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Abstract
The objective of this work is to investigate the spatiotemporal dynamics of coupled logistic
maps. These maps are prototypes of high-dimensional dynamical systems and have been used
to describe the evolution and pattern formation in different systems. Here, the logistic map
lattice is coupled by a power law and, therefore, each map is influenced by other maps in its
neighborhood. The Kolmogorov–Sinai entropy density is employed to quantify the complexity
of system behavior, permitting a general qualitative understanding of different aspects of
system dynamics. Three kinds of boundary conditions are treated and the influence of initial
conditions is also of concern. Non-homogeneous maps are investigated, showing interesting
aspects of spatiotemporal dynamics. The idea is to analyze the spatial interaction between two
qualitative different types of behavior from a grid that is split into two parts. Numerical
simulations show what types of conditions present a greater tendency to develop chaotic,
periodic and synchronized responses. It should be highlighted that non-homogeneous grids
have situations where a chaotic pattern can emerge from two periodic responses and also
situations where a periodic pattern can emerge from chaos.

PACS numbers: 05.45.-a, 05.45.Jn

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Natural systems have nonlinear characteristics that are
responsible for a great variety of possibilities. Chaos is one
of these possibilities, and natural systems can adopt chaotic
regimes as desirable behavior due to the intrinsic richness
related to the existence of an infinite number of unstable
periodic orbits. In the past, most research was dedicated
to investigating the temporal evolution of low-dimensional
systems. Recently, the spatiotemporal evolution of dynamical
systems has increasing importance (Savi 2007, Viana et al
2005, Vasconcelos et al 2004, Lai and Grebogi 1999, Shibata
1998a, 1998b, Awrejcewicz 1991, Umberger et al 1989).
The spatiotemporal characteristics of a dynamical system are
important in the analysis of complex behavior.

This paper presents an investigation of the spatiotemporal
dynamics of coupled maps. The system is composed of a
logistic map lattice connected by a communication protocol.
This coupling is described by a power law that can represent

either local- or global-type couplings. Therefore, each
map is influenced by other maps in its neighborhood, and
boundary conditions are important in defining the coupling
characteristics. This map lattice represents a mathematical
idealization of physical systems that are discrete in time
and space. It is used to describe the evolution and pattern
formation in chemical reactions, turbulence, neural networks
and population dynamics. Because of that, the investigation
of this system became important in nonlinear dynamics
analysis (Wysham and Hastings 2008, Lloyd 1995, Holden
and Zhang 1992).

The literature presents numerous investigations
concerning coupled logistic maps. Willeboordse (2003)
argued that the key motivation is the search for universal
properties and behavior that apply to all dynamical systems.
Therefore, coupled maps can be understood as prototypes
of high-dimensional dynamical systems. Shen et al (2008)
studied the synchronization and pattern dynamics of
coupled logistic maps on a type of complex network,
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constructed by randomly adding shortcuts to a regular
ring. Li (2008) considered the synchronization of globally
coupled maps subjected to a constant force. Kozma (1998)
stated that the results obtained for coupled logistic maps
with intermediate-range coupling are directly related to
the emergence of intelligent behavior in neural networks.
Giordani et al (2005) investigated the synchronization of
metapopulations by means of observing the chaotic behavior
of coupled logistic maps.

