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Abstract This work presents a new method to calculate the Lyapunov spec-
trum of dynamical systems based on the time evolution of initially small dis-
turbed copies (“clones”) of the motion equations. In this approach, it is not
necessary to construct the tangent space associated with the time evolution of
linearized versions of motion equations, being the Lyapunov exponents directly
estimated in terms of the rate of convergence or divergence of these disturbed
clones with respect to the fiducial trajectory, there being periodic correction
via the Gram-Schmidt Reorthonormalization procedure. The proposed me-
thod offers the possibility of partial estimation of the Lyapunov spectrum and
can also be applied to non-smooth dynamics, since the linearization procedure
is no longer required. The idea is tested for representative continuous- and
discrete-time dynamical systems and validated by means of comparison with
the classical method to perform this calculation. To illustrate its applicability
in the non-smooth context, the largest Lyapunov exponent of the FitzHugh-
Nagumo neuronal model under discontinuous periodic excitation is calculated
taking the amplitude of stimulation as control parameter. This analysis reveals
some complex behaviors for this simple neuronal model, which motivates rel-
evant discussions about the possible role of chaos in the cognitive process.
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1 Introduction

Dynamical systems can be understood in terms of state mappings usually
described by a set of differential equations. When these mappings are defined
by nonlinear functions of the state variables, in general, a rich scenario of
oscillatory behaviors can be achieved, which includes convergence to stationary
points (fixed points), periodic solutions (limit-cycles), quasiperiodicity and
chaos [3,17,27,28].

The analysis of the motion equations in the phase space is closely related to
the system stability, being the average growth rate of initially small deviations
a manner to quantify it, an idea that is strongly supported by Lyapunov’s
seminal work (see [27] for some interesting historical notes). Thus, it is possible
to verify how small perturbations evolve under the system motion in the phase
space by studying the linearized versions of the state equations in successive
time steps, which allows conclusions to be drawn about the nature of the
system behavior [17].

Lyapunov’s framework can be illustrated by considering a discrete-time
system given by the motion equation x(n+ 1) = F(x(n)), where n is the dis-
crete time index. Considering δx0 a small magnitude value, e1 is a basis vector
specifying a direction, for instance, e1 = [1; 0; . . . ; 0]k×1 for a k-dimensional
system, then, if a small perturbation of the form ∆(n) = δx0e1 is applied to a
specific system state variable, its dynamical evolution can be described as [1,
3,8]:

x(n+ 1) +∆(n+ 1) = F(x(n) +∆(n))

≈ J(x(n)) ·∆(n) + F(x(n)) (1)

where J(x(n)) is the Jacobian matrix of F(x(n)), with elements given by
∂Fi(x(n))/∂xj , which leads to:

∆(n+ 1) ≈ J(x(n)) ·∆(n)

= J(x(n)) · δx0 · e1 (2)

In this case, dynamical stability can be analyzed in terms of the evolution
of the perturbation vector ∆(n+ 1), which can be obtained L steps ahead by
applying the chain rule to the Jacobian matrix [1,8]:

∆(n+ L) ≈ J(x(n+ L− 1) · J(x(n + L− 2) . . .

. . .J(x(n)) ·∆(n)

= JL(x(n)) ·∆(n)

= JL(x(n)) · δx0 · e1 (3)



3

where JL(x(n)) is the composition of L Jacobian matrices during the time
evolution. In addition to that, Eqs. (2)-(3) are satisfied by the exponential
function described in Eq. (4):

||∆(n+ L)|| = ||∆(n)|| · exp(λL) (4)

being λ the average largest growing rate (in the L interval) of the dynamics,
also called largest Lyapunov exponent. Using Eqs. (3)-(4) it is possible to
obtain λ for the whole attractor in the state space (a rigorous mathematical
proof can be found in [5]):

λ = lim
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and a theorem stated by Oseledec in [16] ensures that this limit exists for
almost all initial conditions in the same basin of attraction.

When small perturbations are initially applied to all orthogonal directions
of the phase space, it is possible to estimate all Lyapunov exponents, each being
related to the average growth rate in a given direction. The set of Lyapunov
exponents for all directions is called Lyapunov spectrum of the dynamical
system, and, once the largest Lyapunov exponent is known, it is possible to
characterize the system dynamics. In particular, if λ > 0 (being the solution in
a compact space), the dynamics will present, at least, one unstable direction
in the phase space, which implies chaotic behavior [3,17]. In this case, the
system will exhibit interesting oscillatory characteristics such as aperiodicity
and sensitivity to initial conditions [1,3,8,17,27,28], which can be extremely
relevant for the physical process under study.

