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Abstract: The determination of residual stresses is an important task in the analysis of the
quenching process. Nevertheless, because of the complexity of the phenomenon, many
simplifications are usually adopted in the prediction of these stresses for engineering
purposes. One of these simplifications is the effect of phase transformation. Many studies
analyse residual stresses generated by the quenching process considering a thermoelasto-
plastic approach, neglecting phase transformation. The present study analyses the effect of
austenite–martensite phase transformation during quenching in the determination of
residual stresses, comparing two different models: complete (thermoelastoplastic model with
austenite–martensite phase transformation) and without phase transformation (thermoelasto-
plastic model without phase transformation). The finite element method is employed for
spatial discretization together with a constitutive model that represents the thermomechanical
behaviour of the quenching process. Progressive induction hardening of steel cylinders with
semicircular notches is of concern. Numerical simulations show situations where great
discrepancies are introduced in the predicted residual stresses if phase transformation is
neglected.

Keywords: quenching, phase transformation, thermomechanical coupling, modelling, finite
element

1 INTRODUCTION

Considerable residual stresses may arise during the
quenching process and, therefore, their prediction is
an important task [1–5]. Since phenomenological
aspects of quenching involve couplings between dif-
ferent physical phenomena, their description is unu-
sually complex. Moreover, engineering purposes
usually introduce many simplifications in order to
predict the residual stresses generated during
quenching. Neglecting the phase transformations is
one of these simplifications in the modelling of the
quenching process.

Sen et al. [5] considered steel cylinders without
phase transformations. Other authors analysed
simple geometries incorporating the effect of phase
transformations [6–9]. There are also some other
complex aspects related to quenching that could be
incorporated in the modelling of this process. For
example, the heat generated during phase transfor-
mation, which is usually treated by considering the
latent heat associated with phase transformation
[2, 10–12], can be cited. Meanwhile, other coupling
terms in the energy equation related to other phe-
nomena such as plastic strain or hardening are not
usually treated in the literature and their analysis is
an important topic to be investigated [13].

The present contribution concerns the importance
of phase transformation in the analysis of residual
stresses generated by the quenching process. On this
basis, simulations of two different models are carried
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out: complete (thermoelastoplastic model with
austenite–martensite phase transformation) and with-
out phase transformation (thermoelastoplastic model
without phase transformation). The finite element
method associatedwith a constitutivemodel proposed
by Pacheco et al. [14, 15] and Silva et al. [13] is consid-
ered. The constitutive model describes the thermome-
chanical behaviour related to the quenching process
considering different phenomenological phenomena
such as plasticity with kinematic hardening, thermal
expansion, the austenite–martensite phase transfor-
mation and some related aspects associated with this
phase transformation such as the volumetric expan-
sion and the transformation plasticity. This anisother-
mal model is formulated within the framework of
continuum mechanics and the thermodynamics of
irreversible processes and captures the general beha-
viour of quenching [13–15]. Numerical procedures
described by Silva [16] are employed in order to deal
with non-linearities of the formulation.
In this contribution, as an application of the gen-

eral procedure, progressive induction hardening of
steel cylinder bodies is analysed. Since mechanical
components usually have geometric discontinuities
that promote local perturbations in the distribution
of variables, it is important to consider this type of
perturbation in the analysis. Here, this perturbation
is examined by introducing a semicircular notch in
the steel cylinder. Numerical simulations show situa-
tions where great discrepancies are introduced in the
predicted residual stresses neglecting phase transfor-
mation.

2 CONSTITUTIVE MODEL

This contribution describes the quenching process
with the aid of a constitutive model presented by
Pacheco et al. [14, 15] and Silva et al. [13]. This
model is formulated within the framework of conti-
nuum mechanics and the thermodynamics of irrever-
sible processes. Here, a brief description of this model
is presented and a detailed explanation may be found
in references [13] to [16]. Therefore, considering that
"ij is the total strain, T the temperature, "

p
ij the plastic

strain, � the volumetric fraction of the martensitic
phase, and �ij a variable related to kinematic harden-
ing, and denoting �ij as the stress tensor component,
the constitutive relation may be written as

�ij ¼ �ijpqEpqkl½"kl � "pkl � �TðT � T0Þ�kl þ ���kl�

þ �ijpqEpqkk½12��ð2� �Þ�

�
�aaef Eefrsf"rs � "prs � ½�TðT � T0Þ þ ����rsg

1� �bbcdEcdgg½12��ð2� �Þ�
ð1Þ

where Eijkl is associated with components of the elas-
tic tensor, �ijpq is an auxiliary tensor defined as the
inverse of Cijpq according to

