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A B S T R A C T   

This paper deals with the application of micromechanics for the determination of lamina effective properties. 
Micromechanical models can be considered as the first step of the composite material mechanical design and the 
traditional estimative of the effective elastic properties presents the drawback of uncertainties related to the 
fibers’ properties and matrix curing effect. On this basis, Tsai’s modulus was proposed based on average 
normalized properties for carbon fiber reinforced polymers (CFRP). On one hand, this approach has the 
advantage to be a simple procedure with good results; on the other hand, its generality needs to be confirmed 
because it is based on empirical approach. The present work develops a theoretical justification of the Tsai’s 
modulus by comparing it with two micromechanical models: asymptotic homogenization, a rigorous analytical 
model; and VSPKc, a model based on mechanical principles of the traditional rule of mixture. Ranges of average 
properties for polymeric matrices and carbon fibers are selected, generating 65,536 data with the micro-
mechanical models to be employed for each one of the five independent lamina’s elastic properties. Results show 
that the difference between Tsai’s modulus and the average normalized properties estimated by micromechanical 
models is smaller than 15% for all the properties. In this regard, the investigation provides a theoretical justi-
fication of Tsai’s modulus approach.   

1. Introduction 

Composite design is associated with intrinsic multiscale character-
istics [1]. Experimental tests are related to high cost and time, which 
imposes limits to their use [2]. On the other hand, numerical methods 
based on geometric discretization, like the finite element method, are 
popular and suitable [3,4] being usually associated with a prohibitive 
computational cost for multiscale optimization procedures [5]. In this 
regard, the use of analytical formulations is essential approach to be 
applied [5]. 

A strategy for multiscale analysis is to develop an analytical micro-
scale model and perform a macroscale numerical analysis [6]. The 
contributions from the World-Wide Failure Exercise (WWFE) to mac-
romechanics must be highlighted, where several failure criteria were 
compared against blinded experimental data [7,8]. An alternative 

discussion about failure of composite materials can be found in Ref. [9]. 
Additionally, some recent advances have been obtained for macro-
mechanical stress analysis using Lekhnitskii formalism [10], Stroh 
formalism [11] and Carrera unified formulation [12], among others. 

Regarding micromechanics [13], presented a general overview of 
micromechanical modeling. Besides, the authors have been carrying out 
an effort to compare analytical micromechanical models with experi-
mental data available in the literature for elastic properties [14–16] and 
strengths [17,18]. A large set of data have been used, allowing a proper 
analysis of the best strategies. 

Concerning the elastic properties [14], evaluated a set of 188 
experimental data and compared with 10 micromechanical analytical 
models. The authors highlighted that the asymptotic homogenization 
model employing a symmetric square unit cell obtained the best esti-
mation without the need of calibrated parameters. Since the asymptotic 
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homogenization model obtained closer estimation for square unit cell 
than for hexagonal unit cell [14,16] developed a model based on the rule 
of mixture considering a symmetric square unit cell. This novel model, 
namely VSPKc, also considered element associations in series and in 
parallel for transversal and shear load, and the unit cell is split into el-
ements to enrich the geometry description. VSPKc model obtained the 
best estimations considering the rule of mixture-based models when 
compared with experimental data without the need of calibrated pa-
rameters. These conclusions point to the use of the asymptotic homog-
enization and VSPKc model as good references for the estimation of 
elastic properties. 

[2] claimed that the trace of stiffness matrix can be assumed as a 
material property for a CFRP lamina, defining normalized material 
properties with constant values. On this basis, just one experimental test 
is required to characterize the lamina elastic properties. This method-
ology has becoming popular in the literature due to its simplicity and 
good estimations [19–21]. Usually, empirical formulations are useful 
due to simplicity, allowing approximate estimations for complex prob-
lems. For instance, the well-known Tsai-Wu failure criterion was pub-
lished in 1971 [22] with an empirical proposal to estimate the term that 
represents the interaction between normal stress components on the 
material damage, becoming popular and being used for several pur-
poses. Recently, some efforts have been developed to obtain a theoret-
ical justification of this term, which certainly enlarges the model 
reliability [23,24]. 

The present paper deals with a theoretical justification of the Tsai’s 
modulus. The strategy is to establish a comparison of lamina effective 
properties predicted by different micromechanical models. In this re-
gard, asymptotic homogenization and VSPKc models are employed as 
references since they have presented good agreement with experimental 
data [14,16]. 