In this context, Lyapunov exponents are an invariant measure of the dyna-
mics, i.e., a measure independent of a specific orbit or initial condition in the
same basin of attraction. Invariances are of fundamental importance to char-
acterize chaotic behavior [8,13], and, in particular, the focused one provides a
measure of the predictability of the system, since, in practice, it is impossible
to infer its initial state with infinite precision [3,21,27,28].

Given the state equations, there are fundamentally two methods to esti-
mate the Lyapunov spectrum. The first is to use the multiplicative ergodic
theorem stated by Oseledec [16] to form the Oseledec matrix and extract its
eigenvalues by applying a recursive QR decomposition. This avoids its ill-
conditioned behavior when L is large [1,8,17]. This ill-conditioned behavior
refers to the alignment of the directions defined by the linearized system in its
most expansive direction, which can cause the numerical collapse of compo-
sition of the Jacobian matrices. The second method was introduced indepen-
dently in [6] and in [22], being revisited in [28]. In these works, the exponents
are obtained by establishing a reference trajectory (the fiducial trajectory,
which is the solution of the dynamical system) and constructing the tangent
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space associated with the dynamics. The main axes of the tangent space are
related to a set of variational equations, which govern the time evolution of the
linearized versions of state equations, and the exponents are obtained by esti-
mating the average divergence rate provided by the application of this tangent
map to an orthogonal basis anchored to the fiducial trajectory. In this case,
the collapse of the tangent space after long term evolution can be avoided by
applying the Gram-Schmidt Reorthonormalization (GSR) procedure to the
vectors obtained after tangent map application [17,20,28]. There are several
modifications of these two methods intending faster and more robust calcula-
tions (see [20] for a comparison).

The present work proposes an alternative method for estimating the Lya-
punov spectrum which overcomes certain limitations in the usual procedures.
The main idea bears some resemblance with an early work by Bennettin et al.,
[5], in which the largest exponent is obtained by quantifying the expanding or
contracting behavior of a difference state vector built from the original system
and a copy initially disturbed by a small value. This approach is analogous
to the one developed in Eqs. (3)-(5), estimating the ratio ||∆(n+ L)/δx0|| in-
stead of determining the system Jacobian via the solution of the variational
equations. The present paper extends the ideas developed in [5] by calculating
the Lyapunov spectrum using disturbed copies (called “clones”) of the original
dynamics for each direction associated with its respective exponents, avoiding
the collapse of all clones in the most expansive direction by applying the GSR

procedure, as is done in the classical tangent map approach introduced in [6,
22,28]. This work does not aim to present a rigorous mathematical proof as a
generalization of [5] to all directions of phase space, but to offer a consistent
and practical algorithm to obtain the desired spectra based on the fundamen-
tal concept of evolution of small perturbations combined to classical numerical
corrections. This new strategy to perform the calculation can provide relevant
advantages in specific cases (for instance, non-smooth and hyperchaotic dy-
namical systems), and it is carefully tested and compared here to the tangent
map approach for representative continuous- and discrete-time models.

The method offers the possibility of partial estimation of the Lyapunov
spectrum, which allows the integration (or iteration) of a smaller number of
differential (or difference) equations to obtain, for instance, only the positive
exponents of the dynamics, which may be interesting for hyperchaotic mod-
els. In addition to that, as the proposal does not require linearization of the
state equations, it is suitable for applications in non-smooth dynamical sys-
tems. This applicability is illustrated with the aid of the FitzHugh-Nagumo
neuronal model [10] excited with rectangular pulses, a scenario of difficult theo-
retical treatment employing usual methods, but frequently adopted in practice
[7]. Rigorously, discontinuous rectangular pulses do not exist in experimental
procedures, but they are useful as approximations of real-world stimuli. In this
context, the application of the developed method to neuronal models seems
to be specially attractive, as there are evidences relating chaotic behavior to
information transmission, coding and storage (memory) in biological systems
[14].
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This work has the following organization: in Section 2, a brief review of
the classical procedure to compute Lyapunov exponents using tangent maps
is presented, followed by the introduction of the Cloned Dynamics method.
In Section 3, the proposed method is tested for representative discrete- and
continuous-time chaotic systems. Furthermore, the cloned dynamics approach
is then applied to analyze the oscillatory behavior of the FitzHugh-Nagumo
neuronal model under periodic discontinuous stimulation. Finally, in Section 4,
some discussions and comments about the contributions and perspectives are
exposed.