In general, the synchronization of spatiotemporal
dynamics has been intensively studied, but there is a dearth
of studies on the systematic investigation of other aspects
of system dynamics (Chazottes and Fernandes 2005). In this
regard, this contribution investigates the different aspects
of system dynamics treating the influence of boundary and
initial conditions and also the influence of non-homogeneous
effects on system dynamics. The main goal is to present
some interesting patterns related to spatiotemporal dynamics.
The Kolmogorov–Sinai entropy density is used to quantify
the complexity of system behavior permitting a general
qualitative comprehension of system dynamics. Entropy
surfaces are used to identify different qualitative dynamics
that are explored in numerical simulations. Three kinds
of boundary conditions are considered: periodic, where
the values of the maps are repeated for every N maps;
infinite space, where the neighborhoods of the first and last
maps have homogeneous values; and finite space, where no
other map is considered beyond the N observed. Besides
boundary conditions, the influence of initial conditions and
non-homogeneous effects is also of concern. The idea
of non-homogeneous analysis is to investigate the spatial
interaction between two qualitatively different types of
behavior from a grid that is split into two parts. Numerical
simulations show the types of conditions that present a greater
tendency to develop chaotic, periodic and synchronized
responses. It should be highlighted that the non-homogeneous
grids have situations where chaos can emerge from the
interaction of periodic behavior and vice versa.

2. Coupled maps

The logistic map was originally proposed by May (1976) to
describe biological problems. Today, this map is employed
to describe different problems related to economic and social
areas. The logistic map is a first-order difference equation
represented by xn+1 = f (xn; β) = βxn(1 − xn). Recently,
coupled logistic maps have been used in order to model
the evolution and pattern formation in systems associated
with chemical reactions, turbulence, neural networks and
population dynamics (Holden and Zhang 1992).

The map lattice considers a grid of N logistic maps
coupled by a power law as follows (Viana et al 2005):

x (i)
n+1 = (1 − ε) f

(
x (i)

n

)
+

ε

η(α)

N ′∑
j=1

1

jα

[
f
(
x (i+ j)
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)
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(
x (i− j)

n

)]
,

(1)

where N ′
= (N − 1)/2 and f (x) = βx(1 − x); ε is the

coupling parameter (06 ε 6 1), α is the coupling intensity

i=1 i=N 

Figure 1. Coupled map grid.

(α > 0) and η is given by

η(α) = 2
N ′∑

j=1

j−α. (2)

This coupling represents different aspects of the
communication protocol and allows a continuous pass from
local Laplacian-type coupling (α → ∞) to global mean-field
coupling (α → 0) (Viana et al 2005).

Each map i depends on its neighbors and the
boundary conditions define the maps when i > N and i < 1.
Figure 1 represents the coupled maps grid, illustrating the
boundaries.

Numerous boundary conditions can be established in
order to represent distinct physical situations. Here, three
different boundaries are of concern. The periodic condition
is the most usual one observed in the literature, being related
to an infinite space where the map values repeat for each N
map. Mathematically, this condition is represented by

x (i)
n = x (i±N )

n . (3)

Infinite space is a free boundary condition where the
N -lattice behavior is repeated for outside cells. Under this
assumption, the map response in i = N repeats its value to
the right side of the grid while the values to the left assume
the value of the map i = 1 (figure 1). The mathematical
representation of this condition for the boundary and outer
cells is

x (N )
n = x (N+1)

n = x (N+2)
n = · · · = x (∞)

n ,

x (1)
n = x (0)

n = x (−1)
n = · · · = x (−∞)

n .

(4)

The finite space condition represents a situation where the
boundary is fixed, vanishing cell responses of maps out of the
lattice as follows:

x (N )
n = x (N+1)

n = x (N+2)
n = · · · = x (∞)

n = 0,

x (1)
n = x (0)

n = x (−1)
n = · · · = x (−∞)

n = 0.

(5)

3. Lyapunov exponents and Kolmogorov–Sinai
entropy density

A Lyapunov spectrum represents one of the most important
geometrical invariants of a dynamical system. Lyapunov
exponents evaluate the divergence of nearby orbits and their
signs provide a qualitative picture of the system’s dynamics.
Any system containing at least one positive exponent presents
chaotic behavior. The analysis of coupled maps can use the
same methodology employed for a single map. Hence, let us
assume coupled maps expressed by

x (i)
n+1 = f

(
x (i)

n

)
= f

(
x (1)

n , . . . , x (N )
n

)
. (6)
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Figure 2. Kolmogorov–Sinai entropy density for periodic boundary conditions and different coupling parameters.

