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Abstract: The internal stresses generated during quenching can produce warping and even cracking of a
steel body and, therefore, the prediction of such stresses is an important task. Phenomenological aspects of
quenching involve couplings between different physical processes occurring in the phenomena. The present
contribution is concerned with modelling and simulation of quenching, presenting an anisothermal model
formulated within the framework of continuum mechanics and the thermodynamics of irreversible
processes. A numerical procedure is developed based on an operator split technique associated with an
iterative numerical scheme in order to deal with non-linearities in the formulation. With this assumption,
the coupled governing equations are solved involving four uncoupled problems: thermal, phase
transformation, thermoelastic and elastoplastic behaviours. The proposed general formulation is applied to
analyse progressive induction hardening of steel cylinders. Numerical results suggest that the proposed
model is capable of capturing the main behaviour observed in experimental data.
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NOTATION

aI internal coupling term
aT thermal coupling term
c specific heat ˆ ¡(T=r) (@2W=@T 2)
C1, C2 positive constants
d1 mechanical dissipation
d2 thermal dissipation
E Young’s modulus
Eijkl elastic tensor
g i ˆ (1=T ) (@T=@xi)
H material parameter associated with kinematic

hardening
H ijkl hardening tensor
Iâ(â) indicator function associated with convex

Câ ˆ fâj0 < â < 1g
I¤

f (Pij, X ij) indicator function associated with elastic
domain

k material constant
M f temperature where martensite finishes its

formation in the stress-free state
M s temperature where martensite starts to form in

the stress-free state

Pd
ij ˆ ó d

ij
q i heat flux vector
r, õ, z cylindrical coordinates
R cylinder radius
T temperature
T0 reference temperature
u radial displacement
W energy function
X d

ij ˆ X ij ¡ äij(X kk=3)

áij variable related to kinematic hardening
áT coefficient of linear thermal expansion
â volumetric fraction of martensitic phase
ç material property related to the total

expansion associated with martensitic
transformation

äij Kronecker delta
åij total strain tensor
åe

ij elastic strain tensor
åp

ij plastic strain tensor
åtp

ij transformation plasticity strain tensor
åtv

ij volumetric strain tensor
åT

ij thermal strain tensor
ú(T , _T ) function associated with phase transformation

kinetics
k material parameter
ì plastic multiplier
¤ coefficient of thermal conductivity
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î Poisson’s ratio
r material density
óij stress tensor component
óij, Pij, Qij,
Rij, X ij, Z, s

thermodynamic forces associated with state
variables

ó d
ij deviatoric stress component

ˆ óij ¡ äij(ó kk=3)
óY material yield stress
ö, ö¤ pseudo-potential of dissipation and its dual
ø heat conversion factor
ã Helmholtz free energy

@( ) subdifferential of the ( )
( )i with
i ˆ r, õ, z

normal components of the second-order
tensors in cylindrical coordinates

1 INTRODUCTION

Quenching is a commonly used heat treatment to increase
the strength of steels by the formation of a hard
microstructure called martensite. In brief, quenching con-
sists of raising the temperature of the steel above a certain
critical temperature, called the austenitizing temperature,
holding it at that temperature for a fixed time and then
rapidly cooling it in a suitable medium to room tempera-
ture. The resulting microstructures formed from quenching
(pearlite, bainite and martensite) depend on the cooling rate
and on the steel characteristics expressed by the isothermal
transformation (IT) diagram. If the steel is cooled suffi-
ciently rapidly following austenitizing, the formation of
pearlite and bainite is avoided, and martensite is produced.
M s is the temperature where martensite starts to form in
the stress-free state, and the formation of martensite
finishes at M f . In order to avoid austenite decomposition
before M s is reached, achieving a totally martensitic
microstructure, alloying elements are added to steels to
modify the IT curves. The volumetric expansion associated
with the formation of martensite combined with large
temperature gradients and non-uniform cooling promote
high residual stresses in quenched steels. The prediction of
such stresses is a rather difficult task.