Cijpq ¼ �pi�qj þ 3
2Eijpq��ð2� �Þ ð2Þ

and �ij is the Kronecker delta. The expression for the
constitutive equation is obtained assuming an elastic
strain with the form

"eij ¼ "ij � "pij � �TðT � T0Þ�ij � ���ij

� 3
2
��d

ij�ð2� �Þ ð3Þ

Observing the right-hand side of the equation, the third
term �T ðT � T0Þ�ij is associated with thermal expan-
sion. The parameter �T is the coefficient of linear ther-
mal expansion and T0 is a reference temperature. The
fourth term ���ij is related to volumetric expansion
associated with phase transformation from austenite
to martensite. Therefore, when part of a material
experiences phase transformation, there is an incre-
ment of volumetric strain, proportional to �, a material
property related to the total expansion associated with
martensitic transformation. Finally, the last term
3
2��

d
ij�ð2� �Þ is denoted as transformation-induced

plasticity strain, being the result of several physical
mechanisms [1, 4]. This behaviour is related to
localized plastic strain promoted by the martensitic
transformation. In this term, the deviatoric stress com-
ponent is defined by �dij ¼ �ij � �ijð�kk=3Þ. Moreover, �
is a material parameter. It should be emphasized that
this strain may be related to stress states that are
inside the yield surface.

The evolution of internal variables is governed by
the equations

_""pij ¼ 
 sgnð�ij �Hijkl�klÞ ð4Þ

_��ij ¼ _""pij ð5Þ

_�� ¼ &A!Mk _TTðMs � TÞ exp½�kðMs � TÞ� ð6Þ

where sgnðxÞ ¼ x=jxj and 
 is the plastic multiplier
from the classical theory of plasticity. The term
Hijkl�kl ¼ Xij is related to the kinematic hardening,
where Hijkl is the kinematic hardening modulus
tensor. Phase transformation is described by the
equation proposed by Koistinen and Marburger [13]
to express the kinetics of phase transformation from
austenite to martensite. In this expression, k is a
material constant and Ms is the temperature at
which martensite starts to form in the stress-free
state. Moreover, the following expression is used in
order to impose proper conditions on the phase
transformation

&A!Mð _TT ‚TÞ ¼ �ðj _TT j � rMsÞ�ðMs � TÞ�ðT �MfÞ
ð7Þ
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where rMs is the critical cooling rate for the marten-
site formation, defined from the continuous cooling
transformation diagram, and _TT is the cooling rate.
Moreover, �ðxÞ is the Heaviside function. The von
Mises criterion is expressed by [13]

f ð�ij ‚�ijÞ ¼ ½3
2
ð�dij � Xd

ij Þð�dij � Xd
ij Þ�1=2 � �Y 4 0 ð8Þ

where �Y is the yield stress and Xd
ij is the deviatoric

part ofXij , the kinematic hardening tensor, defined as

Xd
ij ¼ Xij � �ij

Xkk

3
ð9Þ

The description of thermal problem assumes the
classical energy equation

@

@xi

�
�
@T

@xi

�
� �c _TT ¼ 0 ð10Þ

for rigid bodies, where � is the coefficient of thermal
conductivity, � is the density, and c is the specific heat.
Note that terms related to thermomechanical cou-
pling are neglected [13].
These expressions provide a complete set of equa-

tions that describes the thermomechanical behaviour
of solids during the quenching process. Note that it is
a non-linear set and proper numerical procedures are
necessary for its solution.

3 FINITE ELEMENT MODEL

In order to deal with the non-linearities of the formu-
lation, an iterative numerical procedure is proposed
on the basis of the operator split technique [17].
With this assumption, coupled governing equations
are solved from four uncoupled problems, where
classical numerical methods can be employed: ther-
mal, phase transformation, thermoelastic and elasto-
plastic. In this article, the classical finite element
method is employed to perform spatial discretization
of governing equations. Therefore, the following
moduli are considered.

1. Thermal problem. This consists of the conduc-
tion problem with convection. Material properties
depend on temperature and, therefore, the prob-
lem is governed by non-linear parabolic equations.
The classical finite element method is employed
for spatial discretization while the Crank–Nicolson
method is used for time discretization [18–20].

2. Phase transformation problem. The volumetric
fraction of the martensitic phase is determined
in this problem. Evolution equations are inte-
grated from a simple implicit Euler method
[14, 15, 21, 22].

3. Thermoelastic problem. Stress and displacement
fields are evaluated from temperature distribution.
The classical finite element method is employed
for spatial discretization [20].

