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A B S T R A C T

This paper deals with an investigation of spatiotemporal chaos in a conservative Duffing-type system governed
by a partial differential equation with cubic nonlinearity. Perturbation analysis establishes novel mathematical
tools to evaluate different types of dynamical responses in spatiotemporal systems. These tools allow the
definition of different Lyapunov exponents: local, convective and mean exponents; being able to provide a
local characterization of each kind of response in space. Numerical simulations are carried out showing quasi-
periodic and spatiotemporal chaotic responses. An energetic approach is also of concern providing another
strategy that allows a proper understanding of system dynamics. In this regard, an energy space is defined
from different kinds of energy. A parametric analysis is carried out showing that a higher coupling coefficient
present a lower energy dispersion with respect to time.
1. Introduction

Spatiotemporal dynamics has an increasingly scientific and tech-
nological relevance, being associated with chemistry, optics, fluid and
solid mechanics [1–4]. They can be described either by partial differ-
ential equations or by oscillator networks, representing a challenging
topic especially when nonlinearities are of concern. Pattern formation,
synchronization and spatiotemporal chaos are some kinds of dynamical
responses associated with the richness of nonlinear systems.

Among dynamical systems that present spatiotemporal chaos, one
should highlight systems modeled by the Ginzuburg–Landau equa-
tion [5–7], Kuramoto–Sivashinsky equation [8,9], fluid turbulent flow
systems [10–13] and reaction–diffusion systems of relevance in chem-
istry and biology [14–16]. Metamaterials are another example where
spatiotemporal dynamics is of special interest. In general, periodic
structures composed by oscillator networks are of concern [17–19].
Fang et al. [20] modeled an acoustic metamaterial using a network of
nonlinear oscillators observing bifurcations with energy dispersion and
mode interaction phenomena.

Regarding oscillator networks, a paradigmatic example is a system
of coupled logistic maps, which are associated with different physical
representations that include population dynamics [21–24]. A system
composed by a chain of Duffing oscillators is another example that
is characterized by cubic nonlinearities [25,26]. Umberger et al. [27]
presented a pioneer study of this type of system considering periodic
boundary conditions. Chatterjee et al. [28] treated a chain of Duffing
oscillators subjected to harmonic excitation, calculating the convective
Lyapunov exponents and observing the light-cone boundary during
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transient period. Musielak et al. [29] studied routes to chaos in a
network of Duffing oscillators showing that the increase of the number
of degrees of freedom can lead to crisis, instead of period doubling,
as the main route to chaos. Romeo and Rega [30] performed a wave
propagation analysis.

Several mathematical tools are employed to analyze and character-
ize the dynamics of complex systems. Chaos diagnosis is an important
issue, which has been the objective of several research efforts [31–33].
Lyapunov exponents are one of the most employed tool to characterize
chaos. In this regard, one should mention the Lyapunov spectrum
obtained from the Gram–Schmidt orthogonalization procedure and co-
variant Lyapunov vectors [33]. Nevertheless, these procedures need
adaptations for spatiotemporal systems [34–37]. Cross and Hohen-
berg [38] presented an extensive work on the dynamics of spatial
extended systems. They employed the Lyapunov spectrum as a tool to
evaluate the spatiotemporal dynamics and discussed three characteris-
tic lengths associated with spatiotemporal dynamics: dissipation, exci-
tation and correlation lengths. Shibata [34] proposed mean and local
(in time) Lyapunov exponents for spatiotemporal systems based on the
first order temporal finite difference method. Kaneko and Deissler [5]
proposed the convective Lyapunov exponent, a measure that evaluates
the perturbation growth rate along a path in space–time map, showing
that there is an optimum path that maximizes the perturbation growth
rate. Afterwards, Deissler [6] applied this tool to measure convective
chaos in a Ginzburg–Landau model.

This paper deals with the spatiotemporal dynamics of a Duffing-
type mechanical system governed by partial differential equations with
960-0779/© 2022 Elsevier Ltd. All rights reserved.
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cubic nonlinearity. This system is equivalent to a network of Duffing
oscillators [27], being able to represent several physical phenomena
such as multiple connected Moon–Holmes beams [39,40] or acoustic
metamaterials [41]. A conservative system is of concern which means
that dissipation and external excitation are neglected. Novel nonlinear
tools are employed to develop the dynamical analysis with focus on
spatial dependence and chaos identification. In this regard, one should
mention the definition of local and spatial mean perturbations. Local,
convective and mean Lyapunov exponents are derived from them,
allowing the evaluation of different types of response. An energetic
approach is also of concern together with space–time split for the
system analysis. Results show that the perturbation growth rate with
respect to time depends on the mechanical energy level and on the
spatial coupling coefficient. Energetic investigations allow a proper
comprehension of some complex behaviors, showing that a higher
coupling coefficient present a lower energy dispersion with respect to
time.

This manuscript is organized as follows: Section 2 describes the
mathematical model of the Duffing-type system, the mathematical tools
employed to characterize the dynamical responses and the different
kinds of mechanical energy; Section 3 analyzes the equilibrium con-
figurations; Section 4 develops a dynamical analysis showing different
kinds of spatiotemporal responses; Section 5 analyzes the dynamical
responses using an energetic approach; Section 6 employs mathematical
tools based on the perturbation analysis; and, finally, the conclusions
are discussed in Section 7.

2. Spatiotemporal Duffing-type system

Duffing oscillator is governed by a differential equation with cu-
bic nonlinearity, named as a tribute for the german engineer Georg
Duffing (1861–1944). Throughout the years, Duffing oscillator became
vastly investigated due to its complex behavior that includes chaos,
and also due to the possibility to describe different physical realiza-
tions as hardening/softening stiffness behavior, double-well potential
systems, pendular systems, electrical systems, among others. An exam-
ple of a physical system represented by the Duffing oscillator is the
Moon–Holmes beam [39,40], largely employed for energy harvesting
purposes.