Phenomenological aspects of quenching involve coup-
lings between different physical processes and, therefore,
its description is unusually complex. Basically, three
couplings are essential [1–5]:

1. Thermal phenomena. Heat transfer causes temperature
variations that change the physical properties of the
material.

2. Phase transformation. Two types of modification occur
when phase transformation takes place. The first type is
a kinetic modification and sometimes leads to a differ-
ent morphology in the phase produced. The second type,
on the other hand, is a mechanical modification related
to the progress of transformation and it takes place when

plastic deformation occurs under stresses lower than the
yield stress of the material [1].

3. Mechanical aspects. Temperature evolution and phase
transformations cause elastic and plastic deformations,
resulting in residual stresses.

Usually, quenching represents one of the last stages in
the fabrication of mechanical components. Since the
process may induce distortion or even cracking, it is
important to predict the residual stresses caused by this
process. Many studies have been devoted to this aim [1–5];
however, the proposed models are not generic and are
usually applicable only to simple geometries.

Progressive induction hardening applied to bodies pre-
viously quenched and tempered is a heat treatment process
carried out by moving a workpiece at a constant speed
through a coil and a cooling ring. Applying an a.c. to the
coil, a magnetic field is generated which induces eddy
currents in the workpiece and through the eddy current
losses it becomes heated. During heating, a thin surface
layer of austenite is formed. During subsequent quenching,
this layer is transformed into martensite, pearlite, bainite
and proeutectoid ferrite–cementite depending on, among
other things, the cooling rate. A hard surface layer with
high compressive residual stresses, combined with a tough
core with tensile residual stresses, is often obtained.

The present contribution is concerned with modelling and
simulation of the quenchingprocess. An anisothermal model
formulated within the framework of continuum mechanics
and the thermodynamics of irreversible processes is pre-
sented [6, 7]. Therefore, it is possible to identify couplings,
estimating the effect of each on the process. A numerical
procedure is developedbased on the operator split technique
[8] associated with an iterative numerical scheme in order to
deal with non-linearities in the formulation. With this
assumption, the coupled governing equations are solved
from four uncoupled problems: thermal, phase transforma-
tion, thermoelastic and elastoplastic. The proposed general
formulation is applied to the progressive induction hard-
ening of steel cylinders. Numerical results suggest that the
proposed model is capable of capturing the main behaviour
observed on experimentaldata.

2 PHENOMENOLOGICAL ASPECTS OF PHASE
TRANSFORMATION

Deformation of the material during the phase transforma-
tion process from austenite to martensite results from
interactions of many phenomena. It is postulated here that
the total strain increment dåij, can be divided into five parts
[4]:

dåij ˆ dåe
ij ‡ dåT

ij ‡ dåp
ij ‡ dåtv

ij ‡ dåtp
ij (1)

Here the index notation is used employing summation
convention where repeated indices imply summing over the
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range of the index (1, 2, 3) [6]; dåe
ij, dåT

ij and dåp
ij are

increments of elastic, thermal and plastic strains respec-
tively [7]. Also, dåtv

ij and dåtp
ij are associated with phase

transformation processes denoting the volumetric and the
transformation plasticity components respectively.

Phase transformation from austenite to martensite is
accompanied by a volumetric expansion, which usually is
near 4 per cent. Therefore, when part of a material
experiences phase transformation, there is an increment of
volumetric deformation, dåtv

ij , given by [1]

dåtv
ij ˆ ç dâ äij (2)

where dâ is the increment of volumetric fraction of
martensitic phase formed during the decrease in tempera-
ture, ç is a material property related to the total expansion
associated with martensitic transformation and äij is the
Kronecker delta [6].

