
Physica 13D (1984) 261-268 
North-Holland, Amsterdam 
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It is shown that in certain types of dynamical systems it is possible to have attractors which are strange but not chaotic. 
Here we use the word strange to refer to the geometry or shape of the attracting set, while the word chaotic refers to the 
dynamics of orbits on the attractor (in particular, the exponential divergence of nearby trajectories). We first give examples for 
which it can be demonstrated that there is a strange nonchaotic attractor. These examples apply to a class of maps which model 
nonlinear oscillators (continuous time) which are externally driven at two incommensurate frequencies. It is then shown that 
such attractors are persistent under perturbations which preserve the original system type (i.e., there are two incommensurate 
external driving frequencies). This suggests that, for systems of the type which we have considered, nonchaotic strange 
attractors may be expected to occur for a finite interval of parameter values. On the other hand, when small perturbations 
which do not preserve the system type are numerically introduced the strange nonchaotic attractor is observed to be converted 
to a periodic or chaotic orbit. Thus we conjecture that, in general, continuous time systems (" flows") which are not externally 
driven at two incommensurate frequencies should not be expected to have strange nonchaotic attractors except possibly on a 
set of measure zero in the parameter space. 

1. Introduction and definitions 

1.1. Introduction 

In the study of attractors for dynamical systems, 
it is often observed that the dynamics of typical 
orbits on an attractor are chaotic in the sense that 
nearby orbits diverge exponentially from one 
another with time. Equivalently, one often says 
that there is "sensitive dependence on initial con- 
ditions". In such cases we say that the attractor is 
a chaotic attractor. 

In numerical computations, as well as theoreti- 
cal constructions, it is also often the case that 
attractors have nonelementary geometrical proper- 
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ties [1] such as noninteger fractal dimension, 
Cantor set structure, or nowhere differentiability. 
Ruelle and Takens [2] have called such attractors 
"strange". 

Thus, in this paper, we shall adopt definitions 
such that chaotic refers to the dynamics on the 
attractor, while strange refers to the geometrical 
structure of the attractor. Precise definitions of  
chaotic and strange are given in the next subsec- 
tion. 

In many well-known examples it is the case that 
chaotic attractors are also strange; e.g., the Hrnon 
map exhibits exponential divergence of neighbor- 
ing trajectories and it has a Cantor set structure. 
In other cases, however, chaotic attractors are not 
strange. For example, the logistic map, xn+ 1 = 
rxn(1 - x ~ ) ,  has chaotic attractors for values of r 
in a set of positive measure, [3] and these attrac- 
tors are observed to consist of a finite number of 
disjoint intervals in 0 < x < 1. (See also Li and 
Yorke [4] who show that attractors are always of 
this type for piecewise expanding, piecewise dif- 
ferentiable maps of an interval into itself.) Exam- 

0167-2789/84/$03.00 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



262 C. Grebogi et al. / Strange attractors that are not chaotic 

pies are well known (e.g. Anosov maps) where 
chaotic attractors occupy the full surface of a torus 
and hence are not strange (a computer picture of 
this type of attractor is given as fig. 1 in Farmer 
et al. [1]). Also Grebogi, Ott and  Yorke [5] in- 
vestigated invertible maps of a torus obtained as 
perturbations of quasiperiodic dynamics and also 
found chaotic attractors which fully occupy a 
toroidal surface. Other examples also exist (e.g., a 
solid region with boundary, as shown in fig. 5.14 
in Gumowski and Mira [6]). 

On the other hand, the answer to the question, 
"are there strange attractors which are not 
chaotic", is currently much less clear. It is one of 
the purposes of the present paper to address this 
question. We begin this by seeking insight from a 
specific example. In particular, we examine maps 
of the form 

x . +  1 = f ( X n , O n ) ,  (la) 
On+ 1 = [O n "}- 2qTto] mod21r, (lb) 

where f(x,  8) = f ( x ,  O + 2rr). For definiteness we 
set to = (~/3- - 1)/2, the golden mean, but we ex- 
pect that similar observations could be obtained 
for any irrational number. While 0 n is a scalar in 
(lb), we shall consider two cases for eq. (la); case 
(i) x ,  and f are scalars, and case (ii) x n = (u n, v,) 
and f =  (fx, f2) are two-dimensional vectors. As 
pointed out by Sethna and Siggia [7], such maps 
might result from a nonlinear oscillator driven at 
two frequencies, and to will be irrational if the two 
frequencies are incommensurate. For example, 
consider a damped pendulum (or Josephson junc- 
tion [8]) driven at two frequencies to1 and to2, 

d2~b cl,L 
+ ~ - ~ +  $22 sin ~b 

dt  2 

= A 1 cos tolt + A2cos ( to2 t + 0 o). (2) 