A spatiotemporal dynamical investigation of a Duffing-type system
is of concern, allowing a proper comprehension of the different re-
sponses together with their characterization. In this regard, consider a
Duffing-type system by assuming the dimensionless displacement 𝑢, the
spatial coordinate 𝑥 ∈ [0, 1] and time 𝑡. In this regard, the spatiotempo-
al dynamics is governed by the following partial differential equation
PDE),

𝑢̈ = 𝜎𝑢′′ + 𝜎′𝑢′ + 1
2
(

𝑢 − 𝑢3
)

(1)

where ̇( ) means partial time derivative 𝜕( )∕𝜕𝑡 and ( )′ denotes spatial
partial derivative 𝜕( )∕𝜕𝑥. This system is an extension of the discrete
model studied by Umberger et al. [27], considering a continuous spatial
dimension. Boundary conditions are assumed to be 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0.
Spatial coupling coefficient 𝜎 = 𝜎(𝑥) is space dependent and situations
with 𝜎′ = 0 are called reciprocal, being characterized by a spatial
symmetrical energy propagation. On the other hand, 𝜎′ ≠ 0 stands
for nonreciprocal systems, being characterized by an asymmetrical
energy propagation [42,43]. The system is spatially decoupled when
𝜎 = 0, a situation where it does not present spatial dependence, being
reduced to an oscillator described by ordinary differential equations
(ODEs) [26]. Under this assumption, the system has a double well
potential, with a bistable behavior associated with three equilibrium
points: (𝑢, 𝑣) = (−1, 0), (𝑢, 𝑣) = (+1, 0), and (𝑢, 𝑣) = (0, 0). The first two
points are stable while the third is unstable. On the other hand, in the
limit 𝜎 → ∞, there is a rigid spatial attachment with only one possible
solution: 𝑢(𝑥, 𝑡) = 0.
2

2.1. Perturbations

A general form of the dynamical system with spatial dependence
can be written as follows:

𝐮̇ = 𝑓 (𝐱, 𝑡,𝐮,𝐮′,𝐮′′,𝐮′′′,… ,𝐮(𝑚),) (2)

where 𝐱 is the spatial coordinates, 𝑡 is time, 𝐮 = 𝐮(𝐱, 𝑡) ∈ R𝑛 and 
represents a set of parameters. Let 𝐮̄ be a reference solution of the
equation of motion and its perturbation 𝐮𝑝, such that 𝐮 = 𝐮̄ + 𝐮𝑝,
and which can be obtained from a linearization of these equations:
𝐮̇𝑝 = 𝐷𝐮𝑓 𝐮𝑝 +

∑𝑚
𝑖=1𝐷𝐮(𝑖)𝑓𝐮

(𝑖)
𝑝 , where 𝐷 is the Jacobian with respect

to 𝐮.
Therefore, the canonical form of the equations of motion and the

perturbation equations for the Duffing-type system are given by

𝑢̇ = 𝑣

𝑣̇ = 𝜎𝑢′′ + 𝜎′𝑢′ + 1
2
(𝑢 − 𝑢3)

𝑢𝑝 = 𝑣𝑝

𝑣𝑝 = 𝜎𝑢′′𝑝 + 𝜎′𝑢′𝑝 +
1
2
(1 − 3𝑢2)𝑢𝑝

(3)

with boundary conditions 𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 𝑢𝑝(0, 𝑡) = 𝑢𝑝(1, 𝑡) = 0.
The perturbed orbit evolution defines the main characteristic of

the system dynamics, since chaotic behavior is characterized by diver-
gent perturbations with respect to the reference orbit while periodic
behavior is characterized by convergent perturbed orbits. In order
to investigate spatial and temporal perturbation characteristics, two
quantities are defined: a local perturbation, 𝜙, which is a function of
spatial position and time; and an average spatial perturbation, 𝜓 , which
is a function of time. Initially, one defines the local perturbation scalar
quantity 𝜙, as follows

𝜙(𝐱, 𝑡) =
√

𝐮𝑝(𝐱, 𝑡) ⋅ 𝐮𝑝(𝐱, 𝑡) (4)

where ( ) ⋅ ( ) represents the dot product.
Spatiotemporal characteristics can be evaluated by evaluating the

𝜙 on a specific path in the space–time map, expressed by a function
𝐱(𝑡) [5,44,45]. By assuming a linear path, 𝐱(𝑡) = 𝐰𝑡 + 𝐱0, for instance,
he slope 𝐰 can be understood as a path velocity associated with a
pecific direction. Additionally, it should be pointed out that the limited
patial domain region occupied by a perturbation 𝜙(𝐱, 𝑡) is defined by
he perturbation wave packet that is spread along the whole spatial
omain as time evolves.

In order to quantify the average spatial perturbation growth with
espect to time, the quantity 𝜓 is defined as follows

(𝑡) =

√

√

√

√

∫𝑉 𝜙(𝐱, 𝑡)2 dV
∫𝑉 𝜙(𝐱, 0)2 dV

(5)

where V is the spatial domain. On this basis, the following perturbation
quantities are defined for the Duffing-type system,

𝜙(𝑥, 𝑡) =
√

𝑢𝑝(𝑥, 𝑡)2 + 𝑣𝑝(𝑥, 𝑡)2 ;

(𝑡) =

√

√

√

√

√

∫ 1
0 𝑢𝑝(𝑥, 𝑡)2 + 𝑣𝑝(𝑥, 𝑡)2 d𝑥

∫ 1
0 𝑢𝑝(𝑥, 0)2 + 𝑣𝑝(𝑥, 0)2 d𝑥

(6)

The estimation of these quantities needs to avoid the divergence
f chaotic orbits during numerical simulations. Therefore, it is nec-
ssary to normalize the perturbation vector 𝐮𝑝, which is done by
ssuming new initial conditions for each time step, as schematically
howed in Fig. 1. In this regard, the normalization at each 𝑡𝑛, is
erformed by the average spatial perturbation at this time: 𝐮̂𝑝(𝑡𝑛+1) =

𝐮 (𝑡 )∕
√

∫ ⟨𝐮 (𝐱, 𝑡 ),𝐮 (𝐱, 𝑡 )⟩d𝑉 .
𝑝 𝑛+1 𝑉 𝑝 𝑛 𝑝 𝑛
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Fig. 1. Schematic picture of the normalization of 𝐮𝑝 at each time step. The black
curve stands for a reference orbit 𝐮̄ and the blue curve for the perturbed orbit. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Based on the normalization strategy, both 𝜙 and 𝜓 can be estimated
as follows,