The increment of transformation plasticity deformation,
dåtp

ij , is the result of several physical mechanisms. The
development of a model for material behaviour may be
based on phenomenological aspects where the martensitic
transformation causes localized plastic deformation. Many
researchers agree with the following expression to describe
the phenomenon [1, 4, 9]:

dåtp
ij ˆ 3kó d

ij(1 ¡ â) dâ (3)

where k is a material parameter, ó d
ij ˆ óij ¡ äij(ó kk=3) is

the deviatoric stress component and óij is the stress tensor
component. It should be emphasized that this deformation
may be related to stress states that are inside the yield
surface.

The kinetics of phase transformation from austenite to
martensite may be expressed by the equation proposed by
Koistinen and Marburger [10]:

â ˆ 1 ¡ exp[¡k(M s ¡ T )] (4)

where k is a material constant, T is the temperature and M s

is the temperature where martensite starts to form under
stress-free state. It is also convenient to define the tempera-
ture where martensite finishes its formation, estimating the
asymptotic value of the exponential law (4): M f ˆ
M s ¡ [2 log(10)]=k.

3 CONSTITUTIVE MODEL

The thermodynamic state of a solid is completely defined
by knowledge of the state variables. Constitutive equations
may be formulated within the framework of continuum
mechanics and the thermodynamics of irreversible pro-
cesses, by considering thermodynamic forces, defined from
the Helmholtz free energy ã and thermodynamic fluxes,
defined from the pseudo-potential of dissipation ö [7].

The quenching model proposed here allows different
coupling phenomena to be identified, estimating the effect
of each in the process. With this aim, a Helmholtz free
energy is proposed as a function of observable variables,
total deformation åij and temperature T. Also, internal
variables are considered: plastic deformation åp

ij, volumetric
fraction of martensitic phase â, and another set of variables
associated with the phase transformation, hardening and
damage effects. Here, this set considers a variable related
to kinematic hardening, áij, and two variables related to the
martensitic phase transformation: volumetric strain tensor
åtv

ij and transformation plasticity strain tensor åtp
ij . Therefore,

the following free energy is considered:

rã(åe
ij, á ij, â, T ) ˆ W (åe

ij, áij, â, T )

ˆ We(åe
ij) ‡ Wá(áij) ‡ Wâ(â) ¡ WT (T )

(5)

where åe
ij ˆ åij ¡ áT(T ¡ T0)äij ¡ åp

ij ¡ åtv
ij ¡ åtp

ij is the
elastic deformation and the energy functions are given by
the following expressions:

We ˆ 1
2Eijklåe

ijå
e
kl

Wá(áij) ˆ 1
2H ijkláijá kl

Wâ(â) ˆ Iâ

WT (T ) ˆ r
…T

T0

C1 log(ê) dê ‡ r
2

C2T 2 (6)

The components Eijkl and H ijkl are associated with elastic
and hardening tensors and áT is the coefficient of linear
thermal expansion. These parameters are temperature
dependent; C1 and C2 are positive constants, T0 is a
reference temperature and r is the material density; Iâ(â)
is the indicator function associated with convex Câ ˆ
fâj0 < â < 1g [11].

The thermodynamic forces (óij, Pij, Qij, Rij, X ij, Z, s),
associated with the state variables (åij, åp

ij, åtv
ij , åtp

ij , áij, â, T),
are defined from W, as follows [7]:

ó ij ˆ @W
@åij

ˆ Eijklåe
kl (7)

Pij ˆ ¡ @W

@åp
ij

ˆ óij (8)

Qij ˆ ¡ @W

@åtv
ij

ˆ óij (9)

Rij ˆ ¡ @W

@åtp
ij

ˆ ó ij (10)
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X ij ˆ @W
@áij

ˆ H ijklá kl (11)

Z 2 @â Iâ(â) (12)

s ˆ ¡ 1
r

@W
@T

(13)

where @â Iâ(â) is the subdifferential of the indicator
function Iâ [11].

