
improvement is observed comparing with the traditional ROM using a simplified geometry. 
Verma et  al. [25] proposed a modeling approach considering a square symmetry of the 
unit cell and a circular fiber. Transversal load is of concern to evaluate the matrix damage. 
However, the expressions for effective elastic properties have not been derived.

Regarding the models based on the theory of elasticity, the asymptotic homogenization 
method is a rigorous mathematical modeling for periodic composites [26], presenting the 
closest estimation when compared with the experimental data [17]. Kalamkarov [27] pre-
sented an analytical solution for the effective elastic properties considering square sym-
metry of the unit cell and isotropic constituents. Later, it was generalized for transversally 
isotropic fibers [28] and simplified closed-form expressions with truncated series was pro-
posed by Castillero et al. [29]. The classical Mori–Tanaka study [30], the influence of fiber 
orientation [31, 32], the fatigue life estimations [33] are additional examples of approaches 
developed based on the theory of elasticity. The large number of equations and the require-
ment of infinite series are the shortcoming for the applications of the models based on the 
theory of elasticity.

Finally, the third analytical approach to estimate the effective elastic properties of uni-
directional composite is based on the empirical observation that the trace of the stiffness 
matrix is constant, which makes this a material property that can be used to estimate the 
other effective properties [1, 34]. It was initially proposed for carbon fiber laminae, but 
some investigations about its applications for other fibers have been performed [35]. A trial 
for theoretical basis discussion was carried out by Arteiro et al. [36] and several engineer-
ing applications have been proposed [37]. A comparison among trace theory with other 
micromechanical models is discussed by Vignoli et al. [20] showing a good estimation of 
this approach.

This paper proposes a novel model to estimate the effective elastic properties of uni-
directional composites with circular cross section fibers: VSPKc. The proposed approach 
is an original ROM-based model based on the fiber and matrix properties, considering a 
unit cell with a specific fiber cross section geometry. The main advantage of this approach 
is that it does not require calibrated parameters, being associated with a reduced number 
of equations. Predictions of the proposed model are compared with experimental data and 
other alternative approaches as the classical ROM, the model assuming fiber octagonal 
geometry [24] and finite element simulations. Results show that the VSPKc model presents 
the best predictions using simpler equations.

2  VSPKc Model

The proposed VSPKc model is based on the Rule of Mixtures (ROM) and establishes 
closed-form expressions to calculate the effective elastic properties of unidirectional lami-
nae. The idea is to define a square unit cell with a circular cross section fiber embedded in 
the matrix, following a similar strategy of presented in references [24, 25].

The VSPKc model is based on the unit cell presented in the Fig. 2 that shows the fiber’s 
diameter D, the unit cell length in x

2
 and x

3
 equal to L, the unit cell length in x

1
 equal to 

Δx
1
 , the fiber volume fraction is Vf = �D2∕4L , and consequently, D∕L = 2

√
Vf∕�.

1717Applied Composite Materials (2022) 29:1715–1731
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Regarding the properties E
1
 and v

12
 , both fiber and matrix present the same strain 

and therefore, it can be assumed to be elements in parallel association that results in the 
classical ROM estimation described on following equations [17]:

where Ef

1
 is the fiber longitudinal elastic modulus, vf

12
 is the fiber in-plane Poisson’s ratio, 

Em is the matrix elastic modulus, vm is the matrix Poisson’s ratio and Vf  is the fiber volume 
fraction.

2.1  Tranversal Elastic Modulus E
2

The determination of the transversal elastic modulus consider a transversal load on 
the unit cell, as presented in the Fig. 3. The unit cell is split into two regions: (i) only 
matrix; (ii) matrix and fiber. The proposed procedure yields a constitutive relation of the 
homogenized unit cell with the form ⟨�

22
⟩ = E

2
⟨�

22
⟩ , where ⟨�

22
⟩ and ⟨�

22
⟩ are the trans-

versal stress and strain on the unit cell, respectively, and E
2
 is the effective transversal 

elastic modulus to be derived. Considering that regions (i) and (ii) are parallel and the 
unit cell is symmetric, the equilibrium requirement can be expressed by

where �(i)

22
 and �(ii)

22
= �

(ii)

22

(
x
3

)
 are the stresses in regions (i) and (ii), respectively.