The determination of Lyapunov exponents needs to
consider the variation of each cell under some perturbation
in initial conditions, x (i)

0 . The Jacobian matrix is calculated in
each iteration as follows (Shibata 2001):
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Then,

Rn =

n∏
k=1

Jk (8)

is defined.
Lyapunov exponents, λ(i), are evaluated from the

eigenvalue σ (i) of Rn as follows (Holden and Zhang 1992):

λ(i)
= lim

n→∞

1

n
ln

∣∣σ (i)
∣∣ . (9)

By considering the coupled logistic maps lattice where
the coupling is defined by a power law as presented in
equation (1), the Jacobian matrix is written as

[Jn]i j = Ai j f ′
(
x ( j)

n

)
, (10)

where Ai j is a coupling dependent matrix given by (Batista
and Viana, 2001)

Ai j (ε, α) =


1 − ε, if i = j,

ε|i − j |−α/η(α), if |i − j |6 N ′,

ε(N ′
− |i − j |)−α/η(α), if |i − j | > N ′.

(11)
The use of the classical algorithm due to Wolf et al

(1985) allows the evaluation of the principal directions of
the ellipsoid centered at a fiducial trajectory (Lu et al 2005).
The norms of the orthonormalized vectors N (i)

k are used to

calculate the Lyapunov exponents and, after n iterations, we
have

λ(i)
n =

1

n

n∑
k=1

ln N (i)
k . (12)

The knowledge of this spectrum allows one to evaluate
other invariants such as the Kolmogorov–Sinai entropy
density, which is an index calculated from the positive
Lyapunov exponents as follows:

h =
1

N

N ,λ>0∑
i=1

λi . (13)

Hence, when the entropy density vanishes there is no positive
Lyapunov exponent and, therefore, there is regular behavior.
On the other hand, positive values of the entropy are related
to chaos.

4. Homogeneous maps

We now focus on homogeneous coupled lattice maps by
assuming a grid with N = 21 and β = 4, which is associated
with chaotic behavior of the isolated map. All simulations
were conducted assuming that parameter ε is between 0
and 1, and parameter α is between 0 and 3. These choices
represent different kinds of couplings, changing from local
to global characteristics. The Kolmogorov–Sinai entropy was
calculated from converged Lyapunov exponents. Random
initial conditions are assumed and three different boundary
conditions are of concern: periodic, infinite space and
finite space. The idea is to investigate how the coupling
characteristics influence the global dynamics.

4.1. Periodic boundary conditions

Initially, let us consider periodic boundary conditions. The
analysis of Kolmogorov–Sinai entropy density for different
coupling parameter values allows us to identify distinct
behavior, as shown in figure 2. This entropy surface
characterizes general system dynamics, giving us an idea of
coupling effects. Flat regions, related to α values less than

3
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(b)(a)

(d)(c)

Figure 3. Overlap of the last 30 iterations after 10 000 iterations for periodic boundary response with (a) α = 1.9 and ε = 1; (b) α = 3 and
ε = 1; (c) α = 1 and ε = 1; (d) α = 2 and ε = 0.11.

1.5 and ε values greater than 0.6, are associated with maps
synchronization presenting homogeneous dynamics. This
homogeneity, however, is not related to regular dynamics and
can be associated with chaos when related to positive entropy
values. As expected, the decrease of coupling parameters
makes the system response similar to the uncoupled behavior
of isolated maps.

For situations when ε is less than 0.2, for all values
of α, the system presents chaotic behavior due to the weak
coupling and, therefore, the isolated behavior of each map
tends to be dominant. Note that the entropy density tends
to h = 0.69, a value that corresponds to the isolated map.
It should also be pointed out that the existence of
valleys, where entropy density vanishes, characterizes regular
response. For instance, when α = 1.9 and ε = 1, the system
presents a period-4 response that could be observed from
the pattern presented in figure 3(a), which shows the
spatiotemporal evolution represented by an overlap of 30
iterations. In the same way, when α = 3 and ε = 1, there
is a period-2 pattern (figure 3(b)). When α = 1 and ε =

1, the system presents a synchronized chaotic response
characterized by a consensus response of the whole grid
(figure 3(c)). A chaotic pattern is reached when α = 2 and
ε = 0.11 (figure 3(d)). These results show distinct patterns
that emerge from the coupled logistic map.