Since carbon fibers are transversally isotropic, the micromechanical 
models require 8 inputs from constituents: fiber volume fraction, Vf ; 
fiber longitudinal elastic modulus, Ef

1; fiber transversal elastic modulus, 
Ef

2; fiber in-plane shear modulus, Gf
12; fiber out-of-plane shear modulus, 

Gf
23; fiber in-plane Poisson’s ratio, νf

12; matrix elastic modulus, Em; and 
matrix Poisson’s ratio, νm. The output of these models are lamina’s 
effective elastic properties: longitudinal elastic modulus, E1; transversal 
elastic modulus, E2; in-plane shear modulus, G12; out-of-plane shear 
modulus, G23; and in-plane Poisson’s ratio, ν12. On the other hand, Tsai’s 
modulus requires just one lamina’s property, E1, to compute the other 4 
lamina properties using the normalized trace relation, E2, G12, G23 and 
ν12. Note that the trace relation is independent of Vf . 

Although it is expected that the micromechanical models are able to 
obtain closer estimation than Tsai’s modulus [15], showed that the er-
rors from Tsai’s modulus are close to those obtained using the asymp-
totic homogenization model when compared with the same set of 
experimental data. The main drawbacks of the micromechanical models 
are related to the reliability of the constituents’ properties used as input 
and fiber random distribution. Considering the fibers, the accuracy of 
experimentally measured properties is questionable due to the fiber 
small diameters (around 10 μm), introducing errors for the estimation of 
the effective properties. Additionally, matrix properties can vary due to 
manufacture process and ambient conditions [25]. investigated the in-
fluence of fiber random distribution introducing the concept of degree of 
nonuniformity. Tsai’s modulus treats these issues using average 
normalized properties and proposing a simple set of equations. 

This paper evaluates, compares, and identifies similarities among 
asymptotic homogenization, VSPKc model and Tsai’s modulus. 
Although only two micromechanical models are of concern, other 
models present the same trends. Therefore, the outcome of this paper is 
to show that Tsai’s modulus is consistent with micromechanical models, 
presenting close estimation compared with experimental data. In this 
regard, it should be pointed out that these approaches were compared 
with experimental data in the following references: asymptotic 

homogenization [14]; Tsai’s modulus [15]; and VSPKc model [16]. For 
the best authors knowledge, only [26] treated this issue, considering 
Halpin-Tsai model to evaluate two CFRP laminae, indicating a good 
agreement. The present investigation aims to expand this comparison, 
considering a larger range of carbon fiber and polymeric matrix prop-
erties, as well as improving the micromechanical modeling. On this 
basis, a theoretical justification of the Tsai’s modulus is achieved. 

After this Introduction, Tsai’s modulus is presented in Section 2 and 
the micromechanical models are overviewed in Section 3. Results and 
discussions about the model estimations, as well as the constituents’ 
properties range, are presented in Section 4. The main conclusions are 
summarized in Section 5. 

2. Tsai’s modulus 

Tsai’s modulus is based on experimental evidence that establishes 
that the trace of the stiffness matrix is a material property, being defined 
as follows [2,15,27–31], 

tr(C)=
E1

E∗
1
=

E2

E∗
2
=

G12

G∗
12
=

G23

G∗
23

(1)  

ν∗
12 = ν12 (2)  

where C is the stiffness matrix, tr(C) is trace of stiffness matrix and the 
upper index “*” denotes the normalized properties. 

Considering that the effective properties can be normalized by the 
trace of the stiffness matrix, the authors proposed a normalized stiffness 
matrix, C∗, based on a set of experimental properties for different CFRP 
laminae. For typical CFRP, C∗ is given by [19] 

C∗ =
C

tr(C)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.752 0.0268 0.0268 0 0 0
0.0268 0.0568 0.0272 0 0 0
0.0268 0.0272 0.0568 0 0 0

0 0 0 0.0148 0 0
0 0 0 0 0.0261 0
0 0 0 0 0 0.0261

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3) 

Hence, the normalized compliance matrix can be computed by S∗ =

(C∗)
− 1 and the lamina normalized properties are 

E∗
1 =

1
S∗

11
= 0.7349 (4)  

ν∗
12 = − E∗

1S∗
12 = 0.319 (5)  

E∗
2 =

1
S∗

22
= 0.04351 (6)  

G∗
23 =

1
S∗

44
= 0.0148 (7)  

G∗
12 =

1
S∗

66
= 0.02610 (8)  

With the trace-normalized properties, known as Tsai’s modulus, the 
influence of fiber volume fraction, temperature, moisture absorption 
and residual stresses from curing can be neglected and just one macro-
mechanical elastic property must be measured. 