𝜙(𝐱, 𝑡𝑛) = 𝜙(𝐱, 𝑡0)
𝑛
∏

𝑖=1

𝜙(𝐱, 𝑡𝑖)
𝜙(𝐱, 𝑡𝑖−1)

𝜓(𝑡𝑛) = 𝜓(𝑡0)
𝑛
∏

𝑖=1

𝜓(𝑡𝑖)
𝜓̂(𝑡𝑖−1)

(7)

The perturbation quantities are directly related to the Lyapunov
exponents. The local Lyapunov exponent at a specific spatial position is
defined from the quantity 𝜙. The convective Lyapunov exponent, on the
other hand, is estimated by considering the analysis of 𝜙 that follows a
specific path 𝐱(, 𝑡), being  a parameter that defines the space–time
path. Finally, the mean Lyapunov exponent [34] can be estimated from
the quantity 𝜓 .

Therefore, the definition of the local and convective Lyapunov
exponents can be done by the ratio of the local perturbation logarithm
of quantity 𝜙 over time. Similar definition can be done for the mean
Lyapunov exponent using perturbation 𝜓 .

𝜆local(𝐱) = lim
𝑡→∞

1
𝑡
log

(

𝜙(𝐱, 𝑡)
𝜙(𝐱, 0)

)

𝜆conv() = lim
𝑡→∞

1
𝑡
log

(

𝜙(𝐱(, 𝑡), 𝑡)
𝜙(𝐱, 0)

)

𝜆mean = lim
𝑡→∞

1
𝑡
log

(

𝜓(𝐱, 𝑡)
𝜓(𝐱, 0)

)

(8)

One should notice that the local Lyapunov herein defined, 𝜆local,
stands for the Lyapunov exponent evaluated locally at a spatial po-
sition. Some authors also use this nomenclature for the Finite Time
Lyapunov Exponent [33,46], which stands for the Lyapunov exponent
defined only locally in time.

Alternatively, the estimation of the Lyapunov exponents can be
done by considering a time series regression [47,48]. Therefore, fitting
the points (𝑡, log(𝜙)) with a basis functions 𝑞local(𝑡) and 𝑞conv(𝑡); and
fitting (𝑡, log(𝜓)) with the basis function 𝑞𝜓 (𝑡), the local, convective and
mean Lyapunov exponents are defined as follows

𝜆local(𝐱) = lim
𝑡→∞

𝑞̇local(𝑡)

𝜆conv() = lim
𝑡→∞

𝑞̇conv(𝑡)

𝜆mean = lim
𝑡→∞

𝑞̇mean(𝑡)

(9)

By considering a linear function 𝑞 that represents all the three
definitions discussed, it is possible to identify the Lyapunov exponents
as follows,

𝑞(𝑡) = 𝜆𝑡 + 𝑏 (10)

The evolution of perturbation quantities is employed to characterize
spatiotemporal dynamics. In essence, a closed curve in the state space
3

that presents 𝜆local ≤ 0 characterizes a periodic response in time. If
the spatial region presents 𝜆local = 0, the system presents a quasi-
periodic response in time. Spatiotemporal chaos are characterized by a
spatial region with 𝜆local > 0 and irregular spatial configuration. If 𝜆local
is approximately constant and the same for all spatial domain, then
the 𝜆mean can be employed to evaluate the average spatial response,
yielding the largest Lyapunov exponent [38].

Similar mathematical tools are employed in the literature to charac-
terize spatiotemporal responses. The Lyapunov spectrum is one of the
main tool employed for extended systems, and a continuous set of posi-
tive exponents, given by the eigenvalues of the Jacobian matrix, defines
spatiotemporal chaos [33,38]. On this basis, Livi et al. [49] stated that
in the thermodynamic limit, the Lyapunov spectrum converges when
the number of sites in a lattice is increased. Shibata [34] employed
the same idea, stating that the order or disorder of spatial patterns is
associated with the mean Lyaponuv exponent in time.

In this work, it is adopted 𝜆local to characterize the spatiotemporal
dynamics, since it is able to characterize the local response in space,
while the Lyapunov spectrum and largest Lyapunov exponent obtained
from the Jacobian of the system represent a sort of spatial global
average behavior of the system.

2.2. Conservation of mechanical energy

Energy conservation can be established from the integration of the
governing equation through a time interval [𝑡1, 𝑡2] and the whole spatial
domain [0, 1]. Therefore, it is possible to write

∫

1

0 ∫

𝑡2

𝑡1

[

−𝑢̈ + 𝜎𝑢′′ + 𝜎′𝑢′ +
(

𝑢
2
− 𝑢3

2

)]

𝑢̇d𝑡d𝑥 = 0 (11)

After integration by parts and some algebraic manipulation, where
it is assumed that 𝑢̇ = 0 at 𝑥 = 0 and 𝑥 = 1 due to boundary conditions,
one establishes the conservation of mechanical energy,
[

∫

1

0

( 1
2
𝑣2 + 1

2
𝜎
(

𝑢′
)2 − 1

4
𝑢2 + 1

8
𝑢4
)

d𝑥
]𝑡2

𝑡1

= 0 (12)

The mechanical energy conservation preserves volume in state space
associated with the following Hamiltonian function obtained as the sum
of three kinds of energy, 𝐻 = 𝐸𝐾 + 𝐸𝑃 + 𝐸𝐷:

Kinetic energy ∶ 𝐸𝐾 = ∫

1

0

1
2
𝑣2 d𝑥

Potential energy ∶ 𝐸𝑃 = ∫

1

0

1
2
𝜎
(

𝑢′
)2 d𝑥

Duffing-type potential energy ∶ 𝐸𝐷 = ∫

1

0

(

−1
4
𝑢2 + 1

8
𝑢4 + 1

8

)

d𝑥

(13)

Note that the term 1∕8 is added to 𝐸𝐷 to assure 𝐸𝐷 ≥ 0 ∀ 𝑢. Moreover,
since 𝐸𝐾 and 𝐸𝑃 are always positive, the mechanical energy is strictly
positive for any 𝑢 and 𝑣.