For region (i), �(i)

22
 can be assumed independent of x

3
 , since there is no fiber. The 

matrix constitutive relation can be applied to obtain

(1)E
1
= E

f

1
Vf + Em(1 − Vf )

(2)�
12

= �
f

12
Vf + �

m(1 − Vf )

(3)⟨�
22
⟩ = 2

LΔx
1

⎛⎜⎜⎝

L∕2

∫
D∕2

�
(i)

22
dx

3
Δx

1
+

D∕2

∫
0

�
(ii)

22
dx

3
Δx

1

⎞⎟⎟⎠

Fig. 2  Unit cell with square symmetry and circular fiber
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In region (ii), the stress �(ii)

22
 is not independent of x

3
 , since matrix and fiber constitu-

tive relations are necessary. First, consider the infinitesimal element shown in the Fig. 4. 
Assuming stress, �∗

22
 , and strain, �∗

22
 , it is desirable to obtain the effective elastic modu-

lus E∗
2
 to define the constitutive relation �∗

22
= E∗

2
�
∗
22

 . Since fiber and matrix are in series, 
the equilibrium requirement and geometrical compatibility are defined as follows:

Defining the fiber volume fraction inside this infinitesimal element by 
V∗
f
= (D∕L) cos � = 2

√
Vf∕� cos � , Eq. (5) can be rewritten as

Substituting the constitutive relations �∗
22

= E∗
2
�
∗
22

 , �f

22
= E

f

2
�
f

22
and �m

22
= Em

�
m
22

 into 
Eq. (7),

(4)

L∕2

∫
D∕2

�
(i)

22
dx

3
=

L∕2

∫
D∕2

Em
�
(i)

22
dx

3
=

1

2
Em

�
(i)

22
(L − D)

(5)�
∗
22

= �
m
22

= �
f

22

(6)�
∗
22
L = �

m
22
(L − D cos �) + �

f

22
D cos �

(7)�
∗
22

= �
m
22
(1 − V∗

f
) + �

f

22
V∗
f

Fig. 3  Transversal load applied 
to the unit cell

Fig. 4  Infinitesimal element of part (ii)
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Using Eq. (5) and the definition V∗
f
= (D∕L) cos � = 2

√
Vf∕� cos � , the effective elastic 

modulus of this infinitesimal element becomes

Note that Eq. (9) is different from the classical ROM formula since the term 
V∗
f
= 2

√
Vf∕� cos � appears instead of Vf  in the classical ROM formula. In other words, the 

effective property of each infinitesimal region (ii), as represented in Fig. 4, is similar to the 
effective property estimated by the ROM where fiber and matrix are modeled as elements is 
series.

Once E∗
2
 is obtained, the stress integral of region (ii) can be expressed by

Based on Fig. 4, x
3
= (D∕2) sin � and dx

3
= (D∕2) cos �d� . Hence

where a
22

= 2[(Em∕E
f

2
) − 1]

√
Vf∕� is denoted for the sake of simplicity. The integral pre-

sented in Eq. (11) is calculated by using MATLAB and the following expression is derived:

Substituting Eqs. (4) and (12) into Eq. (3) and assuming that ⟨�
22
⟩ = �

(i)

22
= �

(ii)

22
 by geomet-

rical compatibility, the following closed-form formula for the effective transversal modulus E
2
 

is obtained:

where a
22

= 2

[(
Em∕E

f

2

)
− 1

]√
Vf∕�.