3. Micromechanical models 

This section deals with a summary of micromechanical models, 
specifically the asymptotic homogenization and the VSPKc model. 
Although both models consider a symmetric square unit cell, their for-
mulations are distinct. The asymptotic homogenization is based on the 
theory of elasticity using power series. On the other hand, the VSPKc is 
based on the theory of elasticity, considering mechanical association of 
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elements is series and in parallel, together with the classical rule of 
mixture. 

3.1. Asymptotic homogenization 

Asymptotic homogenization is a rigorous modeling approach that 
allows the determination of effective elastic properties of composite 
materials [5,32,33]. Concerning the effective elastic properties of uni-
directional laminae with symmetric square unit cell, the analytical so-
lution for isotropic fibers was developed by Ref. [32] and later 
generalized for transversally isotropic fiber by Ref. [34]. 

The asymptotic homogenization modeling considers a two-scale 
approach with macroscopic, xi, and microscopic variables, yi = xi/ ε, 
where ε→0 is a small parameter. Note that ∂/∂xi→[(∂ /∂xi) +

(1 /ε)(∂ /∂yi)]. The displacement field is assumed to be an asymptotical 
power series of ε as follows 

u(ε)
i = u(0)

i (x)+ εu(1)
i (x, y) + ... (9) 

Since the displacements are written as power series of ε, the strain 
and stress components can also be defined as power series ε using the 
strain-displacement and constitutive equations, 

e(ε)ij = e(0)ij (x, y)+ εe(1)ij (x, y) + ... (10)  

σ(ε)
ij = σ(0)

ij (x, y)+ εσ(1)
ij (x, y) + ... (11)  

where the following relations are obtained evaluating the powers of ε 

e(0)ij (x, y)=
1
2

(
∂u(0)

i

∂xj
+

∂u(0)
j

∂xi

)

+
1
2

(
∂u(1)

i

∂yj
+

∂u(1)
j

∂yi

)

(12)  

e(1)ij (x, y)=
1
2

(
∂u(1)

i

∂xj
+

∂u(1)
j

∂xi

)

+
1
2

(
∂u(2)

i

∂yj
+

∂u(2)
j

∂yi

)

(13)  

σ(0)
ij (x, y)= cijkl(y)

∂u(0)
k

∂xl
+ cijkl(y)

∂u(1)
k

∂xl
(14)  

σ(1)
ij (x, y)= cijkl(y)

∂u(1)
k

∂xl
+ cijkl(y)

∂u(2)
k

∂xl
(15) 

By considering the equilibrium requirement for the term of O(ε− 1)

and assuming that u(0)
i = u(0)

i (x), the following displacement relation can 
be established 

u(1)
i (x, y)=Nijk(y)

∂u(0)
k (x)
∂xl

(16)  

where Nijk(y) is a third order tensor with the components being Y-peri-
odic functions. 

By integrating the terms of O(ε0) over the unit cell domain, the 
effective elastic tensor is defined by 

〈cijkl〉=
1
|Y|

∫ [

cijkl(y)+ cijmn(y)
∂Nmkl(y)

∂yn

]

dy (17)  

In summary, the main challenge of the asymptotic homogenization is the 
determination of the tensor Nijk(y), where it is necessary to solve six 
independent problems: two anti-plane strain problems and four plane 
strain problems [32,34]. 

These solutions are usually obtained using infinite power series to 
satisfy the boundary conditions. According to Ref. [35], the infinite 
series may be properly truncated on the second term to converge. The 
authors proposed the following closed-form equations 

k = kf Vf + km
(
1 − Vf

)
−

Vf
(
km − kf

)2K
mm

(18)  

l= lf Vf + lm
(
1 − Vf

)
−

Vf
(
km − kf

)(
lm − lf

)
K

mm
(19)  

n= nf Vf + nm
(
1 − Vf

)
−

Vf
(
km − kf

)2K
mm

(20)  

p= pm − 2Vf pmP (21)  

m=mm − Vf
(
mm − mf

)
M (22)  

m′

=mm − Vf
(
mm − mf

)
M’ (23)  

where km,f = 0.5(Cm,f
11 + Cm,f

12 ), mm,f = Cm,f
66 , nm,f = Cm,f

33 , lm,f = Cm,f
12 and 

pm,f = Cm,f
44 are the constituent properties; Cm and Cf are the matrix and 

fiber elastic tensors defined by 

Cm =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Em − νm

Em − νm

Em 0 0 0

−
νm

Em
1

Em − νm

Em 0 0 0

−
νm

Em − νm

Em
1

Em 0 0 0

0 0 0 2(1+νm)
Em 0 0

0 0 0 0 2(1+νm)
Em 0

0 0 0 0 0 2(1+νm)
Em

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

(24)  