3. Equilibrium configurations

The Duffing-type system has equilibrium configurations that repre-
sent steady state solutions, 𝑢 = 𝑢(𝑥, 𝑡) = 𝑈 (𝑥), which means that there
is not temporal variation of any variable: 𝜕( )∕𝜕𝑡 = 0. Therefore, the
equilibrium configurations 𝑈𝑖 are obtained solving the following ODE:

𝜎𝑈 ′′ + 𝜎′𝑈 ′ + 1
2
(𝑈 − 𝑈3) = 0 ; (14)

with boundary conditions 𝑈 (0) = 𝑈 (1) = 0. This boundary value
problem can be solved using the shooting method [50]. In this regard,
an iterative numerical integration procedure is adopted by assuming
𝑈 (0) = 0 and different trial values of 𝑈 ′(0). Each value of 𝑈 ′(0) is
associated with a specific 𝑈 (1), which defines pairs {𝑈 ′(0), 𝑈 (1)}. By
analyzing these pairs, it is possible to build a curve and to identify
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Fig. 2. Equilibrium configurations 𝑈𝑖. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Equilibrium configurations 𝑈𝑖 in state space. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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he roots that satisfies the boundary condition 𝑈 (1) = 0. On this basis,
leven different roots are identified. The number of solutions is limited
ince for 𝑈 ′(0) above a critical threshold, 𝑈 ′

𝑐𝑟, it is not possible to satisfy
(1) = 0. Hence, only eleven roots are found in the range 𝑈 ′(0) ∈
0, 𝑈 ′

𝑐𝑟]. Fig. 2 shows the equilibrium configurations 𝑈𝑖(0 ≤ 𝑖 ≤ 10) with
= 5×10−4 (does not depend on 𝑥). Note that subscript 𝑖 is such that it

tands for the total number of local minimum and/or maximum points
ound in 𝑈𝑖(𝑥). Therefore, 𝑈0 = 0 is the trivial solution; 𝑈1 has only one

local minimum or maximum points; 𝑈2 has two, and so on.
It is noticeable that as 𝑖 increases, (a) the amplitude of each configu-

ration decreases and (b) the shape of the curves approaches towards to
a harmonic function shape. It is possible to assume that (a) is the cause
of (b), since a function with less amplitude yields a lower influence
of the nonlinearity of the Eq. (14). Fig. 3 presents phase spaces which
shows that as 𝑖 increases, the equilibrium configuration curves tend to
become less sharp at 𝑈 = −1 and 𝑈 = +1, assuming ellipse shapes.
Regarding the stability of the solutions, a linear stability analysis shows
that all solutions are unstable, except for 𝑈1 that has neutral stability.

Concerning the mechanical energy of each equilibrium configura-
tion 𝑈𝑖, Fig. 4 shows the contribution of each kind of energy to the
total mechanical energy. Since 𝑈𝑖 requires that 𝜕( )∕𝜕𝑡 = 0, by definition
𝐸𝐾 = 0. For lower energy levels, the total mechanical energy has equal
contributions from 𝐸𝐷 and 𝐸𝑃 . Nevertheless, for higher energy levels,
the amplitude of 𝑈𝑖 becomes smaller, which makes 𝐸𝐷 to increase and,
although a higher 𝑖 yields a higher number of local minimum and/or
maximum points, 𝐸𝑃 tends to decrease.

4. Dynamical analysis

A dynamical analysis is carried out by considering numerical simu-
lations that employs the fourth order finite difference scheme for spatial
discretization with 5001 points while time discretization employs the
fourth order Runge–Kutta method with a time step of 5 × 10−4. The
dynamical behavior of the Duffing-type system is of concern varying
the level of mechanical energy, ℎ, and adopting a constant coupling
4

value. Different values of 𝜎 generate quantitatively similar dynamical s
Fig. 4. Potential (blue), Duffing-type potential (orange) and total mechanical (black)
energies of 𝑈𝑖. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

esponses, and therefore, it is adopted 𝜎 = 5 × 10−4, except when
pecified otherwise. In addition, initial conditions consider 𝑣(𝑥, 0) =

and 𝑢(𝑥, 0) = 𝜒 sin(𝜋𝑥), where 𝜒 is a coefficient standing for the
mplitude. Different 𝜒 were employed for different sought values of ℎ.
he only exception takes place for ℎ = 0.015, where the initial condition
or the displacement employed is given by 𝑢(𝑥, 0) = 𝑈1+𝜒 sin(𝜋𝑥), i.e., a
ine perturbation around the first equilibrium configuration 𝑈1.

Spatiotemporal dynamics is analyzed by considering a space–time
plit and, therefore, spatial and temporal aspects are investigated sep-
rately. This approach can be understood as Poincaré sections con-
idering time evolution of a specific spatial point and, similarly, a
patial evolution for a specific time instant. On this basis, when both
patial and temporal Poincaré sections show irregular responses, the
ystem presents spatiotemporal chaos. On the other hand, when both
oincaré sections responses are regular, a periodic or quasi-periodic
patiotemporal response is achieved.
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Fig. 5. Time history and its frequency domain analysis at 𝑥 = 0.5 for three different ℎ values. The red lines stand for 𝑡 = 300 (a) and 𝑡 = 325 × 102 ((b) and (c)) where the spatial
analysis is performed in Fig. 6.
Initially, temporal analysis is of concern observing dynamical re-
sponse at a specific space position. Fig. 5 shows the time history at
middle spatial position 𝑥 = 0.5 and its respective frequency domain
analysis for three distinct energy level values, ℎ: 0.015, 0.5 and 5. The
frequency response is based on the Fast Fourier Transform (FFT) that
maps (𝑡, 𝑢) → (𝜔,𝐴), where 𝜔 is the angular frequency and 𝐴 is its
amplitude. The system response is quasi-periodic for low energy level,
ℎ = 0.015. This is clearly observed in the frequency domain, whose
peaks corresponding to eigenfrequencies of the linear analysis around
𝑈1 are incommensurate. For higher energy levels, temporal evolution
presents a chaotic-like response, which can also be observed in the
frequency response that is spread over several frequencies presented
for both ℎ = 0.5 and ℎ = 5.