In order to describe dissipation processes, it is necessary
to introduce a potential of dissipation, ö( _åp

ij, _åtv
ij , _åtp

ij , _áij, _â,
qi), which can be split into two parts: ö( _åp

ij, _åtv
ij , _åtp

ij , _áij, _â,
qi) ˆ ö1( _åp

ij, _åtv
ij , _åtp

ij , _áij, _â) ‡ ö2(qi). Also, this potential
can be written through its dual ö¤(Pij, Qij, Rij, X ij, Z,
g i) ˆ ö¤

1 (Pij, Qij, Rij, X ij, Z) ‡ ö¤
2 (g i), as follows:

ö¤
1 ˆ I¤f (Pij, X ij) ‡ ç _âQij ‡ 3k _â(1 ¡ â)

2
Rij ¡ Rkk

3
äij

³ ´

3 Rij ¡
Rkk

3
äij

³ ´
‡ ú(T , _T )Z

ö¤
2 ˆ T

2
¤ g i g i

(14)

where ú(T , _T ) is a function associated with phase transfor-
mation kinetics, g i ˆ (1=T )(@T=@xi) and ¤ is the coeffi-
cient of thermal conductivity which is function of
temperature; I¤

f (Pij, X ij) is the indicator function asso-
ciated with elastic domain, related to the von Mises
criterion:

f (Pij, X ij) ˆ [32(P
d
ij ¡ X d

ij)(Pd
ij ¡ X d

ij)]
1=2 ¡ ó Y < 0

(15)

óY is the material yield stress, X d
ij ˆ X ij ¡ äij(X kk=3) and

Pd
ij ˆ ó d

ij. A set of evolution laws obtained from ö¤
characterizes dissipative processes:

_åp
ij 2 @Pij I

¤
f (Pij, X ij) ˆ ì sgn(ó ij ¡ H ijklá kl) (16)

_åtv
ij ˆ @ö¤

@Qij
ˆ ç _âäij (17)

_åtp
ij ˆ @ö¤

@Rij
ˆ 3k _â(1 ¡ â)ó d

ij (18)

_áij 2 ¡@X ij I
¤
f (óij, X ij) ˆ _åp

ij (19)

_â ˆ ¡ @ö¤

@ Z
ˆ ¡ú (T , _T ) (20)

q i ˆ ¡ @ö¤

@ g i
ˆ ¡¤ Tg i ˆ ¡¤ @ T

@xi
(21)

where sgn(x) ˆ x=jxj, qi is the heat flux vector, ì is the
plastic multiplier from the classical theory of plasticity [7]
and ú(T , _T ) is defined by the following equation:

ú(T , _T )

ˆ k _T exp[¡k(Ms ¡ T )] if M s > T > Mf

0 if T . M s and T , M f

»

(22)

Using the following definition for the specific heat
c ˆ ¡(T=r)(@2W =@T 2) and the set of constitutive equa-
tions (7) to (13) and (16) to (21), the heat equation can be
written as

@

@xi
¤ @T

@xi

³ ´
¡ rc _T ˆ ¡aI ¡ aT (23)

where

aI ˆ óij( _å
p
ij ‡ _åtv

ij ‡ _åtp
ij ) ¡ X ij _áij ¡ Z _â

aT ˆ T
@óij

@T
_åe

ij ‡ @X ij

@T
_áij ‡ @ Z

@T
_â

³ ´

(24)

The term aI is denoted as internal coupling and is always
positive. It has a role in equation (23) similar to a heat
source in the classical heat equation for rigid bodies. The
term aT denotes the thermal coupling and can be either
positive or negative.

With these assumptions, the set of constitutive equations
formed by equations (7) to (13) and (16) to (21) verify the
inequality established by the second law of thermody-
namics which can be expanded in a local form as

d1 ˆ óij( _åp
ij ‡ _åtv

ij ‡ _åtp
ij ) ¡ X ij _áij ¡ Z _â > 0

d2 ˆ ¡(q i g i) > 0

(25)

The term d1 represents mechanical dissipation while d2 is
thermal dissipation.