Cf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
Ef

1
−

νf
12

Ef
1

−
νf

12
Ef

1
0 0 0

−
νf

12

Ef
1

1
Ef

2

2Gf
23 − Ef

2
2Ef

2Gf
23

0 0 0

−
νf

12

Ef
1

2Gf
23 − Ef

2
2Ef

2Gf
23

1
Ef

2
0 0 0

0 0 0 1
Gf

23
0 0

0 0 0 0 1
Gf

12
0

0 0 0 0 0 1
Gf

12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

(25) 

Additionally, the following parameters are defined based on a 
truncated infinite series [35], 

K =C

{

Vm +
29.7904(1 + κm)CR8

B− 1 + R6
[
AB− 1r + g + 29.7904DR2

]

}

(26)  

P=
χp[

1 + Vf χp − 29.7904χp
2R8
] (27)  

M =
1 + κm[

1 + κm
(
mf
/

mm
)](

1 + R2H− − I
) (28)  

M
′

=
1 + κm[

1 + κm
(
mf
/

mm
)](

1 + R2H+ − I ′
) (29)  

κf ,m = 1 + 2
(
mf ,m

/
kf ,m
)

(30)  

χp =
pm − pf

pm + pf
(31)  
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H+ =Ar1 +Bkmπ + B[5.0153+ g1] (32)  

H− =Ar1 +Bkmπ − B[5.0153+ g1] (33)  

I =
R12(Ar2 − Bg2)(Ar3 − Bg3)

1 + R10(Ar4 − Bg4)
(34)  

I ′

=
R12(Ar2 + Bg2)(Ar3 + Bg3)

1 + R10(Ar4 + Bg4)
(35)  

A=

[
κm
(
mf
/

mm
)
− κf

]

[(
mf
/

mm
)
+ κf

] B (36)  

B=

[
1 −

(
mf
/

mm
)]

[
1 + κm

(
mf
/

mm
)] (37)  

C=
mm

[
mm + kmVf + kf

(
1 − Vf

)] (38) 

Fig. 1. Unit cell for the VSPKc model and the infenitesimal element equilibrium: (a) transversal load; (b) in-plane shear load; (c) out-of-plane shear.  
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D= 2[(k2 / k1) − 1]C (39)  

where R =
̅̅̅̅̅̅̅̅̅̅
Vf/π

√
, r = 13312.0294R10, r1 = 29.7904R6, r2 =

281.6277R6, r3 = 1408.1385R6, r4 = 13312.0294R6, g = −

893.7124R2 + 270.9309, g1 = − 18.9073R2, g2 = − 119.1616R2 +

27.0931, g3 = − 595.8082R2 + 135.4655, and g4 = −

18197.4824R2 + 4889.7209. 
Finally, the effective elastic constants computed using the asymp-

totic homogenization method are given by 

E1 =
nk − l2

k
(40)  

E2 = 4m′

[
nk − l2

n(k + m′
) − l2

]

(41)  

ν12 = −
l

2k
(42)  

G12 = p (43)  

G23 =m
′ (44)  

3.2. VSPKc model 

The micromechanical VSPKc model is briefly discussed in this sec-
tion considering the derivation proposed by Ref. [16]. By considering a 
square unit cell with length L and fiber’s diameter D, the fiber volume 
fraction is defined by Vf = πD2/4L2. For a longitudinal load, the equa-
tions are similar to the classical rule of mixture where fiber and matrix 
are assumed to be elements in parallel. Hence, the longitudinal elastic 
modulus and the in-plane Poisson’s ratio are computed using the 
following equations 

E1 =Ef
1Vf + Em( 1 − Vf

)
(45)  

ν12 = νf
12Vf + νm( 1 − Vf

)
(46) 

For transversal and shear loads, the unit cell is split into two parts, as 
illustrated in Fig. 1: part (i) presents just matrix; and part (ii) presents 
both matrix and fiber. Parts (i) and (ii) are in parallel and inside part (ii), 
for any infinitesimal element located in an angle θ, fiber and matrix are 
in series. Therefore, the equilibrium requirement is defined as follows 