(8)
�
∗
22

E∗
2

=
�
m
22

Em
(1 − V∗

f
) +

�
f

22

E
f

2

V∗
f

(9)
�
∗
22

E∗
2

=
�
m
22

Em
2

(
1 − V∗

f

)
+

�
f

22

E
f

2

V∗
f

(10)

D∕2

∫
0

�
(ii)

22
dx

3
=

D∕2

∫
0

E∗
2
�
(ii)

22
dx

3
= Em

�
(ii)

22

D∕2

∫
0

⎧⎪⎨⎪⎩
1

1 + 2[(Em∕E
f

2
) − 1]

�
Vf∕� cos �

⎫⎪⎬⎪⎭
dx

3

(11)

D∕2

∫
0

�
(ii)

22
dx

3
= Em

�
(ii)

22

D

2

�∕2

∫
0

{
cos �

1 + a
22
cos �

}
d�

(12)

D∕2

∫
0

�
(ii)

22
dx

3
= Em

�
(ii)

22

D

2

⎧⎪⎨⎪⎩
�

2a
22

−
ln

�
a
22
+
√
a
22

2 − 1

�

a
22

√
a
22

2 − 1

⎫
⎪⎬⎪⎭

(13)E
2
= Em

⎧⎪⎨⎪⎩
1 + 2

�
Vf

�

⎡⎢⎢⎢⎣
�

2a
22

−
ln

�
a
22
+
√
a
22

2 − 1

�

a
22

√
a
22

2 − 1

− 1

⎤⎥⎥⎥⎦

⎫⎪⎬⎪⎭
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2.2  In‑plane Shear Modulus G
12

The estimation of the in-plane shear modulus is based on unit cell depicted in Fig. 5. 
The objective is to obtain an effective constitutive model to relate in-plane shear stress 
with the in-plane shear strain: ⟨�

12
⟩ = 2G

12
⟨�

12
⟩ . Based on Fig.  5, the equilibrium 

requirement of the face A
1
= L2 , perpendicular to x

2
− x

3
 plane, is defined by

The integral of shear stress in region (i), where there is only matrix, is

The following expression is obtained from a similar procedure to the one used for 
the effective transversal elastic modulus considering the infinitesimal region showed in 
Fig. 5:

Hence, the integral of region (ii) in Eq. (14) is

where a
12

= 2

[(
Gm∕G

f

12

)
− 1

]√
Vf∕� . Note that this integral is similar to the one dis-

cussed in Eq. (11). Using the same symbolic solution, Eq. (17) can be rewritten as follows:

(14)⟨�
12
⟩ = 2

L2

⎛⎜⎜⎝

L∕2

∫
D∕2

�
(i)

12
dx

3
L +

D∕2

∫
0

�
(ii)

12
dx

3
L

⎞⎟⎟⎠

(15)

L∕2

∫
D∕2

�
(i)

12
dx

3
=

L∕2

∫
D∕2

2Gm
�
(i)

12
dx

3
= Gm

�
(i)

12
(L − D)

(16)G∗
12

= Gm

⎧⎪⎨⎪⎩
1

1 + 2[(Gm∕G
f

12
) − 1]

�
Vf∕� cos �

⎫⎪⎬⎪⎭

(17)

D∕2

∫
0

�
(ii)

12
dx

3
=

D∕2

∫
0

2G∗
12
�
(ii)

12
dx

3
= Gm

�
(ii)

12
D

�∕2

∫
0

{
cos �

1 + a
12
cos �

}
d�,

Fig. 5  In-plane shear load applied to the unit cell
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Considering that regions (i) and (ii) are parallel, ⟨�
12
⟩ = �

(i)

12
= �

(ii)

12
 . Using this com-

patibility condition and substituting Eqs. (15) and (18) into the Eq. (14), the following 
formula for the effective in-plane shear modulus G

12
 is derived:

where a
12

= 2

[(
Gm∕G

f

12

)
− 1

]√
Vf∕�.