4. Elastoplastic problem. Stress and strain fields are
determined by considering the plastic strain evo-
lution in the process. Numerical solution is based
on the classical return mapping algorithm [23, 24].

As an application of the general procedure, axisym-
metric triangular elements are adopted for all finite
element moduli, considering classical shape func-
tions [20]. Also, the original three-dimensional consti-
tutive model is reduced to a simplified version in
order to describe the quenching process in steel
cylinders. With this assumption, heat transfer analy-
sis may be reduced to a two-dimensional problem
and, for the stress components, only radial r, tangen-
tial �, and axial z components need to be considered
together with shear components rz. In brief, it is
important to note that tensor quantities may be
replaced by scalar or vector quantities. As examples,
Eijkl may be replaced by E, Hijkl may be replaced by
H, and the non-vanishing components of �ij are �r,
��, �z, and �rz.

4 NUMERICAL SIMULATIONS

In order to analyse the effect of phase transformation
during the quenching process, numerical investiga-
tions are carried out by simulating a progressive
induction (PI) hardening. PI hardening is a heat treat-
ment process that is achieved by moving a workpiece
at a constant speed through a coil and a cooling ring.
A hard surface layer with high compressive residual
stresses, combined with a tough core with tensile
residual stresses, is usually obtained.

This article considers PI hardening simulations in
a long cylindrical SAE 4140H steel bar. Material
parameters for numerical simulation are presented
in Table 1. Other parameters depend on temperature
and are interpolated from experimental data to give
(in SI units) [13–16, 25–29]

Table 1 Material parameters (SAE 4140H)

k 1:100� 10�2 K�1

� 5:200� 10�11 Pa�1

Ms 748K
Mf 573K
� 1:110� 10�2

� 7:800� 103 kg/m3
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E ¼ EAð1� �Þ þ EM�
EA ¼ 1:985� 1011 � 4:462� 107T � 9:909� 104T2 � 2:059T3

EM ¼ 2:145� 1011 � 3:097� 107T � 9:208� 104T2 � 2:797T3

(
ð11Þ

H ¼
2:092� 108 þ 3:833� 107T � 3:459� 104T2‚ if T 4 723K

2:259� 1011 � 2:988� 108T ‚ if 723K < T 4 748K

5:064� 109 � 3:492� 106T ‚ if T > 748K

8><
>: ð12Þ

�Y ¼
7:520� 108 þ 2:370� 105T � 5:995� 102T2‚ if T 4 723K

1:598� 1010 � 2:126� 107T ‚ if 723K < T 4 748K

1:595� 108 � 1:094� 105T ‚ if T > 748K

8><
>: ð13Þ

�T ¼ 1:115� 10�5 þ 1:918� 10�8T � 8:798� 10�11T2 þ 2:043� 10�13T3‚ if T 4 748K

2:230� 10�5‚ if T > 748K

(
ð14Þ

c ¼ 2:159� 102 þ 0:548T ð15Þ

� ¼ 5:223þ 1:318� 10�2T ð16Þ

The heat transfer coefficient h for cooling fluid (2.8 per cent Ucon E) and air are respectively given by (in SI
units) [13–16, 25–29]

h ¼

6:960� 102‚ if T 4 404K

2:182� 104 � 1:030� 102T þ 1:256� 10�1T2‚ if 404K < T 4 504K

�2:593� 104 þ 5:500� 102T ‚ if 504K < T 4 554K

�9:437� 104 þ 4:715� 102T � 7:286� 10�1T2 þ 3:607� 10�4T3‚ if 554K < T 4 804K

1:210� 103‚ if T > 804K

8>>>>>><
>>>>>>:

ð17Þ

hair ¼

2:916þ 6:104� 10�2T � 1:213� 10�4T2‚ if T 4 533K

6:832þ 1:837� 10�2T � 1:681� 10�5T2 þ 6:764� 10�9T3‚ if 533K < T 4 1200K

3:907� 101 � 2:619� 10�2T ‚ if 1200K < T 4 1311K

�2:305� 101 þ 3:366� 10�2T ‚ if T > 1311K

8>>><
>>>:

ð18Þ

Finite element method analysis is performed by
exploiting axisymmetrical geometry and a single
strip is considered for simulations [9]. This assump-
tion is employed since the passage of the moving
workpiece through the heating and cooling rings pro-
motes a localized phenomenon in this single strip
while adjacent material, above and below this strip,
is at lower temperatures.
First, a numerical simulation is carried out in order

to illustrate the potentiality of the proposed pro-
cedure to capture the general thermomechanical
behaviour during the quenching process. With this
aim, PI hardening of a steel cylinder, of 45mm dia-
meter and 180mm length, subjected to an induced
layer thickness ePI ¼ 3:5mm is considered. The speci-
men induced layer is heated to 1120K (850 8C) for 5 s
and then the surface is sprayed by a liquid medium at
294K (21 8C) for 10 s [25, 26]. After that, the specimen
is subjected to air cooling until a time of 60 s is
reached. Figure 1 shows a mesh with 488 nodes and
842 elements employed in numerical simulations
after a convergence analysis. The segment OM is at

the cylinder centre axis while LK is at the cylinder sur-
face. The null axial displacement condition is
imposed in OK and ML in order to consider the
restriction associated with adjacent regions of the
heated region, which are at lower temperatures.
Moreover, longitudinal heat conduction is neglected
and thermal boundary conditions impose a convec-
tion condition in KL while other faces have adiabatic
conditions. Figure 1 also establishes a comparison
between experimental results obtained by Camarão
[25] and those from numerical simulations obtained
with the proposed model. Note that results of volu-
metric fraction of martensite distribution are in
close agreement [13–15].

The forthcoming analysis considers the effect of
local perturbations in the distribution of variables
during PI hardening, by introducing a semicircular
notch in a long cylindrical steel bar. The cylinder
has a notch with radius r ¼ 1mm and an induced
layer thickness, ePI ¼ 5mm. Figure 2 shows a mesh
for r ¼ 1mm with 503 nodes and 904 elements,
which is chosen after a convergence analysis. Similar
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symmetry and boundary conditions of the previous
example are considered.
In order to start the analysis of the influence of

phase transformation on the prediction of residual
stresses, the distribution of the volumetric phase
fraction of martensite is considered. Figure 3 presents
the volumetric martensite fraction at the final time of
the quenching process, showing the phase transfor-
mation distribution. Note that phase transformation
tends to follow the geometry of the specimen.
The residual stresses generated by the quenching

process are now focused on, comparing results pre-
dicted by two different models: complete (thermoe-
lastoplastic model with austenite–martensite phase
transformation) and without phase transformation
(thermoelastoplastic model without phase trans-
formation). Figure 4 shows the radial stresses �r, tan-
gential stresses ��, and axial stresses �z. Results
predicted by the complete model are depicted on
the left-hand side of the figure while those predicted
by the model without phase transformation are on
the right-hand side.

With respect to compressive radial residual stresses,
the results predicted by neglecting phase transforma-
tion are greater than those considering this effect.
The difference of the maximum stress value is about
40 per cent (�378MPa neglecting phase transforma-
tion and �230MPa for the complete model). On the
other hand, considering tensile radial stresses, this
difference is greater, about 58 per cent, the values
being 455MPa neglecting phase transformation and
190MPa considering phase transformation. In con-
trast with previous results, the predictions of
residual tangential stresses �� are underestimated
when phase transformations are neglected. The max-
imum compressive stress values point to a difference
of 38 per cent, the values being �736MPa neglecting
phase transformation and �1019MPa considering
phase transformation. Similar results are obtained
for tensile stresses that present maximum values of
418MPa for the model without phase transformation
and 485MPa for the complete model (difference of
about 16 per cent). Axial residual stresses �z present
the same behaviour as the component ��. With

Fig. 1 Comparison between numerical and experimental results: (a) cylinder strip mesh; (b) cross-
sections of quenched bar submitted to a 2 per cent Nital etch; (c) volumetric fraction of
martensite distribution for ePI ¼ 3.5mm [13–15, 25]

Fig. 2 Cylinder strip with stress concentrator
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respect to compressive stresses a difference of 74
per cent is observed (�631MPa neglecting phase
transformation and �1095MPa including phase
transformation). On the other hand, tensile stresses
may present a difference of about 18 per cent, the

values being 547MPa neglecting phase transforma-
tion and 647MPa for the complete model. With
respect to residual shear stress, the analysis shows
that the model without phase transformation
underestimates the values of the predicted stresses.