〈σ22〉=
2
L

⎛

⎜
⎝

∫L/2

D/2

σ(i)
22dx3 +

∫D/2

0

σ(ii)
22 dx3

⎞

⎟
⎠ (47) 

In part (i), the integral is solved directly because there is only matrix, 

∫L/2

D/2

σ(i)
22dx3 =

1
2
Emε(i)22(L − D) (48) 

In part (ii), each infinitesimal element has the effective transversal 
modulus similar to the classical results of the rule of mixture for trans-
versal load 

E∗
2 =Em

{
1

1 +
[(

Em
/

Ef
2
)
− 1
]
V∗

f

}

(49)  

where V∗
f = (D /L)cos θ = 2

̅̅̅̅̅̅̅̅̅̅
Vf/π

√
cos θ. Note that E∗

2 = E∗
2(θ) since V∗

f =

V∗
f (θ). 

Using the transformation dx3 = (D /2)cos θdθ, the equilibrium inte-
gral in part (ii) is 

∫D/2

0

σ(ii)
22 dx3 =Emε(ii)22

D
2

[
π

2a22
−

ln
(
a22 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a22

2 − 1
√ )

a22
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a22

2 − 1
√

]

(50) 

Table 1 
Range of constituents’ properties for typical CFRP available in the literature.   

Vf Em [GPa] νm Ef
1 [GPa] Ef

2 [GPa] Gf
12 [GPa] Gf

23 [GPa] νf
12 

Lower Bound 0.4 3 0.34 220 10 15 5 0.2 
Upper Bound 0.7 5 0.4 300 20 30 7 0.3  

Fig. 2. Average normalized properties using micromechanical models: (a) Asymptotic Homogenization; (b) VSPKc.  
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where a22 = 2[(Em /Ef
2) − 1]

̅̅̅̅̅̅̅̅̅̅
Vf/π

√
. 

Considering the geometrical compatibility, 〈ε22〉 = ε(i)22 = ε(ii)22 . 
Manipulating Eq. 47–50, the effective transversal elastic modulus is 

E2 =Em

{

1+ 2
̅̅̅̅̅
Vf

π

√ [
π

2a22
−

ln
(
a22 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a22

2 − 1
√ )

a22
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a22

2 − 1
√ − 1

]}

(51) 

A similar procedure can be carried out to obtain the effective in- 
plane and out-of-plane shear moduli, resulting in the following equation 

G12 =Gm

{

1+ 2
̅̅̅̅̅
Vf

π

√ [
π

2a12
−

ln
(
a12 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a12

2 − 1
√ )

a12
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a12

2 − 1
√ − 1

]}

(52)  

G23 =Gm

{

1+ 2
̅̅̅̅̅
Vf

π

√ [
π

2a23
−

ln
(
a23 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a23

2 − 1
√ )

a23
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a23

2 − 1
√ − 1

]}

(53)  

where a12 = 2[(Gm /Gf
12) − 1]

̅̅̅̅̅̅̅̅̅̅
Vf/π

√
and a23 = 2[(Gm /Gf

23) − 1]
̅̅̅̅̅̅̅̅̅̅
Vf/π

√
. 

4. Results and discussion 

This section establishes comparison among the presented models, 
Tsai’s modulus, asymptotic homogenization and VSPKc, using experi-
mental data as reference. Table 1 shows the ranges considered in this 
investigation considering the average properties of carbon fibers and 
polymeric matrix properties available in the literature [36–40]. The 
range of each input listed in Table 1 is divided in 4 equally spaced values 
(for instance, Vf = [0.4 0.5 0.6 0.7]), resulting in a set of 48 =

65536 combinations. 

Table 2 
Statistical analysis of Asymptotic Homogenization and VSPKc model average 
normalized properties.  

Normalized 
Properties 

Asymptotic Homogenization VSPKc 

AV SD CV 
[%] 

AV SD CV 
[%] 

E∗
1 0.7405 4.286 ×

10− 2 
5.79 0.7721 3.717 ×

10− 2 
4.81 

E∗
2 0.0458 6.639 ×

10− 3 
14.50 0.0405 6.413 ×

10− 3 
15.84 

G∗
12 0.0232 4.558 ×

10− 3 
19.65 0.0224 4.402 ×

10− 3 
19.68 

G∗
23 0.0165 2.236 ×

10− 3 
13.55 0.0155 2.267 ×

10− 3 
14.65 

ν∗12 0.302 1.018 ×
10− 2 

9.27 0.304 2.693 ×
10− 2 

8.86 

*AV: Average; SD: Standard Deviation; CV: Coefficient of Variation. 