2.3  Out‑of‑plane Shear Modulus G
23

Out-of-plane shear modulus G
23

 is now in focus considering an out-of-plane load to establish 
a constitutive model ⟨�

23
⟩ = 2G

23
⟨�

23
⟩ . Comparing both shear loads presented in Figs. 5 and 

6, it can be observed that they are similar. The main difference is the plane where the elements 
are assumed in parallel. The equilibrium requirement for out-of-plane shear load is defined as 
follows:

Integrating the out-of-plane of shear stress in region (i) of Eq. (20), the following 
expression is obtained:

(18)

D∕2

∫
0

�
(ii)

12
dx

3
= Gm

�
(ii)

12
D

�
�

2a
12

−
ln [a

12
+
√
a
12

2 − 1]

a
12

√
a
12

2 − 1

�

(19)G
12

= Gm

⎧
⎪⎪⎨⎪⎪⎩

1 + 2

�
Vf

�

⎡⎢⎢⎢⎢⎣

�

2a
12

−

ln

�
a
12
+
�

a2
12
− 1

�

a
12

�
a2
12
− 1

− 1

⎤⎥⎥⎥⎥⎦

⎫
⎪⎪⎬⎪⎪⎭

,

(20)⟨�
23
⟩ = 2

LΔx
1

⎛⎜⎜⎝

D∕2

∫
0

�
(i)

23
dx

3
Δx

1
+

L∕2

∫
D∕2

�
(ii)

23
dx

3
Δx

1

⎞⎟⎟⎠

Fig. 6  Out-of-plane shear load applied to the unit cell
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By assuming elements in series at the infinitesimal part illustrated in Fig.  6 and 
using the previously derived results, the effective out-of-plane shear modulus of each 
infinitesimal element in region (ii) is defined by

Once the effective constitutive relation in region (ii) is obtained, the stress integral 
in this region is computed by

where a
23

= 2[(Gm∕G
f

23
) − 1]

√
Vf∕� . This integral is same as in Eqs. (11) and (17). 

Consequently,

Since regions (i) and (ii) are parallel, it is considered ⟨�
23
⟩ = �

(i)

23
= �

(ii)

23
 . By using 

Eqs. (20), (21) and (24), the following formula for the effective out-of-plane shear 
modulus G

23
 is derived:

where a
23

= 2[(Gm∕G
f

23
) − 1]

√
Vf∕�.

The novel VSPKc model is now completely formulated being described by Eqs. (1), 
(2), (13), (19), (25) and equations to compute a

22
 , a

12
 and a

23
 . This is a simple set of 

explicit analytical formulas that allows calculation of the 3D effective elastic proper-
ties of the unidirectional composite with circular fibers.

(21)

L∕2

∫
D∕2

�
(i)

23
dx

3
=

L∕2

∫
D∕2

2Gm
�
(i)

23
dx

3
= Gm

�
(i)

23
(L − D)

(22)G∗
23

= Gm

⎧⎪⎨⎪⎩
1

1 + 2[(Gm∕G
f

23
) − 1]

�
Vf∕� cos �

⎫⎪⎬⎪⎭

(23)

D∕2

∫
0

�
(ii)

23
dx

3
=

D∕2

∫
0

2G∗
23
�
(ii)

23
dx

3
= Gm

�
(ii)

23
D

�∕2

∫
0

{
cos �

1 + a
23
cos �

}

(24)

D∕2

∫
0

�
(ii)

23
dx

3
= Gm

�
(ii)

23
D

⎧⎪⎨⎪⎩
�

2a
23

−
ln

�
a
23
+
√
a
23

2 − 1

�

a
23

√
a
23

2 − 1

⎫⎪⎬⎪⎭

(25)G
23

= Gm

⎧
⎪⎪⎨⎪⎪⎩

1 + 2

�
Vf

�

⎡⎢⎢⎢⎢⎣

�

2a
23

−

ln

�
a
23
+
�

a2
23
− 1

�

a
23

�
a2
23
− 1

− 1

⎤⎥⎥⎥⎥⎦

⎫
⎪⎪⎬⎪⎪⎭

,
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3  Finite Element Method

The finite element method (FEM) model is built by considering the same essential 
hypothesis of the analytical model: composite behavior is based on the unit cell. There-
fore, FEM model considers unit cells based on the fiber volume fraction. Ansys soft-
ware is employed considering a quadratic and three-dimensional element: SOLID186. 
The unit cell is built considering the same fiber diameter and hence, different fiber vol-
ume fraction is represented by different unit cell size. Fiber and matrix are assumed to 
be perfectly bonded and the multi-point constraint formulation is applied. Seven situ-
ations are analyzed, being represented by different fiber volume fractions Vf: 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7. Fiber diameter D and cell size Δx