In metal forming, the thermomechanical coupling is
usually taken into account by an empirical constant called
the heat conversion factor, which represents the part of the
plastic power transformed into heat [12]:

ø ˆ aI ‡ aT

óij _å
p
ij

(26)

4 CYLINDRICAL BODIES

This contribution considers cylindrical bodies as an
application of the proposed general formulation. Other
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researchers have presented different analyses of this prob-
lem [13, 14]. With this assumption, heat transfer analysis
may be reduced to a one-dimensional problem. Also, a
plane stress or plane strain state can be assumed. Under
these assumptions, only radial r, tangential õ and long-
itudinal z components need to be considered and a one-
dimensional model is formulated. In order to present
simplified equations, the normal components of the
second-order tensors (åij, ó ij, áij, for i ˆ j) are denoted by
( )i with i ˆ r, õ, z and the summation convention is not
evoked.

At first, consider the isotropic Hooke law to establish a
relation between stresses and elastic strains [15]:

åe
r ˆ 1

E
[ór ¡ î(óõ ‡ ó z)] (27)

åe
õ ˆ 1

E
[óõ ¡ î(ó r ‡ ó z)] (28)

åe
z ˆ 1

E
[ó z ¡ î(ór ‡ óõ)] (29)

where E and î are Young’s modulus and Poisson’s ratio
respectively. The thermal strain is defined as

åT
i ˆ áT(T ¡ T0), for i ˆ r, õ, z (30)

The evolution equations for plastic variables are described
by

_åp
i ˆ ì sgn(ó i ¡ Hái), for i ˆ r, õ, z (31)

where H is a material parameter associated with kinematic
hardening [7, 16]. The yield function, associated with the
elastic domain, is defined by employing the von Mises
criteria:

������������������������������������������������������������������������������������
1
2[(ó

¤
r ¡ ó ¤

z )2 ‡ (ó¤
r ¡ ó¤

õ )2 ‡ (ó¤
õ ¡ ó¤

z )2]
q

¡ óY < 0

(32)

with the following definitions:

ó¤
i ˆ ó d

i ¡ Hád
i

ó d
i ˆ ó i ¡

ó r ‡ óõ ‡ ó z

3

ád
i ˆ ái ¡

ár ‡ áõ ‡ áz

3

for i ˆ r, õ, z (33)

The evolution equations for the deformation related to
martensitic phase transformation are described by

_åtv
i ˆ ç _â for i ˆ r, õ, z (34)

_åtp
i ˆ 3k _â(1 ¡ â)ó d

i for i ˆ r, õ, z (35)

At this point, it is necessary to consider kinematics
relations between strains and the radial displacement u
which is written as follows:

å r ˆ @u
@ r

, åõ ˆ u
r

(36)

The three-dimensional equilibrium equations are reduced
to

@ó r

@ r
ˆ

óõ ¡ ór

r
(37)

Furthermore, the heat conduction problem is governed by
the one-dimensional energy equation [15]

¡ @q

@r
¡ 1

r
q ˆ rc _T (38)

and the constitutive relation between heat flux and tem-
perature is established by the Fourier law

q ˆ ¡¤ @T

@ r
(39)

5 NUMERICAL PROCEDURE

The numerical procedure proposed here is based on the
operator split technique [8, 12] associated with an iterative
numerical scheme in order to deal with non-linearities in
the formulation. With this assumption, coupled governing
equations are solved from the following four uncoupled
problems:

1. Thermal problem. This consists of a radial conduction
problem with surface convection. The material proper-
ties depend on temperature and, therefore, the problem
is governed by non-linear parabolic equations. An im-
plicit predictor–corrector procedure is used for numer-
ical solution [12, 17].

2. Phase transformation problem. The volumetric fraction
of martensitic phase is determined in this problem.
Evolution equations are integrated from a simple im-
plicit Euler method [17, 18].