4.2. Infinite space boundary conditions

A system with infinite space boundary conditions is
now considered, meaning that the boundary is free to

Figure 4. Kolmogorov–Sinai entropy density for infinite space
boundary conditions and different coupling parameters.

follow the behavior of the boundary cell. The analysis of
Kolmogorov–Sinai entropy density for different coupling
parameter values is presented in figure 4. Once again, there
is a flat region (h ≈ 0.033) limited by a valley defined by
the pairs α = 1.7, ε = 1 and α = 0.5, ε = 0.4, but now it is
not related to synchronized response. Afterwards, there is
another flat region. It is also possible to see some valleys
close to α = 3 with zero entropy. As expected, when coupled
parameters tend to vanish, the response tends to uncoupled
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Figure 5. Overlap of the last 30 iterations after 10 000 iterations for infinite boundary response: (a) α = 0.5 and ε = 0.4; (b) α = 1.7 and
ε = 1.
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Figure 6. Overlap of the last 30 iterations after 10 000 iterations for infinite space boundary conditions: (a) α = 0.6 and ε = 0.75;
(b) α = 1.75 and ε = 0.6.

Figure 7. Kolmogorov–Sinai entropy density for finite space boundary conditions and different coupling parameters.

behavior. In general, it should be concluded that boundary
conditions have a great influence on the results, and infinite
space boundary condition responses have a greater tendency
to chaos without synchronization when compared to those
obtained with a periodic boundary.

System behavior at the first valley can be visualized
by considering two different situations: α = 0.5 and ε = 0.4;
α = 1.7 and ε = 1. Figure 5 presents these results, showing
different even periodic response patterns. Regions close to
the valleys show a weakly chaotic response, characterized

by intermittency. Figure 6 presents the results for α = 0.5,
ε = 0.4 and α = 1.7, ε = 1.

4.3. Finite space boundary conditions

Let us now consider the system with finite boundary
conditions by assuming the existence of just 21 maps within
the grid, meaning that the outside lattice behavior vanishes.
The analysis of the entropy density surface at the coupling
parameters space is presented in figure 7. It should be noted
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Figure 8. Overlap of the last 30 iterations after 10 000 iterations for finite boundary conditions with different coupling parameters:
(a) α = 0 and ε = 1; (b) α = 0.3 and ε = 0.25; (c) α = 0.3 and ε = 0.7; (d) α = 1 and ε = 1; (e) α = 3 and ε = 0.3; (f) α = 3 and
ε = 0.166.
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Figure 9. Overlap of the last 30 iterations after 10 000 iterations for periodic boundary response with α = 3 and ε = 0.165.

that this system tends to present a great region related to very
low values, or a zero value, of entropy and strong chaos is
restricted to low values of parameter ε. Figure 8 presents
the spatiotemporal evolution for different kinds of responses
related to distinct coupling parameters (identified in figure 7),
varying from regular to chaotic responses.

4.4. Influence of initial conditions

The influence of initial conditions in system response is now
of concern. In order to deal with the spatiotemporal cha-
racteristics, let us consider a system with periodic boundary
conditions with α = 3 and ε = 0.165, presented in figure 9
as an overlap of the last 30 iterations after 10 000 iterations.
Two different initial conditions are considered: figure 9(a) is
related to homogeneous initial conditions x (i)

0 = 0, except for
x (1)

0 = 0.1, while figure 9(b) considers x (10)
0 = 0.1, vanishing

all others. Both situations can be understood as a chaotic wave
traveling through a period-2 response. The spatiotemporal
aspects, however, are altered by the initial conditions.