1
 are kept constants (see Fig. 2), 

L =
√
�D2∕4Vf  . Table 1 presents details about the meshes obtained after a convergence 

analysis.
Periodic boundary conditions are imposed, being mathematically expressed by

where �(J)
1

 is a constant parameter that represents the difference between displacements of 
faces J+ and J− in i direction, U(J+)

i
 and U(J−)

i
 , respectively [38].

The imposed periodic boundary conditions are associated with a force reaction. Three 
simulations are required to compute the five composite effective elastic properties for each 
Vf, as represented by the columns in Table 2. For instance, for the first column U(1+)

1
= �

(1)

1
  

is the unique non-null displacement applied, R(1)

1
 and  are computed by the FEM. Note that 

the reactions are directly obtained by solving the FEM equation once the displacement is 
imposed. Based on these quantities, the unique non-null strain component ⟨�11⟩ and the 

(26)U
(J+)

i
− U

(J−)

i
= �

(J)

i

Table 1  Number of elements and 
nodes for FEM simulations Vf 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Elements 8960 6560 5760 5440 5280 4480 14925
Nodes 63923 47123 41523 39283 38163 32563 106728

Table 2  Periodic boundary conditions

Applied Displacements U
(1+)

1
= �

(1)

1
U

(2+)

2
= �

(2)

2
U

(2+)

1
= �

(2)

1

Null Displacements U
(1−)

1
,

U
(2+)

2
,U

(2−)

2
,

U
(3+)

3
,U

(3−)

3   

U
(1+)

1
,U

(1−)

1
,

U
(2−)

2
,

U
(3+)

3
,U

(3−)

3   

U
(1+)

2
,U

(1−)

2
,U

(1+)

3
,U

(1−)

3
,

U
(2−)

1
,U

(2+)

2
,U

(2−)

2
,U

(2+)

3
,U

(2−)

3
,

U
(3+)

2
,U

(3−)

2
,U

(3+)

3
,U

(3−)

3   
Strains ⟨�11⟩ = �

(1)

1

Δx1
⟨�22⟩ = �

(2)

2

L
⟨�12⟩ = �

(2)

1

2L

Stresses ⟨�11⟩ = R
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stress components  and ⟨�22⟩ are obtained. Therefore, elastic matrix elements  and C12
 can 

be evaluated. Analogous analyses are developed for the other columns.
By assuming a transversally isotropic homogenized material, the composite effective 

stiffness matrix is defined by

where C44 =
(
C22 − C23

)
∕2.

Finally, by evaluating the compliance matrix, � = �−1 , the composite effective elastic 
properties are obtained as follows,
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Fig. 7  Comparison between analytical estimations and FEM results for E1
 : (a) influence of Vf  ; (b) absolute 

error
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4  Results and Discussion

Results of the proposed VSPKc model are discussed by comparing its results with with two 
alternative models available in the literature: ROM [21] and octagonal fibers model (Oct) 
[24]. Finite element method (FEM) is employed for model verification, being assumed to 
be a reference. In addition, a set of 126 compiled experimental data for carbon and glass 
fibers and epoxy matrices [39–52] are employed for the comparison with the analytical 
estimations.

A composite made by an epoxy matrix with Em
= 3.2GPa , �m = 0.35 and transversely 

isotropic carbon fibers with Ef

1
= 231GPa , Ef

1
= 15GPa , Gf

12
= 15GPa , Gf

23
= 7GPa and 

v
f

12
= 0.2GPa is considered [35]. Figure  7 shows the comparison of analytical models 

with FEM results for E1 . The three analytical models use the same equation for E1 , Eq. 
(1). Results indicate that the error tends to zero and a simple equation is sufuciently 
acurate to estimate this property [17]. Results for �12 are presented in Fig. 8 and, despite 

Fig. 8  Comparison between analytical estimations and FEM results for v12 : (a) influence of Vf  ; (b) absolute 
error

Fig. 9  Comparison between analytical estimations and FEM results for E1
 : (a) influence of Vf  ; (b) absolute 

error
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Oct model uses an equation slightly different than Eq. (2), no considerable improvement 
is achieved.