Using a surface of section at times tolt, = 2n~r, a 
map of the form (1) results with to = t o 2 / t o l .  Ex- 
perimental investigation of systems described by 
eq. (2), or other systems forced at two frequencies, 
may be a fruitful line of research. As shown here 

and in refs. 7 and 9, such systems possess distinc- 
tive interesting types of nonlinear dynamical be- 
haviors. 

In section 2 we demonstrate two particular 
choices for f(x,  8) [cf. eq. (1)] for which it can be 
shown that a strange nonchaotic attractor exists. 
We then examine the persistence of strange non- 
chaotic attractors for perturbations of the map 
(section 3). It is shown that these attractors persist, 
if the perturbation preserves the system type; that 
is, if eq. (la) is perturbed but eq. (lb) is not. On 
the other hand, we find that small changes in eq. 
(lb) destroy strange nonchaotic attractors and 
cause them to be supplanted by periodic or chaotic 
orbits. These results lead us to believe that, for 
systems (such as nonlinear oscillators forced at 
two frequencies) which conform to eqs. (1), strange 
nonchaotic attractors may be expected to occur 
over a finite range of parameter space; but that, in 
more general systems, such attractors, if they occur 
at all, probably exist only over a set of measure 
zero in parameter space. (For example, one-dimen- 
sional maps with a quadratic maximum have a 
strange nonchaotic attractor precisely at the point 
of the accumulation of period doublings [10], where 
the Hausdorff dimension of the attractor is - 

0 . 5 3 8  . . . .  ) 

1.2. Definitions 

We define a chaotic attractor as follows: 

Definition. A chaotic attractor is one for which 
typical orbits on the attractor have a positive 
Lyapunov exponent. 

In the above definition we have used the idea of 
"typical" orbits on the attractor. That is, we as- 
sume that, for almost any initial condition in the 
basin of attraction of the attractor, the largest 
Lyapunov exponents generated by those (typical) 
initial conditions exist and are identical. Further 
we use the following definitions of an attractor 
and a basin of attraction: 



C. Grebogi et aL / Strange attractors that are not chaotic 263 

Definition. An attractor is a compact set with a 
neighborhood such that, for almost every initial 
condition in this neighborhood, the limit set of the 
orbit as time tends to + 0¢ is the attractor. 

Definition. The basin of attraction of an attractor 
is the closure of the set of initial conditions which 
approach the attractor as time tends to + oo. 

We define a strange attractor as follows: 

Definition. A strange attractor is an attractor which 
is not a finite set of points and is not piecewise 
differentiable. We say that it is piecewise differen- 
tiable if it is either a piecewise differentiable curve 
or surface*, or a volume bounded by a piecewise 
differentiable closed surface. 

We consider here the case where, for definiteness, 

f(x, 0) = 2h(  tanh x )  cos 0, (4) 

although these considerations can be applied to a 
class of f choices. For  this case, the 0-axis, i.e. 
x = 0, is invariant under the map. Whether the 
0-axis is an attractor or not is determined by its 
stability. If h > 0 for the x = 0 orbit, then this 
orbit will be unstable. To see this, we note that 
two orbits on x = 0 maintain a constant separa- 
tion. Thus, if nearby points diverge from each 
other exponentially, they can only do so by diverg- 
ing from the 0-axis which is invariant. To calculate 
h for the x = 0 orbit, we make use of the ergodic- 
ity of 0 for irrational to to convert a trajectory 
average to a phase space average. From (3), we 
obtain for x = 0 

Here a curve in a D-dimensional phase space is 
parametrically representable by x = X(7/), where x 
is a D-dimensional phase space vector, 7/ a scalar 
variable, and X(*i) is a continuous vector function 
of *1. Similarly for a surface x = X(,/) with ~ of 
dimension between 2 and D-1. 