The analysis of different time instants is useful for the
correct comprehension of spatiotemporal dynamics. Figure 10
presents a map showing how the chaotic wave moves itself
within the period-2 response. This figure also shows the

system spatiotemporal evolution, presenting detailed windows
obtained from the overlap of 30 iterations where it is possible
to verify the position of the chaotic region.

The infinite space boundary condition is now considered
by assuming α = 0.5 and ε = 0.32. Figure 11 presents the
response obtained from vanishing initial conditions, except
for x (11)

0 = 0.5. Besides the map showing how the system
response evolutes, the figure presents the spatiotemporal
pattern represented by the overlap of 30 iterations during
transient and steady state conditions. The results show that
the system presents a chaotic response but, after around
5000 iterations, it stabilizes in a periodic response. This kind
of behavior may be understood as transient chaos, because
the greatest Lyapunov exponent remains stable and positive
during this period and, afterwards, becomes zero.

Let us now consider a finite boundary condition with
α = 0.8 and ε = 0.25. In order to analyze this situation, three
different, but close, initial conditions are treated: x (11)

0 = 0.3,
x (11)

0 = 0.4 and x (11)
0 = 0.5, vanishing all other cells for all

cases, presented in figures 12(a)–(c), respectively. A period-8
response occurs for the first case (x (11)

0 = 0.3) with h =

0. By assuming x (11)
0 = 0.4, the second case, the system

presents a period-4 response with h = 0. Nevertheless, by
considering x (11)

0 = 0.5, a chaotic response appears presenting
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Figure 10. Map showing the movement of the chaotic wave within a period-2 response.
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Figure 11. Map showing (a) transient chaos and (b) periodic steady state response for x (17)

0 = 0.5 (vanishing all other cells).
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Figure 12. Overlap of the last 30 iterations after 10 000 iterations for finite space boundary response for α = 0.8 and ε = 0.25: (a) period-8,
(b) period-4 and (c) supertransient chaos.

h = 0.048. More than two million iterations are computed
in order to observe this response. This phenomenon is
probably a case of supertransient chaos (Kaneko 1990, 1993,
Willeboordse 1992) related to initial conditions that are close
to a stable manifold and, as a consequence, the dynamics of
the maps takes a long time to leave the chaotic saddle.

5. Non-homogeneous maps

The idea that order and chaos are both related to the complex
behavior of physical systems, and that the balance between
them occurs in the edge of chaos, motivates the analysis
of non-homogeneous systems where transitions between
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Figure 13. Overlap of the last 30 iterations after 10 000 iterations for βL = 0 and βR = 4 with periodic boundary conditions, α = 3 and
ε = 0.165 for two different random initial conditions. The behavior of the homogeneous maps with β = βL and β = βR is shown on the
smaller plots.

different qualitative behavior can result in the emergence of
interesting behavior. In this regard, numerical simulations
are now carried out by assuming a grid with N = 21 and
non-homogeneous values of parameter β through the grid.
In general, the grid is split into two parts and each one
has different values of this parameter. Basically, the idea is
to analyze the spatial interaction between two qualitatively
different types of behavior. The left side is defined from
i = 1 to 11, being related to parameter βL, while the right
side is defined from i = 12 to 21, being related to parameter
βR. Values of parameter β are chosen in order to consider
different qualitative behavior of the isolated map: 0 (period-1,
stationary); 3.2 (period-2); 3.5 (period-8); 3.835 (period-3,
periodic window); 4 (chaotic). It should be highlighted that
three different kinds of responses are possible for the same set
of parameters, depending on coupling characteristics: isolated
behavior of a single map, homogeneous grid behavior and
non-homogeneous grid behavior.

All simulations are conducted assuming that parameter ε

is between 0 and 1, while parameter α is between 0 and 3.
Three different boundary conditions are focused on: periodic,
infinite space and finite space. Moreover, different kinds of
initial conditions are imposed on the system.