2 Methods

2.1 The Tangent Map (TanMap) approach

Given an n-dimensional dynamical system ẋ = F(x, t) with initial condition
x0, the first step to evaluate the Lyapunov exponents is to establish n ortho-
gonal vectors initially defined as

{δ1x, δ2x, . . . , δnx} = {e1, e2, . . . , en} = In (6)

with In the n-dimensional identity matrix, anchored on the fiducial trajectory.
These vectors will be transformed by successive applications of the tangent
map associated with the motion equations. The principal axes of the tangent
map are determined by the variational equations, which rule the time evolution
of linearized versions of the state equations, analytically described by:

Φ̇(x, t) = J(x, t) ·Φ(x, t) (7)

where J(x, t) is the Jacobian of F(x, t), and the elements of which are given
by:

Jij(x, t) =
∂Fi(x, t)

∂xj(t)
(8)

The divergence rate is then evaluated by integrating the whole system
(original motion and the variational equations) for an interval T starting
from x0 with Φ(x0) = In. After this process, is possible to update the vec-
tors anchored in the fiducial trajectory transformed by the tangent map,
which, for the most expansive direction (largest Lyapunov exponent), is given

by δ
(1)
1x = Φ(x, T ) · u

(0)
1 , being u

(0)
1 = δ

(0)
1x / ‖ δ

(0)
1x ‖ (where the superscript de-

notes the current iteration). Repeating the integration and normalization pro-
cedure K times (for K large enough to take into account the entire attractor
behavior), the largest Lyapunov exponent is given by [17,28]:

λ1 = lim
K→∞

1
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Since the system continuously changes its orientation, it is impossible to
define a specific axis of the phase space as either expansive or contractive.
Moreover, the vectors {δ1x, δ2x, . . . , δnx} tend to align in the most expansive
direction as the dynamical system evolves, which leads to numerical errors and
can cause the collapse of the tangent map into a single direction. Having this
fact in view, the Gram-Schmidt Reorthonormalization (GSR) can be employed
to subtract the contribution of the most expansive direction from the others,
which allows the correct estimation of λ2 to λn. This procedure is analytically
described as [17,28]:

v
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(k)
1x

u
(k)
1 =

v
(k)
1

‖v
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v
(k)
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where < a,b > denotes the inner product of vectors a and b. In the Kth

iteration, the Lyapunov spectrum is given by:
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After that, the tangent map given by Φ(x, T ) is set as the identity matrix,
to correctly evaluate the divergence (or convergence) rates for the next itera-
tion. The same procedure can be applied to discrete-time dynamical systems,
being also necessary to perform the GSR correction for every iteration.

2.2 The Cloned Dynamics (ClDyn) approach

The essence of the proposed method is to analyze the evolution of the dif-
ference state vectors defined as the distance between the fiducial trajectory
and the clones of these motion equations initially disturbed by small values in
orthogonal directions. Therefore, given an n-dimensional dynamical system, n
clones are created (if one wishes to estimate all n exponents):
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ẋc1 = F(x, t)

ẋc2 = F(x, t)

...

ẋcn = F(x, t) (12)

Each clone receives the initial condition of the reference system disturbed
by a small value δx0 along a specific orthogonal direction, which means that:

x0c1 = x0 + δ
(0)
x1

x0c2 = x0 + δ
(0)
x2

...

x0cn = x0 + δ
(0)
xn (13)

being {δx1, δx2, . . . , δxn} an orthogonal basis initially defined as δx0{e1, e2, . . . , en} =
δx0In. This means that each clone will correspond to a specific direction asso-
ciated with the Lyapunov exponent to be evaluated.

The original motion equations and the clones are then integrated (or iter-
ated for discrete-time dynamical systems) for an interval T , and, at the end
of this process, the perturbation vectors are estimated by the difference of
the final states achieved by the fiducial trajectory and the cloned trajectories
(defining the difference state vectors) in the form:

δ
(1)
1x = x(T )− xc1(T )

δ
(1)
2x = x(T )− xc2(T )

...