Spatial analysis considers the displacement at a specific time for
three different situations (see dashed red lines in Fig. 5): 𝑡 = 300
for ℎ = 0.015, and 𝑡 = 325 × 102 for ℎ = 0.5 and 5. Moreover,
local state spaces are presented showing displacement–velocity (𝑢–𝑣)
space at three different space positions during a time window of 103
5

units of time centered in the previous mentioned times. The spatial
configuration is presented in Fig. 6 together with its FFT, which maps
(𝑥, 𝑢) → (𝜅, 𝛬), where 𝜅 is the wave number (or spatial frequency)
and 𝛬 is its amplitude, and local state space is evaluated at three
different spatial positions. For low energy level, ℎ = 0.015, there is a
symmetry with respect to 𝑥 = 0.5, defining a regular regime. Moreover,
concerning the local state, one should note they are characterized by a
ring with finite thickness, which is typical of quasi-periodic responses.
For higher energy levels, ℎ = 0.5 and ℎ = 5, the spatial configurations
are irregular and the spatial frequency domain clarifies this behavior
showing a broad wave number distribution. As for the local state space,
Poincaré sections indicate a chaotic-like response, characterized by a
spread of points in the state space.

On this basis, it is clear that spatiotemporal chaos is an irregular
behavior in both time and space. High energy level responses (ℎ = 0.5
and ℎ = 5) are associated with chaos. On the other hand, low energy
level responses (ℎ = 0.015) present a regular response in both time and
space, defining a quasi-periodic pattern.
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Fig. 6. Displacement spatial configurations, its respective spatial frequency domain and local state space for three different ℎ values. Red dots stand for the Poincaré section in
time whose time interval is the period of the first eigenfrequency around 𝑈1. Spatial configurations are picked up at 𝑡 = 300 (a), 𝑡 = 325 × 102 ((b) and (c)).
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d

Fig. 7. Frequency analysis of time histories starting at 𝑡 = 13 × 102 (green), 117 × 102 (orange), and 221 × 102 (blue) for a time range of 100. Each respective 𝜔̂ is indicated as a
ashed arrow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Spatial frequency analysis of configurations at 𝑡 = 13 × 102 (green), 11.7 × 102 (orange), and 22.1 × 102 (blue). Each respective 𝜅̂ is indicated as a dashed arrow. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Although the spatial configurations for ℎ = 0.5 and ℎ = 5 at
𝑡 = 325 × 102 are represented by irregular amplitude distribution of
the wave numbers, the initial condition is described by a single wave
number. Therefore, as time evolves, the amplitude of higher temporal
and spatial frequencies might also increase. In an attempt to quantify
how the amplitude on the frequency domain of both temporal and
spatial signals spread through higher frequencies, the threshold for
temporal 𝜔̂(𝑡) and spatial 𝜅̂(𝑡) frequencies are analyzed. The temporal
frequency 𝜔̂ is defined as the frequency where 99% of the area under
the Fourier spectrum remains below it. Analogous definition is adopted
for the spatial frequency 𝜅̂. On this basis, the following conditions are
adopted

∫

𝜔̂

0
𝛬(𝜔)d𝜔 = 0.99∫

∞

0
𝛬(𝜔)d𝜔

∫

𝜅̂

0
𝛬(𝜅)d𝜅 = 0.99∫

∞

0
𝛬(𝜅)d𝜅

(15)

Fig. 7 presents amplitude evolution through frequency for two levels
of energy, ℎ = 0.5 and ℎ = 5. The FFT is performed considering a time
range of 100 units of dimensionless time and the beginning of each
time range is 𝑡 = 13 × 102, 117 × 102 and 221 × 102. The dashed arrows
indicate the value of 𝜔̂ for each case. Note that 𝜔̂ increases for time
histories with bigger initial time, indicating an irregular spread over
higher frequencies as time goes by. Correspondingly, Fig. 8 depicts the
FFT of the spatial configuration at the same time instants. Note the
increase of 𝜅̂ for spatial configurations taken at bigger time instants.

The next step of the analysis is the evaluation of both 𝜔̂ and 𝜅̂ as a
function of time. This is done in order to investigate if the displacement
in both space and time spreads towards higher frequencies. In this
regard, a constant growth of both quantities indicates spatiotemporal
chaos. Fig. 9 presents the time evolution of both 𝜔̂ and 𝜅̂ showing that
both quantities constantly grow with respect to time when the system
7

presents chaotic behavior. It suggests that energy is constantly being
transferred from large temporal and spatial scales to smaller ones. At
any time, bigger ℎ yields bigger 𝜔̂ and 𝜅̂. Additionally, neglecting some
initial transient response, the growth follows a linear trend with a slope
that depends on ℎ. On this basis, a linear function is employed using
the least square method to fit data from Fig. 9 for 𝑡 > 2 × 104, and its
slope can measure temporal and spatial irregularities growth rate, being
able to characterize the dynamical response. Therefore, if one employs
𝜔̂(𝑡) = 𝜃𝑡𝑡+ 𝛿𝑡 and 𝜅̂(𝑡) = 𝜃𝑠𝑡+ 𝛿𝑠, 𝜃𝑡 and 𝜃𝑠 are the temporal and spatial
lopes, respectively, which yields for the spread rate of temporal and
patial frequencies. The higher the magnitude, the higher is the spread
ate.

Fig. 10a presents 𝜃𝑡 for different values of ℎ considering two differ-
nt values of the coupling coefficient 𝜎. For 𝜎 = 5×10−4, it is noticeable
hat 𝜃𝑡 increases as ℎ increases up to ℎ ≈ 2. For higher values of ℎ,
𝑡 is almost constant. On the other hand, for 𝜎 = 5 × 10−3, 𝜃𝑡 grows
onstantly as ℎ increases. Note that in the limit 𝜎 → ∞ the system
ecomes spatially fully coupled and it is expected a zero slope, since
q. (1) yields to 𝑢′′ → 0 and, due to boundary conditions, 𝑢 → 0.
herefore, there is not a frequency spread.