5.1. Periodic boundary conditions

Initially, let us consider an interaction between two
dramatically different types of behavior: stationary (βL = 0)
and chaotic (βR = 4). By assuming coupling parameters α = 3
and ε = 0.165, the homogeneous grid with β = 4 presents
chaotic behavior with h = 0.277 over a period-2 dynamics.
On the other hand, the homogeneous grid dynamics with β =

0 is stationary. By considering the non-homogeneous case,

this pattern is altered due to the interaction of both sides.
Figure 13 presents the response of this non-homogeneous
grid for two different random initial conditions. Basically,
the system response shows period-4 behavior together with a
dominant period-2 response. It should be highlighted that this
figure also presents the response for the homogeneous grid
(small pictures at the left and right sides).

A global analysis of the grid with βL = 0 and βR = 4
is carried out through the observation of entropy density
surface (figure 14). Firstly, let us explain the value where
the entropy density tends to ε = 0: it is the average value
of the Lyapunov exponents of isolated maps, i.e. 0.69 for
the last ten maps and zero for the first 11 maps, that gives
∼0.33. The most important observation can be made in
the region with strong couplings represented by high values
of coupling parameters. Under this condition, the entropy
density of the non-homogeneous grid is positive for parameter
combinations where the homogeneous grid with β = 4 has
entropy equal to zero. Therefore, the inclusion of the grid
with β = 0 is not related to chaos suppression. Figure 14 also
shows details of situations where the non-homogeneous grid
presents higher entropy when compared to the homogenous
grid, illustrating the preceding comment. A periodic valley
is also noticeable around ε = 0.05 and at low values of
α, where the grid dynamic develops period-3 and period-6
behavior.

A situation where βL = 3.2 (related to period-2 behavior
for the isolated map) and βR = 4 (chaos) is now the focus. By
assuming coupling characteristics represented by α = 3 and
ε = 0.165, homogeneous behavior is related to period-2 and
chaotic behavior (as depicted in figure 15). The interaction
of these grids generates a non-homogeneous response that
develops chaotic behavior (h = 0.0134), although it is highly
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Figure 14. Entropy density surface for βL = 0 and βR = 4. On the right, regions where the entropy of the non-homogeneous grid is higher
than that of the homogeneous grid are highlighted.
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Figure 15. Overlap of the last 30 iterations after 10 000 iterations for βL = 3.2 and βR = 4, periodic boundary condition, α = 3 and
ε = 0.165. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the smaller plots.
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Figure 16. Overlap of the last 30 iterations after 10 000 iterations for βL = 0 and βR = 3.835, periodic boundary condition, α = 3 and
ε = 0.8. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the smaller plots.

suppressed by period-2 on the left side of the grid.
This observation shows that when the βL parameter is
changed from zero to 3.2, although this value is related
to periodic behavior, the non-homogeneous grid becomes
chaotic (figure 15).

By considering βL = 0 (stationary) and βR = 3.835
(period-3 window) and strong coupling, represented by α =

3 and ε = 0.8, homogeneous grids are related to stationary
behavior on the left side and period-2 behavior on the right
side (as depicted in figure 16). The non-homogeneous grid
has a chaotic pattern, as shown in figure 16. The transition
between grid sides shows a smoother change of pattern,
typical of strong coupling. This observation shows a situation
where the chaotic pattern emerges from maps with periodic
behavior.

In general, it is possible to say that the periodic boundary
condition tends to equalize the dynamics through the grid,
mainly with respect to the presence of chaos, due to
interaction between two sides of the grid. Chaos in one half
and pure periodic motion in the other half is not achievable
due to global coupling, even if applied with low intensity and
coverage. This behavior points to a transition region where
different patterns that can be identified as the edge of chaos
could emerge.