δ
(1)
nx = x(T )− xcn(T ) (14)

To avoid the same numerical problems previously commented in the expla-
nation of the TanMap approach, the GSR procedure is applied as described
in Eq. (10). After that, and before starting a new iteration, the clones are
displaced in the neighborhood of the fiducial trajectory, receiving new “initial
conditions” in the orthogonal frame spanned by the {u1,u2, . . . ,un} vectors:

x
(1)
0c1 = x(T ) + δx0u

(1)
1 ,

x
(1)
0c2 = x(T ) + δx0u

(1)
2 ,

...

x
(1)
0cn = x(T ) + δx0u

(1)
n (15)
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and so the small disturbances will always stand in the specific direction of
the Lyapunov exponent being estimated. Finally, after the Kth iteration, the
Lyapunov exponents are given by:

λn = lim
δx0→0

lim
K→∞
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Figure 1 illustrates a typical iteration of the ClDyn method for distur-

bances initially applied in two orthogonal directions of the phase space (δ
(0)
1x

and δ
(0)
2x ). As time passes, for each iteration, the difference state vectors are

updated as in Eq. (14), being the tendency of alignment with the most ex-
pansive direction corrected by the GSR procedure. Before the next iteration
begins, the clones are displayed in the neighborhood of the fiducial trajectory
in an orthogonal manner (as it stated in Eq. (15)). Finally, the next iteration
begins with the clones starting from points A and B. This process is repeated
until the average behavior of the whole attractor is taken into account.

δ
(0)
1x

δ
(0)
2x

δ
(1)
1x

δ
(1)
2x

v
(1)
2

δx0u
(1)
2

δx0u
(1)
1

p
A

B

xc1(t)

x(t)

xc2(t)

Fig. 1 Illustration of a typical ClDyn iteration. δ
(0)
1x and δ

(0)
2x are the initial difference state

vectors given by δx0{e1, e2}. p is the projection of δ
(1)
2x in δ

(1)
1x used to obtain v2 vector. A

and B represent the initial conditions for the next iteration of the procedure. The value of
δx0 was exaggerated here for the save of the illustration.

3 Results

3.1 Analyzing the performance of the ClDyn approach for classical
dynamical models

Figure 2 brings the time evolution of the Lyapunov spectrum for the clas-
sical Lorenz system obtained by the TanMap and ClDyn methods (with
T = 0.5s and δx0 = 10−4). It can be noted that both algorithms have very
similar convergence behaviors and yield almost identical exponent values in
“steady state” conditions. The Lorenz model is a natural choice since there is
a great deal of “numerical experimentation” available in the literature regard-
ing it. In particular, the numerical values for the Lyapunov exponents found
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here are in perfect accordance with these works (see [20] for values provided
by different methods).
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Fig. 2 Time evolution of Lorenz Lyapunov spectrum using TanMap and ClDyn methods.

Table 1 shows the numerical values of the Lyapunov exponents obtained
after convergence (tfinal = 10000s) for three emblematic continuous-time
chaotic systems: the already mentioned Lorenz system, the chaotic and the
hyperchaotic Rössler system (the models are described in [20] and also in Ap-
pendix A). The results show that the proposed method is a reliable algorithm
to perform this calculation, even for the hyperchaotic Rössler system, which
displays two positive exponents and two exponents close to zero (a difficult
scenario in terms of numerical estimation) [20]. In the latter case, the pos-
sibility of partial spectrum estimation allowed the calculation of the positive
exponents by solving 12 differential equations (the original motion equations
and two clones), while the TanMap approach required the construction of the
entired tangent space, requiring the integration of 20 differential equations.

Two well-known discrete-time systems were also considered in Table 1: the
Logistic map and the Henón map (see Appendix A). The one-dimensional Lo-
gistic map has the attractiveness that is not difficult to derive a expression for
its Jacobian, which allows a simple formula to be reached for the TanMap

approach [27]. In this sense, the values reached by the ClDyn method indi-
cated that the proposal is a consistent tool to calculate Lyapunov spectrum.
Furthermore, the Hénon map generalizes the calculations to a two-dimensional
discrete-time case, in which there is also agreement with the numerical values
obtained via the classical procedure.

Although the numerical experiments gave rise to very similar results ob-
tained using both methods, it should be stressed that a certain degree of
caution is required when it comes to choosing some parameters of the ClDyn

method. As has already been exposed in [28], the TanMap approach presents
a good robustness with respect to the integration time (T ), which specifies the
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Table 1 Lyapunov spectra obtained using the TanMap and ClDyn methods. In all sim-
ulations, δx0 = 10−4 and tfinal = 10000s for continuous-time cases (exponents given in

[nats/s]). Both methods utilized the following parameters: Lorenz, x0 = [1 0 1]T , T = 0.5s,
Rössler, x0 = [1 0 1]T , T = 1.0s; Rössler hyperchaos (Rösslerh), x0 = [−20 0 0 15]T

and T = 0.1s. For discrete-time models (exponents given in [nats/iteration]), δx0 = 10−4,
N = 10000 iterations. Logistic map: x0 = 0.49, T = 1 iteration; Hénon map:
x0 = [0.6 0.1]T , T = 1 iteration. The upper index T denotes matrix transpose.