. Energetic analysis

An energetic analysis is now in focus considering the different kinds
f energy involved in the system dynamics: 𝐸𝐾 , 𝐸𝑃 , 𝐸𝐷. Initially,

Fig. 11 presents the evolution of the energy quantities through time for
ℎ = 0.5, representing the average curve by dashed black lines, which
shows that the initial transient time previously mentioned in Fig. 5 is
characterized by an increase of the mean oscillation of both 𝐸𝐾 and 𝐸𝑃
nd by the decrease of the mean oscillation of 𝐸𝐷. Therefore, there is

a transfer of energy from 𝐸𝐷 to 𝐸𝐾 and 𝐸𝑃 through time. The growing
average of 𝐸 and 𝐸 are linked with the positive rate of both 𝜃 and
𝐾 𝑃 𝑡
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Fig. 9. 𝜔̂ (a) and 𝜅̂ (b) along time for several ℎ values. The straight lines stand for the linear fitting using the least square method.
Fig. 10. Slope 𝜃𝑡 (a) and 𝜃𝑠 (b) as a function of ℎ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝜃𝑠. Therefore, the initial transient time is associated with a higher 𝐸𝐷,
followed by its constant average decrease.

An interesting alternative to observe energy issues is from a 3D
energy space where each axis defines a kind of energy, which allows the
evaluation of the energy distribution. It is considered a normalization
of the energy values with respect to the total energy level ℎ, as follows:

𝐸∗
𝐾 =

𝐸𝐾
ℎ
, 𝐸∗

𝑃 =
𝐸𝑃
ℎ
, 𝐸∗

𝐷 =
𝐸𝐷
ℎ

(16)

Therefore, 𝐸∗
𝐾 + 𝐸∗

𝑃 + 𝐸∗
𝐷 = 1 and (𝐸∗

𝐾 , 𝐸
∗
𝑃 , 𝐸

∗
𝐷) ≥ (0, 0, 0) (see

Eq. (13)), which turns out that the energy distribution must lie on a
plane in the positive quadrant of the energy space, according to Fig. 12.

Based on this idea, the subspace 𝐸𝑃 −𝐸𝐾 is considered to be repre-
sentative of the system dynamics. Fig. 13 shows the energy distribution
in this subspace for ℎ = 0.5, highlighting the isolines of constant 𝐸∗

𝐷.
An interesting strategy for visualization is to characterize an energetic
boundary built by considering a surface defined by the density of points
using a Gaussian surface employing the least square method. In this
regard, the energetic boundary is defined as the intersection between
the Gaussian surface and a plane parallel to the 𝐸𝑃 −𝐸𝐾 plane, where
98% of the volume beneath the Gaussian surface remains within the
closed curve. In other words, the energetic boundary is an enclosed
curve that contains 98% of the points that characterizes an energy
distribution in the subspace 𝐸𝑃 − 𝐸𝐾 . It should be pointed out that
Fig. 13 also presents the energetic boundary (red curve).

The influence of the energy level ℎ in system dynamics is now
analyzed employing this energetic approach. Fig. 14 presents the ener-
getic boundaries for three energy levels and for two different coupling
parameter 𝜎. Note that as ℎ increases, the energetic boundary tends to
be closer to the isoline 𝐸∗

𝐷 = 0, which means that a smaller fraction of ℎ
∗ ∗ ∗
8

is due to 𝐸𝐷. On the other hand, both 𝐸𝐾 and 𝐸𝑃 reach higher fractions
of the total mechanical energy, which means that the contribution of
𝐸∗
𝐾 and 𝐸∗

𝑃 become more relevant than 𝐸∗
𝐷 for situations with bigger

mechanical energy level. Moreover, a higher value of the coupling co-
efficient implies in more dispersion, being characterized by a growth of
the area within the energetic boundary. Finally, it is also noticeable that
the area within energetic boundaries is proportional to the energy level.
Fig. 15 presents the area within energetic boundaries as a function of
ℎ showing that the area decays as ℎ increases, indicating less energy
dispersion.

6. Perturbation analysis

This section evaluates the system dynamics from the perspective
of perturbation evolution. The perturbation initial condition is a bell
shaped function centered in the middle of the domain that yields 𝜓(0) =
1. In this regard, it is assumed that 𝑢𝑝(𝑥, 0) = 𝐴𝑝exp[−100(𝑥−0.5)2] and
𝑣𝑝(𝑥, 0) = 0 where 𝐴𝑝 = 2.825. It is worthwhile to mention that, despite
the bell shaped function never vanishes in any part of the domain, 𝜙 is
of the order 𝑂(10−10) in domain boundaries, which is assumed to satisfy
boundary conditions. In order to evaluate the spatial distribution of the
perturbation, Fig. 16 presents 𝜙 in the space–time map for different
energy levels represented by ℎ: 0.015, 0.5 and 5. The perturbation
boundary is defined as the outer isoline given by 𝜙 = 10−1, being
presented for each simulation as a black dashed line. Note that the
initial perturbation is dispersed through space, approximately keeping
its order of magnitude as time evolves for the situation with ℎ = 0.015,
which means that 𝜙 does not grow. Nevertheless, simulations with
ℎ = 0.5 and ℎ = 5 show a growing 𝜙.

The regular dynamics for ℎ = 0.015 and irregular dynamics for
ℎ = 0.5 and 5 are observed in phase space diagrams presented in
Fig. 17 for 𝑥 = 0.2 and 𝑥 = 0.55. Note that a quasi-periodic behavior is
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Fig. 11. Energy evolution evaluated from different kinds of energy with a energy level represented by ℎ = 0.5. Dashed black lines standing for the average curve for each plot.
Fig. 12. 3D energy space.

observed for low energy level, ℎ = 0.015, and a more complex response
is occurring for high energy levels, ℎ = 0.5 and ℎ = 5. Moreover, it is
noticeable the bigger amplitudes for the diagram at 𝑥 = 0.5 in contrast
of the smaller amplitudes at 𝑥 = 0.2 since it is closer to the boundary.