5.2. Infinite space boundary condition

Our focus is now on the infinite space boundary condition.
This kind of condition imposes synchronized behavior at the
boundaries that follows the boundary of each sector. Our
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Figure 17. Overlap of the last 30 iterations after 10 000 iterations for βL = 0 and βR = 4, infinite space boundary condition: (a) α = 1,
ε = 0.1 and (b) α = 3, ε = 1. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the
smaller plots.
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Figure 18. Entropy density surface for βL = 0 and βR = 4. On the right, regions where the entropy of the non-homogeneous grid is higher
than that of the homogeneous grid are highlighted.

analysis starts with the case where βL = 0 and βR = 4. Two
different sets of coupling parameters are chosen: α = 1, ε =

0.1 (weak coupling) and α = 3, ε = 1 (strong coupling). The
first set is a weak coupling and tends to preserve the isolated
characteristic of each side (figure 17(a)). The chaotic pattern
developed on the right side of the grid is weakly spread to the
left side. The interface between both sides shows a sudden
increase of amplitude, but the global dynamics is chaotic
with h = 0.1787. The second set of coupling parameters can
be considered as strong coupling and the system tends to a
chaotic pattern that can be considered as well organized when
compared with the previous one, as shown in figure 17(b), and
represented by h = 0.0056.

The observation of the entropy surface allows a global
analysis of the grid divided into βL = 0 and βR = 4 (figure 18).
If it is compared with the homogeneous grid surface with

β = 4, the first difference between them is that the zero
entropy valley does not exist anymore. Chaos suppression
in this region no longer occurs when the grid is
non-homogeneous. For ε = 0, the entropy is the same as
those with periodic boundary conditions, since the absence of
coupling makes the boundary condition useless.

At this point, let us observe the grid with βL = 0 and
βR = 3.835 (inside the period-3 window of a single isolated
map). Initially, weak coupling (α = 0.1 and ε = 0.005) is
considered in order to induce period-3 behavior on the left
side of the grid and evaluate how the spatial transition would
occur (figure 19). It can be observed that both ends tend
to behave as homogeneous maps due to the weak coupling.
On the right end, a period-3 pattern can be clearly observed
(with low chaotic modulation). Despite both sides tending to
develop periodic response, there is a chaotic pattern associated
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Figure 19. Overlap of the last 30 iterations after 10 000 iterations for βL = 0 and βR = 3.835, infinite space boundary condition, α = 0.1
and ε = 0.005. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the smaller plots.
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Figure 20. Overlap of the last 30 iterations after 10 000 iterations for βL = 0 and βR = 4, infinite space boundary condition, α = 1 and
ε = 0.6. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the smaller plots.
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Figure 21. Overlap of the last 30 iterations after 10 000 iterations for βL = 0 and βR = 4, finite space boundary condition, α = 0.1
and ε = 0.056. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the smaller plots.

with the non-homogeneous behavior (h = 0.141). Once again,
spatial transitions induce a different kind of pattern.

A similar situation occurs when a grid with βL = 0,
βR = 4, and with coupling represented by α = 1 and ε =

0.6, is considered. Under this condition, homogeneous grids
with β = 0 and 4 present periodic responses as depicted
in figure 20. For a non-homogeneous grid, the interaction
between periodic responses makes a chaotic pattern emerge
with h = 0.0157, as shown in figure 20.

5.3. Finite space boundary condition

The finite space boundary condition tends to be more
restrictive with respect to chaos development. Initially, our
analysis considers a critical situation with βL = 0 and βR = 4.

If the coupling is weak, the dynamics becomes closer to
the period-3 dynamics. Specifically with coupling parameters
α = 0.1 and ε = 0.05, a homogeneous map is stationary at the
left side and chaotic at the right side (as depicted in figure 21).
Concerning non-homogeneous behavior, a chaotic response
is observed (h = 0.0328); however, a well-organized pattern
is clearly identified as being related to a period-3 dominant
response (figure 21).