3. Thermoelastic problem. The stress and displacement
fields are evaluated from the temperature distribution.
The numerical solution is obtained by employing a
shooting method procedure [17, 18].

4. Elastoplastic problem. Stress and strain fields are
determined by considering the plastic strain evolution in
the process. The numerical solution is based on the
classical return mapping algorithm [19, 20].
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6 NUMERICAL SIMULATIONS

As an application of the general proposed model, numerical
investigations of quenching of long steel cylindrical bar
with radius R ˆ 22:5 mm (SAE 4140H) are carried out,
simulating a progressive induction (PI) hardening.

The material parameters of the cylinder are the following
[1, 4]: k ˆ 1:100 3 10¡2 K¡1, ç ˆ 1:110 3 10¡2, k ˆ
5.200 3 10¡11 Pa¡1, r ˆ 7:800 3 103 kg=m3, Ms ˆ 748 K
and M f ˆ 573 K. The other parameters depend on
the temperature and need to be interpolated from experi-
mental data. Therefore, the parameters E, H, óY, áT, c, K
and h are evaluated using the following expressions
[21, 22]:

PI hardening simulations consider a 5 mm thickness
layer which is heated to 1120 K (850 8C) for 10 s and then
immersed in a liquid medium at 293 K (20 8C) until a time
instant of 120 s is reached. In order to consider the
restriction associated with adjacent regions of the heated
region, which is at lower temperatures, a plane strain state
is adopted.

Reference [23] presents an experimental arrangement to
promote PI hardening in cylindrical bodies. The experi-
mental apparatus is depicted in Fig. 1. Figure 1a shows a
schematic representation while Fig. 1b shows a photograph
of the apparatus, which consists of a coil and a cooling
ring. Experimental data obtained from this set-up are used
here to validate the proposed model. Therefore, consider a

cylindrical bar, which is quenched in the apparatus. Figure
2a shows a cross-section of a quenched bar submitted to a 2
per cent Nital etch, while Fig. 2b presents the Rockwell C
hardness measurements. Using the X-ray diffraction peak
technique [24], stress values on the surface layer were
measured, giving óõ ˆ ¡830 MPa and ó z ˆ ¡500 MPa.
These values show an uncertainty of 30 MPa.

Numerical simulations are considered in the forthcoming
analysis. The temperature–time history for different posi-
tions of the cross-section is presented in Fig. 3. Note that,
for regions with thickness greater than 5 mm (r ,

17:5 mm), the temperature does not reach the austenitizing
limit.

The stress distribution over the radius for the final

instant of time is shown in Fig. 4. Note that the stress
values on the external surface are óõ ˆ ¡866 MPa and
ó z ˆ ¡255 MPa. The circumferential stress óõ is close to
experimental results. The longitudinal stress ó z, on the
other hand, has a discrepancy that could be explained by
the assumption of a plane strain state adopted to simulate
the restriction associated with adjacent regions of the
heated region, which is at lower temperatures.

The analysis of phase transformation is now focused on.
In order to compare numerical and experimental results, a
relation between the volumetric fraction of the mar-
tensitic phase and the hardness is established. Therefore, it
is assumed (Fig. 2b) that the martensitic phase (â ˆ 1) has
a Rockwell C hardness of 60 HRC while austenite (â ˆ 0)

E ˆ EA(1 ¡ â) ‡ EM,
EA ˆ 1:985 3 1011 ¡ 4:462 3 107T ¡ 9:909 3 104T 2 ¡ 2:059T 3

EM ˆ 2:145 3 1011 ¡ 3:097 3 107T ¡ 9:208 3 104T 2 ¡ 2:797T 3

»
(40)

H ˆ
2:092 3 106 ‡ 3:833 3 105T ¡ 3:459 3 102T 2, if T < 723 K
2:259 3 109 ¡ 2:988 3 106T , if 723 K , T < 748 K
5:064 3 107 ¡ 3:492 3 104T , if T . 748 K