Table 3 
Normalized properties computated Asymptotic Homogenization and VSPKc 
model divided by Tsai’s Modulus.  

Normalized Properties Asymptotic Homogenization
Tsai′ s Modulus  

VSPK
Tsai′ s Modulus  

E∗
1 1.0076 1.0506 

E∗
2 1.0529 0.9310 

G∗
12 0.8889 0.8582 

G∗
23 1.1149 1.0473 

ν∗12 0.9467 0.9530  

Fig. 3. Histogram of the normalized properties according to the ratio between asymptotic homogenization and Tsai’s modulus: (a) E∗
1; (b) E∗

2; (c) ν∗12; (d) G∗
12; (e) G∗

23.  
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Fig. 2 presents normalized laminae properties computed by micro-
mechanical models, where the dots are the generated data from ranges 
of constituents’ properties and the lines are the average values. In other 
words, for each normalized property, the combination of Vf , Em, νm, Ef

1, 
Ef

2, Gf
12, Gf

23 and νf
12 is represented by one dot, while the average of all 

this dots is represented by the line. Since there is a dispersion of the 
generated data, the average values, standard deviations and coeffecients 
of variation are listed in Table 2. The upper limit value of the trace from 
asymptotic homogenization is slightly higher than from VSPKc. The 
largest difference from the average normalized properties is for E∗

2, 
where the value computed by asymptotic homogenization is 13% larger 
than the value from VSPKc. For all the other normalized properties, the 
differences between these micromechanical model estimations are 
smaller than 6%. It is important to highlight that the normalized prop-
erties can be assumed insensitive to the Vf with a good precision, they 
are properties of CFRP. 

The ratio between the micromechanical estimations and Tsai’s 
modulus are presented in Table 3. The micromechanical models have 
similar average values comparing with Tsai’s modulus. The largest dif-
ference is for G∗

12, being smaller than 15%. It is interesting to be pointed 
out that unidirectional laminae present nonlinear behavior when sub-
jected to in-plane shear loads [38]. A summary of difficulties related to 
experimental measurements for in-plane shear can be found in Ref. [41]. 
Hence, the experimental values of G12 also tends to increase the un-
certainties and to decrease its reliability. 

In order to establish a comparison between the micromechanical 
model and the Tsai modulus, a normalization with Tsai’s modulus is 
performed allowing a direct comparison. Fig. 3 shows the histogram of 

the normalized properties of associated with asymptotic homogeniza-
tion while Fig. 4 shows the histograms of the normalized properties 
related to the VSPKc model. The following conclusions should be 
highlighted.  

i) a normal shape can be realized for all properties;  
ii) regarding property E∗

1, the center of the distribution is 1 for 
asymptotic homogenization and it is slightly moved to rigth for 
VSPKc;  

iii) regarding property E∗
2, the center of the distribution is 1.05 for 

asymptotic homogenization and 0.9 for VSPKc;  
iv) regarding property G∗

12, both micromechanical models show the 
center of the distribution shifted to the left, indicating that the 
Tsai’s modulus estimates larger values than the micromechanical 
models;  

v) regarding property G∗
23, the micromechanical models and Tsai’s 

models present a good agreement and the center of the distri-
bution is 1;  

vi) regarding property ν∗12, the histograms present a similar behavior 
when compared with the distributions of E∗

1, where the center is 
around 1 with a small dispersion. 

5. Conclusions 

The present paper proposes a theoretical justification for the 
empirical Tsai’s modulus, establishing a comparision with the asymp-
totic homogenization and VSPKc micromechanical models. The trace- 
normalized properties are compared with those predicted by analyt-
ical micromechanical models. It is shown that the difference among all 

Fig. 4. Histogram of the normalized properties according to the ratio between VSPKc and Tsai’s modulus: (a) E∗
1; (b) E∗

2; (c) ν∗12; (d) G∗
12; (e) G∗

23.  
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properties is smaller than 15%, proving a good agreement. The biggest 
difference is for normalized in-plane shear modulus, G∗

12, which can be 
related to the nonlinear behavior of unidirectional laminae subjected to 
in-plane shear loads. Therefore, the trace approach seems to be an 
acceptable approach to simplify the design of composite materials. In 
addition, the average normalized properties from asymptotic homoge-
nization and VSPKc models are discussed, showing a trend for normal 
distribution. 
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