Dynamics Method λ1 λ2 λ3 λ4

Lorenz TanMap 0.9037 0.0011 -14.5672 -

ClDyn 0.9025 -0.0014 -14.5293 -

Rössler TanMap 0.0886 0.0002 -9.8009 -

ClDyn 0.0895 0.0002 -9.8079 -

Rösslerh TanMap 0.1083 0.0228 -0.0007 -25.4881

ClDyn 0.1128 0.0324 -0.0247 -23.9892

Logistic TanMap 0.3634 - - -

ClDyn 0.3637 - - -

Hénon TanMap 0.4173 -1.6213 - -

ClDyn 0.4173 -1.6213 - -

GSR interval. Meanwhile, increasing T implies decreasing the computational
cost to calculate the exponents; on the other hand, this can introduce numer-
ical oscillations in the spectrum or even cause the tangent map to collapse, if
T is taken to be extremely large. Figure 3(a) illustrates this robustness by re-
peating the calculation of the Lorenz Lyapunov spectrum 10 times, increasing
T progressively (from 0.2s to 2s with steps of 0.2s), which does not affect the
obtained exponent values. When this simulation is repeated for the ClDyn

method, see Fig. 3(b), it can be observed that λ1 and λ2 are similar to those
obtained via the TanMap, but an overestimation of λ3 for larger values of T
is detected. This imprecision for the lowest exponent is related to the loss of
information due to the fast convergence of the cloned trajectory to the fiducial
one in the most contractive flux direction, which requires a more conservative
choice of T for the ClDyn method. A systematic approach to determine T
would be to perform the whole spectrum calculation reducing this parameter
on each simulation for achieving a lower bound for λ3.

Overestimates of λ3 in the ClDyn method can also occur when the mag-
nitude of the initial perturbation δx0 is not small enough. Figure 4 shows the
Lorenz’s Lyapunov spectrum for a progressive increase in δx0 (from 10−5 to
10−1 with a geometric ratio of 10). It can be observed that a significant over-
estimate of λ3 starts to occur from δx0 = 10−2, while λ1 and λ2 are negligibly
affected. A small perturbation of 10−4 was adequate for the strange attractors
analyzed here, and a progressive reduction of δx0 can also be carried out for
achieving a lower bound to λ3 and ensuring more reliable calculations.
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Fig. 3 The Lorenz Lyapunov spectrum for the TanMap and ClDyn approaches under a
progressive increase of T (from 0.2s to 2s, with steps of 0.2s)

3.2 The ClDyn approach applied to the FitzHugh-Nagumo model with
discontinuous inputs

An advantage of the proposed method is the possibility of evaluating the Lya-
punov spectrum without constructing the tangent space, which can be useful
in a wide range of applications, such as the analysis of dynamics with discon-
tinuous inputs or states. To illustrate this, the ClDyn method is employed to
analyze the oscillatory behavior of the neuronal FitzHugh-Nagumo model [10]
for non-smooth inputs (rectangular pulses of frequency ω and amplitude A –
see Appendix A). This system consists of a modified version of the Van der
Pol’s equations to describe relaxation oscillators, aiming to capture the char-
acteristics of neuronal oscillations. Although retangular pulses are commonly
used to extract relevant neuronal characteristics such as refractory period or
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Fig. 4 Effect of a progressive increase in the magnitude of the initial perturbation δx0
(from 10−5 to 10−1 with a geometric ratio 10) in the Lorenz Lyapunov spectrum for ClDyn

method.

to obtain the strength versus duration curve, their mathematical treatment
is far from trivial due to their discontinuous nature [7].