Once the perturbation reaches the boundaries, it bounces back and
keeps oscillating with a constant growing amplitude all over the do-
main, generating rich spatiotemporal dynamics. This kind of behavior
is the signature of 𝜙 for a spatiotemporal chaos. These two situations
are similar concerning the type of perturbation response, and all other
simulations for different values of ℎ between 0.5 and 5 have the same
trend. Finally, it is noticeable that the perturbation boundaries for the
cases with ℎ = 0.5 and 5 traveled faster than the case with ℎ = 0.015,
reaching the spatial domain limits in a faster way.

In order to evaluate the evolution of the local perturbation along
different spatial positions, Fig. 18 shows 𝜙 at three different positions:
𝑥 = 10−2, 1∕6 and 1∕2. Note that, 𝜙 has always the smaller value
at 𝑥 = 10−2 and the evolution of the local perturbation follows the
9

Fig. 13. Energy subspace for ℎ = 0.5 (blue region) and energetic boundary (red curve).
Dashed lines stand for isolines of constant 𝐸∗

𝐷 .

same trend for all spatial positions. For the quasi-periodic response, the
growth is not observed. On the other hand, an exponential growth is
observed for all spatial domain, except at the boundaries, when the
response is chaotic.

Based on this, the perturbation of the high energy levels behavior
spreads and grows approximately uniformly through the spatial do-
main. Therefore, one can employ the perturbation 𝜓 to quantify the
growth rate of the average spatial perturbation. In this regard, Fig. 19
presents the evolution of log(𝜓) for different energy levels ℎ, showing
that chaotic responses have the growth rate of 𝜓 that is approximately
the same regardless the value of ℎ. After the transient period, smaller
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Fig. 14. Energetic boundaries for ℎ = 0.5 (blue), ℎ = 1.5 (red) and ℎ = 5 (green). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 15. Energetic boundary area for 𝜎 = 5 × 10−4 (blue) and 𝜎 = 5 × 10−3 (red). (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

yields smaller growth rate, and there is not a growth rate for the
uasi-periodic solution.

By assuming the transient period of 2 × 104 long that is neglected,
ne employs a linear basis function to fit (𝑡, log(𝜓)) data using the least

square method. The smallest 𝑅2 statistical fitting coefficient is 0.986.
The mean Lyapunov exponent is given by the slope of 𝑞𝜓 at the limit
𝑡 → ∞, as previously stated by Eq. (9). Based on that, Fig. 20 presents
𝜆mean for different energy levels ℎ showing that bigger energy levels
yield to bigger 𝜆mean.

6.1. Perturbation through specific paths

This section treats the perturbation considering the growth and
spread in space–time. One of the tools employed is the evaluation of
the convective Lyapunov exponent along different paths in the space–
time map. Each path is characterized by a slope or velocity. Once
again, the perturbation initial condition is described by a Gaussian bell
shaped centered at the middle of the domain. Two different coupling
characteristics are analyzed [42,43]: reciprocal system, characterized
by a constant spatial coefficient; nonreciprocal system, defined by a
coupling coefficient with spatial gradient. In this regard, two functions
are adopted: 𝜎1 = 10−7 - reciprocal system; and 𝜎2(𝑥) = 𝜎1 + 98(𝑥 −
0.5)10−5 - nonreciprocal system. Note that the order of magnitude of
10

b

𝜎 was reduced from the previous analyses. It is also noticeable that
𝜎1 = 𝜎2 at 𝑥 = 0.5, being 𝜎2 > 𝜎1 for 𝑥 > 0.5.

The first aspect to be concerned regards to the evolution of the
perturbation boundary in the space–time map. As previously stated,
the perturbation boundary is defined as the outer isoline standing for
𝜙 = 10−1, which travel towards spatial domain limits (𝑥 = 0 and 𝑥 = 1).
n order to avoid influence of the boundary condition, simulations are
nterrupted when perturbation boundaries reaches 𝑥 = 0.07 or 𝑥 = 0.93,
hatever takes place first. In other words, when 𝜙(0.07, 𝑡) ≥ 10−1 or
(0.93, 𝑡) ≥ 10−1.

Fig. 21 presents the perturbation boundaries for 𝜎1 and 𝜎2(𝑥) with
= 1, showing wave fronts that define a perturbation wave packet

hat spreads in space as time evolves. For the reciprocal system (𝜎1),
erturbation wave fronts travel symmetrically in the negative and
ositive directions of 𝑥 axis. On the other hand, nonreciprocal system
𝜎2(𝑥)) presents an asymmetric propagation where the perturbation
ave fronts travel faster in the positive direction when compared
ith the negative direction of 𝑥 axis. Finally, the evolution of the
erturbation boundaries does not alter significantly for higher values
f ℎ.

The evaluation of the local perturbation evolution along differ-
nt paths in the space–time map is now of concern. In this regard,
(𝑥(𝑤, 𝑡), 𝑡) is evaluated assuming a linear path: 𝑥(𝑤, 𝑡) = 𝑤𝑡+𝑥0, where
is the path slope or velocity. Different scenarios are evaluated by

onsidering the following equation,

𝑗 (𝑤𝑖, 𝑡) = 𝑤𝑗 𝑡 + 𝑥0 (17)

here 𝑥0 = 0.5 and 𝑤𝑗 = 10−2
[

(𝑗−1)
420 − 1

21

]

, with 𝑗 = 1, 2,… , 41.
hese paths are represented by gray lines in Fig. 21, and paths heading
owards the negative direction of 𝑥 axis are the ones with 1 ≤ 𝑗 < 21 and
therwise for 21 < 𝑗 ≤ 41. Besides, 𝑗 = 21 yields a path parallel to the
ime axis. This analysis is a novel method to evaluate the evolution of
ocal perturbation along different paths where the growth rate furnishes
he convective Lyapunov exponent [6,45].