8
<

: (41)

óY ˆ
7:520 3 108 ‡ 2:370 3 105T ¡ 5:995 3 102T 2, if T < 723 K
1:598 3 1010 ¡ 2:126 3 107T , if 723 K , T < 748 K
1:595 3 108 ¡ 1:094 3 105T , if T . 748 K

8
<

: (42)

áT ˆ 1:115 3 10¡5 ‡ 1:918 3 10¡8T ¡ 8:798 3 10¡11T 2 ‡ 2:043 3 10¡13T 3, if T < 748 K
2:230 3 10¡5, if T . 748 K

»
(43)

c ˆ 2:159 3 102 ‡ 0:548T (44)

K ˆ 5:223 ‡ 1:318 3 10¡2T (45)

h ˆ

6:960 3 102, if T < 404 K
2:182 3 104 ¡ 1:030 3 102T ‡ 1:256 3 10¡1T 2, if 404 K , T < 504 K
¡2:593 3 104 ‡ 5:500 3 102T , if 504 K , T < 554 K
¡9:437 3 104 ‡ 4:715 3 102T ¡ 7:286 3 10¡1T 2 ‡ 3:607 3 10¡4T 3, if 554 K , T < 804 K
1:210 3 103, if T . 804 K

8
>>>><

>>>>:

(46)
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has a Rockwell C hardness of 30 HRC. These represent
typical values of martensitic and austenitic phases hardness
[22, 23]. Figure 5 presents both the volumetric fraction of
martensite distribution, represented by variable â, and the
experimental data related to the hardness measurements.
Note that the process quenches only points from the
external surface to a depth of 3 mm and, once again, the

numerical results predicted by the model are close to the
experimental data.

At this point, a comparison of the stress distributions for
the final instant of time is made considering four different
models, incorporating different effects: all transformation
effects are considered (denoted TV&TP in Fig. 6); only
volumetric transformation is considered (denoted TV in

Fig. 1 Experimental apparatus for PI hardening: (a) schematic view; (b) photograph of the experiment

Fig. 2 PI quenched body: (a) 2 per cent Nital etch of the cross-sectionview; (b) Rockwell C hardness measurements
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Fig. 6); only transformation plasticity is considered (de-
noted TP in Fig. 6); no transformation effects are consid-
ered (denoted without TV&TP in Fig. 6). Figure 6 presents
the stress distributions through the cross-section predicted
by these four models. The results show that the general
behaviour is qualitatively similar for the particular case
study considered. However, a more detailed analysis,
beyond the scope of this contribution, is necessary to
elucidate the effect of these coupling terms in other
situations.

7 CONCLUSIONS

The present contribution considers the modelling and
simulation of the quenching process, presenting an ani-
sothermal model formulated within the framework of
continuum mechanics and the thermodynamics of irre-
versible processes. A numerical procedure is developed
based on the operator split technique associated with an
iterative numerical scheme in order to deal with non-
linearities in the formulation. PI hardening of a cylindrical

Fig. 3 PI hardening: temperature–time history for different positions

ó

ó

óè

Fig. 4 PI hardening: stress distribution for the final instant of time

JOURNAL OF STRAIN ANALYSIS VOL 36 NO 5 S00801 # IMechE 2001

514 P M C L PACHECO, M A SAVI AND A F CAMARÃO



Fig. 5 PI hardening:distribution of volume fraction of martensite for the final instant of time

Fig. 6 PI hardening: stress distributions for the final instant of time considering different transformation effects

ó
è

ó
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body is considered as an application of the proposed general
formulation. Numerical results suggest that the proposed
model is capable of capturing the general behaviour of
experimental data. An analysis of the stress distribution
including different coupling terms shows that the general
behaviour is qualitatively similar for the PI hardening of the
cylindrical bar considered. The present authors agree that a
more detailed analysis is necessary to elucidate the effect of
these coupling terms in other situations.
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