1 2~r 
h=-~ fo lnlOf/Oxlx=odO, 

which from (4) yields 

h = In 12q. 

(s) 

(6) 

2. Two examples 

In this section we consider two examples of eqs. 
(1) for which strange nonchaotic attractors occur. 
For  the first example, x is a scalar; while, for the 
second, x is two dimensional. 

2.1. Example 1 
For the case where x is a scalar, there are two 

Lyapunov exponents for the map, eqs. (1). One of 
them, corresponding to eq. (lb), is always zero. 
The other Lyapunov exponent for the map is 

h= mlimo¢ (1 ~ lnlOf/OXlx,,O,). (3) 
~ m n = l  

* If the surface has a boundary, then the boundary must be 
piecewise differentiable (e.g. a two-dimensional square in a 
three-dimensional space). 

Thus if I~l > 1, x = 0 is not an attractor. On the 
other hand, from (4) and (1), Ix, I < 21~,1, Hence 
the orbit is confined to a finite region of space, and 
there must be an attractor. Due to the ergodicity 
in 0, the measure on the attractor generated by an 
orbit is uniform in 0. On the other hand, consider 
points on the attractor at 0 ffi ~r/2 and 0 -- 3~r/2. 
Since the cos 0 term is zero for these values of 0, 
the attractor must contain the points (0 = 7r/2 + 
2~rto, x = 0) and (0 = 3~r/2 + 2~rto, x = 0) and 
must not contain any points in (0 = 7r/2 + 2rrto, 
x q: 0) and (0 -- 3~r/2 + 2~rto, x ~ 0). Iterating 
these points forward, we find that, for all positive 
integers k, the attractor contains the points (0 = 
~r/2 + 2~rkto, x = 0) and (0 = 3tr /2  + 2~rkto, x = 
0) but  does not contain any points in (0 = ~r/2 + 
2~rkto, x ÷ 0) and (0 = 3~r/2 + 2~rkto, x ~ 0). Thus 
for I~1 > 1, x = 0, 0 ~ [0,2~r] is not the attractor, 
but there is a dense set of points in the attractor 
that are also in x = 0, 0 ~ [0, 2~r]. To get an idea 
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Fig. 1. The strip Ixl < 2h = 3.0, 0 ~ (0,2~r) and its (a) first iterate, (b) second iterate, (c) third iterate, and (d) fourth iterate under eqs. 
(4) and (1). 

for the shape of the attractor, consider the strip 
Ixl < 21)q, which we know contains the attractor. 
Iterates of this strip also contain the attractor. Fig. 
1 shows this strip and its first four iterates. As the 
strip is iterated further, the bounding curves de- 
velop more and more zero crossings and these 
become progressively steeper and steeper. Fig. 2 
shows a picture of the attractor for h = 1.5 ob- 
tained by iterating the map and then plotting the 
points after the initial transient has died away. 
From fig. 2 we see that the attractor has points off 
x = 0 (as expected), and, from our previous con- 
siderations, it follows that, according to our defini- 
tion, the attractor is strange. Calculation of the 
Lyapunov exponent using 3.3 X 104 iterates for 

the case shown in fig. 2 gives h = -1.059. Thus 
the attractor is not chaotic, and we have an exam- 
ple of a strange nonchaotic attractor. In order to 
prove that h must be negative (implying a non- 
chaotic attractor), note that x-1  tanh x > 
d /dx  ( tanhx) ,  with the equality applying only as 
x ~ 0, ~ .  Thus, from (4), IOf/Oxl < f / x ,  or, for x n 
and x,+ 1 finite and nonzero, 

IOf/Oxlx,,o,, < IXn+l/Xnl. 

Using this in (3) it immediately follows that h is 
negative, since 

h <  li~n m . = l  
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Fig. 3. Effect of applying eqs. (8) and ( lb)  to a line (schematic). 
The horizontal dashed line maps to the solid line. 