Figure  9 presents results for E2 showing that VSPKc has the best predicions com-
pared with FEM. Results of the classical ROM presents error ranges between 13.6% and 
28.2%; Oct model presents error ranges between 12.7% and 22%; VSPKc error ranges 
are between 12.2% and 17.1%. Additionally, the error tends to increase when Vf  for 
ROM, while a small variation is achieved for VSPKc.

Figure 10 presents results for G
12

 showing that the ROM has error ranges between 
7.2% and 37.1%; Oct has error ranges between 5% and 12.7%; VSPKc presents error 
ranges between 4.9% and 8.3%. Once again, VSPKc model has the best estimation for 
any Vf .

Figure  11 presents results for G
23

 showing that ROM estimations has error ranges 
between 17.4% and 37.6%; Oct presents error ranges between 2.8% and 16.2%; on the 
other hand, VSPKc has error ranges between 2.7% and 14%. Once again, VSPKc model 

Fig. 10  Comparison between analytical estimations and FEM results for G12
 : (a) influence of Vf  ; (b) abso-

lute error

Fig. 11  Comparison between analytical estimations and FEM results for G23
 : (a) influence of Vf  ; (b) abso-

lute error
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has the best estimation for any Vf  and these results indicate a considerable estimation 
improvement due to the fiber’s geometry consideration.

A summary of the comparison between analytical models and FEM is presented in 
Fig. 12 and the following conclusions can be highlighted:

 i). the classical ROM estimations for E1
 and �12 , see Eqs. (1) and (2), are very accurate;

 ii). a considerable improvement is obtained when the fiber’s geometry description is 
refined;

 iii). VSPKc model obtained smaller errors than other analytical models for all properties, 
indicating a considerable modeling improvement;

 iv). the average error is higher for E2
 than for G12 and G23

 because the Poisson’s effect is 
not considered on the analytical modeling.

Fig. 12  Average error comparing 
analytical estimations with and 
FEM results

Fig. 13  Average errors for the 
effective properties E2

 , G12
 and 

G23 of the analytical models 
compared with the experimental 
data
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A set of 126 compiled experimental results are now employed to verify the different 
models. This set has 54 data for E2 , 46 data for G12 and 26 data for G23 . For simplicity, 
only the estimations of E2 , G12 and G23

 are compared since there is no considerable dif-
ferences between the estimations of E1

 and v12 [17]. Figure 13 shows the comparison 
among the ROM, Oct, and VSPKc predictions. In the general sense, there is a clear 
trend due to the improvement of the analytical estimations, where VSPKc is the closest 
prediction, followed by Oct, and the worst predictions are the ones obtained by ROM. 
Specifically, the novel VSPKc model presents the following average errors: 12.9% for 
G23 , 16.4% for G12

 and 17.1% for E2 . Once again, VSPKc has reliable estimations with 
a simple set of 8 equations without any calibration parameter.

5  Conclusions

This paper presents a novel ROM-based model to estimate the effective properties of elas-
tic unidirectional composites with circular cross section fibers. The main advantage of the 
VSPKc model is that it is expressed by 8 explicit analytical formulas and does not require 
experimentally calibrate parameters. Results show the importance of accounting the fiber 
geometry in order to improve the accuracy of the effective properties, which is carried out 
assuming a square unit cell. The average errors between VSPKc estimations and FEM are 
15.1% for E2

 , 7.3% for G12
 and 9.5% for G23 . Comparing with experimental data, VSPKc 

average errors are 17.1% for E2 , 16.3% for G12 and 12.85% for G23 . The comparison with 
either the FEM and experimental data highlights that VSPKc has closer estimations than 
other alternative analytical models (specifically, ROM and Oct).
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