Fig. 22 shows 𝜙 against time for several 𝑤𝑗 and ℎ = 1. Note that
ll paths bend towards the negative direction of spatial axis. For 𝑤𝑗
maller than the perturbation wave front towards negative direction, 𝜙
ecreases with respect to time. In addition, the decreasing rate is bigger
or greater differences between 𝑤𝑗 and the perturbation boundary wave
ront. Nevertheless, for a path that remains inside wave packet domain,

grows with respect to time. The evolution of 𝜙 along path defined

y 𝑤9 velocity and with 𝜎2(𝑥) is characterized by an increase of the
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Fig. 16. Spread of 𝜙 in the space–time map for three different ℎ values. The black dashed lines stand for the perturbation boundary, herein defined as the outer isoline with
𝜙 = 10−1.
perturbation magnitude followed by its decrease. This occurs due to
the non constant perturbation wave front propagation velocity. During
an initial period of time, the respective path remains within the per-
turbation wave packet region. Due to the non constant velocity of the
perturbation wave front propagation, the path crosses the boundary of
perturbation, leaving behind the perturbation wave packet and leading
𝜙 to drop. This phenomenon is illustrated in Fig. 23. The threshold
11
time where the trajectory path overlapped the perturbation wave front
occurs at 𝑡 = 752.84, highlighted by a blue arrow.

Paths that are within wave packet have a divergent trend of
𝜙(𝑥(𝑤, 𝑡), 𝑡) and, therefore, it is interesting to compare the influence
of path velocity on the growth rate. In this regard, the least square
method is employed to fit (𝑡, log(𝜙)) data considering a linear function:
𝑞 (𝑡) = 𝜆 𝑡+𝑏. In order to avoid transient effects, the first 300 units
conv conv
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Fig. 17. Phase space diagram at 𝑥 = 0.2 (left column) and 𝑥 = 0.5 (right column) obtained with 0 ≤ 𝑡 ≤ 60.
m
h
b
g
t
t
a
s
d
t
a
e
a
a
e
s

f dimensionless time are neglected. Fig. 24 shows 𝜆conv values for three
nergy levels ℎ, considering both reciprocal 𝜎1 and nonreciprocal 𝜎2(𝑥)
ystems. Note that, regardless the 𝜎, the convective Lyapunov exponent
eems to be independent of the energy level ℎ for spatiotemporal
haotic responses. On the other hand, the quasi-periodic response with
= 0.015 presented 𝜆conv = 0 through all paths, as expected. Moreover,

conv is approximately symmetric with respect to the null velocity 𝑤 = 0
ath for the reciprocal system 𝜎1 and symmetry discrepancies are due
o transient effects, tending to be smaller for longer simulations. On the
ther hand, this symmetry is broken for the nonreciplorcal system with
oupling parameter 𝜎2(𝑥).

. Conclusions

This paper deals with the spatiotemporal dynamics of a conservative
uffing-type system governed by a partial differential equation with
ubic nonlinearity, which is equivalent to a network of Duffing oscil-
ators. Duffing-type systems represent many physical systems such as
12

s

ultiple connected Moon–Holmes beams, vastly employed for energy
arvesting proposes. In this regard, the findings of this article can
e employed to improve the design of energy harvesting devices. A
eneral spatiotemporal dynamics is investigated, presenting tools for
he proper characterization of different responses. Among the employed
ools, it should be highlighted: spatial and temporal Poincaré sections,
n energetic analysis and a novel perturbation approach. Numerical
imulations are carried out considering finite difference for spatial
iscretization and fourth-order Runge–Kutta method for time integra-
ion. Steady state equilibrium configurations are evaluated considering

time independent boundary value problem, which defines eleven
quilibrium configurations. Different energy levels are investigated
ssuming a singular sine shape function as initial condition. Regular
nd irregular patterns are possible in space and time depending on the
nergy level. The analysis is performed by considering a space–time
plit. Fast Fourier Transform for either space or time is performed,
howing that spatiotemporal chaos is characterized by a spread over
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Fig. 18. Local perturbation 𝜙 evolution at three spatial positions and for three different values of ℎ. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 19. 𝜓 along time for several values of ℎ. 𝜓 values for ℎ = 0.015 did not grow
and remained oscillating around 1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

temporal and spatial frequencies, indicating that energy is being con-
stantly transferred from larger temporal and spatial scales to smaller
ones.

Energetic analysis is performed considering the total mechanical en-
ergy as kinetic, potential and Duffing-type potential energies, defining
an energy space where a Gaussian surface is employed to characterize
the energy distribution. The least square method is employed to build
this surface that is useful for a proper comprehension of the system
13
Fig. 20. Mean Lyapunov exponent 𝜆mean against ℎ for two different coupling parame-
ters 𝜎. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

dynamics. Conclusions point that responses with higher energy levels
have a less fraction of Duffing-type potential energy as well as a higher
portion of both kinetic and potential energies.

Perturbation analysis allows the definition of new mathematical
tools employed to characterize spatiotemporal dynamics, including spa-
tiotemporal chaos. The main difference from established tools, such as
the Lyapunov exponent spectrum, lies on the fact that they are able to
define the type of response locally in space. These quantities are based
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Fig. 21. Perturbation boundaries for ℎ = 1 (outer isoline with 𝜙 = 10−1) for 𝜎1 (blue) and 𝜎2(𝑥) (red). The gray lines stand for the 41 different linear paths given by Eq. (17) and
vertical dashed lines stand for 𝑥 = 0.07 and 𝑥 = 0.93. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Growth evolution through time represented by log(𝜙) for ℎ = 1 and several paths characterized by 𝑤𝑗 and for 𝜎1 (a) and 𝜎2(𝑥) (b).

Fig. 23. Perturbation wave front towards negative direction and the path with 𝑤9 = −1∕3500 in the space–time map (a) and local perturbation 𝜙(𝑥(𝑤9 , 𝑡), 𝑡) in time domain. Results
for ℎ = 1 and 𝜎2(𝑥). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 24. Comparison of convective Lyapunov exponent, 𝜆conv, for 𝜎1 (a) and 𝜎2(𝑥) (b). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
on Lyapunov exponents: local, convective and mean. The evolution of
Gaussian initial perturbation is analyzed showing that it grows in both
space and time continuously, which characterizes an irregular pattern
associated with spatiotemporal chaos. Besides, it is shown that the
mean Lyapunov exponent is strictly related to the mechanical energy.
Perturbation evolution through a path in space–time map is employed
to estimate the convective Lyapunov exponent. Nonreciprocal systems
with positive spatial gradient presents the largest convective Lyapunov
exponent for paths bending towards the negative direction of the spatial
domain.
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