The analysis of the entropy surface allows one to have a
better understanding of the system response of the grid with
βL = 0 and βR = 4 (figure 22). It confirms that this boundary
condition tends to promote chaos suppression; however, the
entropy surface shows regions with positive entropy, mainly
when α > 2 or for lower values of ε. Once again, when ε = 0,
the entropy tends to 0.33. A valley can be noted around ε =
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Figure 22. Entropy density surface for βL = 0 and βR = 4. On the right, regions where the entropy of the non-homogeneous grid is higher
than that of the homogeneous grid are highlighted.
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Figure 23. Overlap of the last 30 iterations after 10 000 iterations for βL = 3.5 and βR = 4, finite space boundary condition, α = 0.7 and
ε = 0.4. Random initial conditions. The behavior of homogeneous maps with β = βL and β = βR is shown on the smaller plots.

0.05, where the grid develops period-3 response with chaotic
modulation. Figure 22 establishes a comparison between
homogeneous and non-homogeneous grids, highlighting
regions where the entropy of the non-homogeneous grid is
higher than that of the homogeneous grid.

Although periodic boundary conditions tend to suppress
chaos, there are situations where two types of periodic
behavior induce chaos. In this regard, parameters βL = 3.5
and βR = 4 are considered with coupling α = 0.7 and ε = 0.3.
Under this assumption, the homogeneous behavior related to
β = 3.5 presents a period-2 response while β = 4 is related to
period-4 behavior. The non-homogeneous response is chaotic
(h = 0.0101), as shown in figure 23.

In order to analyze how an isolated map influences a
non-homogeneous grid, we assume that maps are gradually
inserted into the grid. Under this condition, we assume
a homogeneous grid with β = 4, and isolated maps with
β = 3.5 are inserted substituting the original maps. The
entropy density is evaluated after each insertion that is
done from map i = 1 through i = 21 successively. Figure 24
presents this analysis, showing that when nine maps are
inserted, the grid starts to develop chaos (h = 0.0140). With
more than 13 maps, the grid returns to a periodic pattern.
This observation shows the spatiotemporal instability of
chaos.
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Figure 24. Kolmogorov–Sinai entropy versus number of maps with
β = 3.5 inserted into a homogeneous grid with β = 4.

6. Conclusions

This paper deals with the spatiotemporal dynamics of coupled
logistic maps. The Kolmogorov–Sinai entropy density is used
to quantify the complexity of system behavior, permitting
a general qualitative understanding of system dynamics.
An investigation of different aspects of system dynamics
is performed, including different boundary and initial
conditions. The influence of boundary conditions increases
as the coupling becomes stronger and broader. Periodic
boundary conditions present a flat region in the entropy
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density surface, and there is a strong tendency for the system
to develop synchronized dynamics through all maps. The
infinite space boundary conditions show a greater tendency
to develop chaos compared to other boundary conditions.
This is probably due to the synchronized dynamics imposed
by the boundary conditions. The last boundary condition
analyzed is finite space and, under this condition, the system
shows a weak tendency to become chaotic. The zero value
assumed for the outside maps tends to cause a decrease of
values along the iterations. Besides the boundary conditions,
the influence of initial conditions is treated, presenting an
important influence on system dynamics. This influence
depends on the boundary conditions. When periodic boundary
conditions are assumed, the pattern of the response does not
vary with initial conditions, but moves along the maps during
the iterations. Transient chaos is observed in systems with
infinite space boundary conditions. The finite space boundary
conditions are related to the possibility of supertransient
chaos. The behavior of non-homogeneous grids shows how
distinct types of behavior can interact through spatiotemporal
dynamics. In general, the space is split into two parts, and
different qualitative responses are considered in each part.
Basically, it is possible to observe situations where a chaotic
pattern can emerge from two periodic responses and also
situations where a periodic pattern can emerge from chaos.
This kind of analysis shows how richness is able to emerge in
complex systems even in situations where regular dynamics is
expected. Of special interest is the transition region that can
be identified as the edge of chaos where a rich pattern can
emerge assuming distinct responses when compared with the
original ones.
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