Fig. 2. x versus 0 plot of the strange nonchaotic attractor for 
the two dimensional map given by eqs. (4) and (1) where 

= 1.5 and the number  of iterations is 33,000. 

where x k is assumed to be nonzero. Since the orbit 
for the strange attractor has x = 0 on a set of zero 
measure (namely, 0 -- ~r + ~r/2 + 2~rko~), the as- 
sumption xk 4= 0 in (7) is valid. 

2.2. Example  2 

We now consider a case of a three-dimensional 
map where eq. ( la)  is given by (x = (u, v)) 

Un+l] 
v,+x] 

x :1[ cos0 sinO][U°] 
2 .[_ 0 2 - -  sin 0 cos 0 ] [ v, " l + u ,  

(8) 

Note that when "t--0,  eq. (8) reduces to a form 
which is similar to (4); viz., Un+l=~UnCOSOn// 
(1 + u]). Also note that the 0-axis, i.e. u = v = 0, is 
an invariant curve for the map (8), (lb). As h is 
increased from zero u = o = 0 will eventually pass 
from being a stable attractor (~ < he) to being 
unstable (h  > ~¢). We ask, what happens for ~ > 
he? First we note that there cannot be a continu- 
ous attracting invariant curve. In order to see this 

consider fig. 3. In fig. 3 we illustrate the action of 
the map (8) and ( lb)  on the dashed horizontal line 
shown. It is seen that the image of the line under 
the map wraps once around the 0-axis in the 
left-hand sense as shown by the solid line. In fact, 
for any curve connecting 0 -- 0 to 0 = 2 ~r it is not 
hard to see that application of the map increases 
the number of left-hand wraps around u = v - - 0  
by one. Thus there can be no invariant curve 
except u = v = 0. Notice also that if the curve 
passes through u = v - - 0  at some 00, it would 
again pass through it at [00+ 21rn¢]mod2~t for 
all integer n > 0; so the curve would have to be the 
0-axis, which contradicts the fact that the 0-axis is 
unstable. 

Fig. 4 shows numerical results of iterating eqs. 
(8) and ( lb)  for , /-- 0.5 and h = 2.0 (~c ~ 1.3 for 
"/-- 0.5). The calculated Lyapunov exponents are 0 
(corresponding to eq. (lb)), - 0.124, and - 0.380; 
so the attractor is nonchaotic, yet again it appears 
to be strange. 

To gain further insight into the character of the 
attractor in fig. 4, we choose a single initial value 
of 0 and pick 100 initial values of (u, v) randomly 
in lul < 1, Ivl < 1. We then iterate these 100 points 
for 1000 steps. Since all initial conditions have the 
same 0, all the final conditions also have the same 
0 (cf. eq. (lb)). We find that after 1000 steps the 
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Fig. 4. (a) u versus 0 plot of the strange nonchaotic attractor 
for the three-dimensional map given by eqs. (8) and (lb) where 
y = 0.5 and h = 2.0; (b) v versus 0. 

(u ,o )  values for all 100 initial conditions are 
located at two points symmetric about the 8-axis. 
Thus, it appears that, for a given value of O, there 
are two unique points which attract all initial 
conditions, (u, o) = + (Gl(O), G2(0)). On the other 

hand, our previous argument shows that an attrac- 
tor cannot be a continuous curve. Thus the func- 
tions GL2(8 ) are nowhere continuous, and the 
attractor is strange. 

2.3. Remarks 

For example 1, if we consider a horizontal curve 
(as in fig. 3 for example), then successive applica- 
tions of (4) and ( lb)  increase the number of times 
the curve crosses x = 0 by two on each iterate. 
Analogously, for example 2, eqs. (8) and (lb) 
increase the number of left-hand wraps around 
u = v = 0 by one on each application of the map. 
Based on these observations, we expect that the 
length of an initially horizontal curve will, on 
average, increase linearly with the number of 
iterates. Thus, we believe that, on average, nearby 
points diverge from each other linearly with time. 
This is not inconsistent with our largest Lyapunov 
number of zero, since the divergence here is slower 
than exponential. 

The above considerations and numerical de- 
terminations of the time Fourier transform of the 
orbits shown in figs. (2) and (4) lead us to offer the 
speculation that our strange nonchaotic attractors 
might have a continuum component to the 
frequency spectrum. 