Fig. 3 Volumetric fraction of martensite at the final time

Fig. 4 Residual stresses comparing two different models: complete model (left) and model without
phase transformation (right)
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The differences between the two models are about
30 per cent (180MPa neglecting phase transfor-
mation and 240MPa including phase transforma-
tion).
An alternative way to evaluate residual stresses

generated by the quenching process is to analyse
von Mises stresses. With this assumption, note that
the model neglecting phase transformation under-
estimates results when compared with the complete
model. This difference is about 7.5 per cent for max-
imum vonMises stresses. Figure 5 presents the results
predicted by both models, pointing out the difference
between them. Note that the complete model has a
larger critical region.
Table 2 summarizes the previous results, presenting

the maximum and minimum values of residual stres-
ses for both models. Note that these values may be
related to different points and are presented just for
a comparison of the critical points.
Figure 6 presents a comparison between the results

predicted by both models, taking data through the
periphery of the notch. Note that the complete
model predicts compressive values in the entire
notch surface, except at the edges where small tensile
values are observed. On the other hand, the model
without phase transformation predicts tensile stres-
ses in some regions of the notch surface. This can
be important data for assessing the structural integ-
rity of a mechanical component subjected to fatigue
loadings. Since fatigue cracks usually initiate at the
surface and propagate in the presence of tensile

stress fields, tensile residual stresses at the surface
can be especially critical.

At this point, data through the radius of the cylinder
are analysed. Figure 7 presents a comparison
between the results predicted by both models, show-
ing that the notch introduces different perturbations
in the two models. Note that far from the notch,
where phase transformation does not occur, the
results predicted by both models are similar. Mean-
while, in the region between node 18 and the cylinder
surface, the inclusion of phase transformation causes
great discrepancies in the responses of the two
models. Again, an important difference that should
be pointed out is the variation in the sign of the
stress components.

5 CONCLUSIONS

This article presents a comparison between two dif-
ferent models employed to describe the quenching
process. The first is a thermoelastoplastic model
that includes austenite–martensite phase transfor-
mation employing the constitutive model proposed
by Pacheco et al. [14] and Silva et al. [13]. The
second is a thermoelastoplastic model that neglects
phase transformation. The finite element method is
employed for spatial discretization. A numerical
procedure is developed on the basis of the operator
split technique associated with an iterative numerical
scheme in order to deal with non-linearities of the

Fig. 5 Von Mises residual stresses: (a) complete model; (b) model without phase transformation

Table 2 Maximum and minimum residual stresses for r ¼ 1:0mm comparing two different
models: complete and without phase transformation

�r
(MPa)

��
(MPa)

�z
(MPa)

�rz
(MPa)

�vM

(MPa)

Complete
Minimum �230 �1019 �1095 �243 þ342
Maximum þ190 þ485 þ647 þ240 þ724

Without phase transformation
Minimum �378 �736 �631 �224 þ316
Maximum þ455 þ418 þ547 þ180 þ678
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formulation. PI hardening of a steel cylindrical body
with a semicircular notch is considered. In general,
it is possible to conclude that the model neglecting
phase transformation underestimates values of
residual stresses when compared with results pre-

dicted by the model that includes phase trans-
formation. Moreover, differences related to the sign
of the residual stresses may be expected between
both models. These conclusions point to the
necessity of including phase transformations in the

Fig. 7 Residual stresses through the radius of the cylinder for both models

Fig. 6 Residual stresses through the periphery of the notch for both models
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prediction of residual stresses generated by the
quenching process.
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APPENDIX

Notation

c specific heat
Cijpq auxiliary tensor
ePI induced layer thickness
E elastic modulus
EA elastic modulus for the austenitic phase
Eijkl elastic tensor
EM elastic modulus for the martensitic phase
f yield surface
h heat transfer coefficient
H kinematic hardening modulus
Hijkl kinematic hardening modulus tensor
k material constant related to martensitic

transformation
Mf temperature at which martensite finishes

forming in the stress-free state
Ms temperature at which martensite starts to

form in the stress-free state
PI progressive induction
r radial coordinate
r notch radius
rMs critical cooling rate for martensite formation
R cylinder radius
sgn(x) ¼ x=jxj
t time

T temperature
T0 reference temperature
xi cartesian coordinate in the i direction
Xij kinematic hardening tensor
Xd

ij deviatoric part of Xij

z axial coordinate

�ij kinematic hardening variable tensor
�T coefficient of linear thermal expansion
� volumetric fraction of the martensitic phase
� material property related to the total

expansion associated with martensitic
transformation

�ðxÞ Heaviside function
�ij Kronecker delta
"ij total strain tensor
"
p
ij plastic strain tensor
� tangential coordinate
� material parameter related to transformation

plasticity

 plastic multiplier
� coefficient of thermal conductivity
� density
�ij stress tensor
�d
ij deviatoric stress tensor

�r radial stress
�Y yield stress
�z axial stress
�� tangential stress
�ijpq auxiliary tensor

: dð Þ=dt
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