3. The effect of perturbations 

In this section we seek some insight into how 
general the strange nonchaotic attractors of sec- 
tion 2 are. Specifically, we ask two questions: 

(i) Within the class of maps of the form (1) 
(which are applicable to nonlinear oscillators 
driven at two incommensurate frequencies), do 
small perturbations of the example maps (section 
2) destroy the observed phenomena? 

To answer this question, we add perturbations 
to (4) but not to (lb). We find (section 3.1) that 
the answer to question (i) above is no. Given that 
this is so, we ask our second question: 
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(ii) D o  small per turba t ions  which change the 

sys tem type (by coupl ing x to eq. ( lb) )  des t roy the 
p h e n o m e n a  observed in section 2? 

As shown in section 3.2, the answer  to (ii) is yes. 

3.1. Perturbations that preserve the system type 

The  form of f ( x ,  0) in eq. (4) has special p rop-  
erties chosen so that  a s trange nonchaot ic  a t t ractor  
could be  mos t  easily demons t ra ted  to occur. Here  
we add per turba t ions  to (4) which dest roy the 

special proper t ies  of  f (x ,  0) (viz. it is expressible 

as f ( x ,  0) =fl(x)f2(O) with fl(O) = O, f~'(O) = 2k) ,  
and  then numerical ly  examine the resulting at trac- 
tor. In  part icular ,  we consider 

f ( x ,  0) = 2ktanhxcosO + a l c o s  [0 + 2~'fll ] 

+a2xcos[O+2rr~2]. (9) 

We have invest igated cases with a I and 42 bo th  
s imul taneously  nonzero,  but  we shall here only 
repor t  results for  a 2 = 0, since these are rep- 
resentat ive of  what  we found in the more  general 
case. We fix k = 1.5 (as in fig. 2) and fll = 0.125, 
and  vary  a 1. We find that  as a I is increased f rom 
zero the s t range nonchaot ic  a t t rac tor  of  fig. 2 
apparen t ly  persists, but,  for a I sufficiently large 

(41 7, 0.3), the a t t rac tor  becomes  nonstrange.  Fig. 
5a shows a case which appears  strange ( a  1 = 0.2, 
2~ = 1.5), while fig. 5b, for  larger al ,  is a quasiperi-  

odic orbi t  ( a  1 = 1.0, k = 1.5). T o  further  examine 
the a t t rac tor  of  fig. 5a, we have considered a large 
n u m b e r  of  initial condi t ions with the same 0 value 
(as in section 2.2). U p o n  i terat ion all these initial 
condi t ions  converge to  the same x-value. Thus,  the 
a t t rac tor  appears  to be  in the fo rm x = G(O) 
where  G(O) is nowhere  continuous.  

3.2. Perturbations of eq. ( l b )  

We  now examine  the effect of  per turbing eq. 
( lb) .  We consider  

0,,+1 = [O,+2~r~+e(x+O.5sinO,)]. (10) 
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Fig. 5. x versus 0 plots illustrating the effect of perturbations 
that preserve the system type for eqs. (9) and (1) where k = 1.5, 
a 2 = 0, and fll = 0.125. (a) For a 1 = 0.2 the strange nonchaotic 
attractor appears to persist; (b) for a I = 1.0 the strange non- 
chaotic attractor becomes nonstrange (a quasiperiodic orbit). 

We  set pa ramete r s  at those for  fig. 5a and examine 
the effect of  finite e in eq. (10). In  all cases tested 
(about  20 different e values) a s trange nonchaot ic  

a t t rac tor  did not  occur. Fo r  example,  the smallest  
lel values tested were e = 10 -4  and  e = - 10 -4.  At  
e = - 10 -4  a per iodic  orbit  with a per iod of abou t  
500 lies close to the original e - - 0  s trange at trac-  
tor, while at  e -- 10 -4  a chaotic  a t t rac tor  (h > 0 in 
eq. (3)) was observed.  
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4. Conclusions References 

The main point of this paper is that strange 
nonchaotic attractors exist and can occur over a 
finite range in parameter space for a special type 
of system. The type of system referred to above is 
a nonlinear oscillator forced at two incom- 
mensurate frequencies (e.g. eq. (2)). Such systems, 
although in a sense special, are experimentally 
realizable and are worthy of further study. 
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