Since in this case it is impossible to use the TanMap method to compute
the exponents and establish a comparison with the ClDyn approach, an es-
troboscopic map was built to provide an independent technique for validation.
The estroboscopic map is obtained by periodic sampling of the state variables
(when the transients are assumed to have vanished) taking the amplitude of
stimulation as control parameter. In this analysis, aperiodic oscillations, like
chaotic oscillations, display a number of points that tends to infinity, while
periodic solutions tend to produce a finite number of points for each value of
A. Thus, the map corresponds to a geometrical approach that gives a qual-
itative view of the topological structure of the system solution [3,17,27]. It
is possible to observe in Fig. 5(a) the richness of dynamical behaviors that
this apparently simple oscillator can achieve. For instance, one may cite the
presence of smooth transitions from periodic to chaotic oscillations, as well as
of abrupt collapse and merging of strange attractors for smooth changes in
the control parameter. Such flip, tangent and crisis bifurcations have already
been verified for the FitzHugh-Nagumo model excited by smooth inputs [26],
and can give rise to experimentally observed oscillatory behaviors [2], as in-
termittent behavior [18], defined as a bursting of action potentials of irregular
length, which is also observed in the simulations performed here for points
near tangent bifurcations (as that which occurs for A = 0.6348).

Figure 5(b) shows the largest Lyapunov exponent obtained after a signifi-
cant time (3000 arbitrary time units [a.u.]) with T = 0.5 [a.u.], δx0 = 10−4 and
A varying from 0.55 to 1.3 with steps of 2× 10−4 [a.u.]. It can be observed that
the λ1 values are in agreement with the captured oscillatory patterns (with
sampling rate of 1 rad/a.u.) by the estroboscopic map, that is, positive expo-
nents are associated with control parameters that produce apparently chaotic
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behaviors, while negative exponents are obtained for values of A that lead to
apparently periodic oscillations.
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Fig. 5 Figure 5(a) is the estroboscopic map taking the amplitude A [a.u.] as control pa-
rameter of the FitzHugh-Nagumo model; V [a.u.] is the state variable membrane potential.
Figure 5(b) represents the largest Lyapunov exponent associated to the respective control
parameter.

4 Discussions and Final Conclusions

The main idea of estimating the Jacobian matrix of a dynamical system by
the difference of states in a neighborhood of a given attractor point is al-
ready known and used to calculate Lyapunov exponents from experimental
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time series [8,9]. This concept was adapted here in order to incorporate a

priori information of knowledge of motion equations, creating initially small
disturbed clones to analyze, in a more practical and intuitive way, the stability
of dynamical systems, in accordance with what has been developed by [5] for
the estimation of the largest Lyapunov exponent, and extended here to the en-
tire spectrum. This new method opens interesting perspectives of applications,
specially to hyperchaotic systems and non-smooth dynamics.

An extension of [5] has already been presented in [11], providing the ex-
istence of a relation between λ1 and the coupling factor between oscillators
when a synchronous pattern is achieved. In particular, [11] presented a pro-
cedure for computing the largest exponent that, under specific conditions, is
analogous to the ClDyn procedure, but is still restricted to computing the
largest exponent, and not the whole spectrum.

Furthermore, the method proposed in [11] was adapted in [24] in order to
calculate λ1 for the Duffing oscillator with impacts (a classical case of non-
smooth dynamics) based in the synchronism of identical systems. This ap-
proach has some similarities with the proposed method, since it uses a cloned
version to calculate the largest exponent. However, it should be stressed that
the ClDyn method is not based on any synchronism principle, but it is re-
lated to the main idea introduced by the stability theory of dynamical systems,
attempting to evaluate how small perturbations evolve. The strategy of mon-
itoring a difference state vector built from disturbed clones of the dynamics
with the aid of the numerical corrections, also employed in the usual TanMap

procedure, consists of a different way to address this problem, which allows
not only computation of the largest Lyapunov exponent, but of the whole
Lyapunov spectrum, without performing an exhaustive search for parameters
that synchronize dynamics, or even treating discontinuous points (in the case
of non-smooth systems) as exceptions, forcing state transitions, as exposed in
[15]. In this last case, non-smooth functions that appear in the motion equa-
tions will also appear in the clones, which is not prohibitive in the process of
obtaining the difference state vectors for calculating the Lyapunov exponents.

Even in the case of smooth systems, there are some advantages in using
the ClDyn method. For instance, as the Lyapunov spectrum can be par-
tially estimated, the largest exponent (that is sufficient to characterize the
oscillatory behavior) of an n-dimensional dynamical system can be obtained
by integrating 2n differential equations, while the TanMap method requires
the construction of whole tangent space, which implies integrating n(n + 1)
equations. Thus, for high-dimensional dynamics or for state equations that
are mathematically hard to be linearized, the ClDyn method seems to be a
convenient tool to be employed.

In this work, the performance of the proposed method was analyzed with
the aid of extensive tests based on representative continuous- and discrete-
time dynamical systems, which provided strong numerical support to the de-
veloped proposal. Moreover, the possibility of using the ClDyn method for
non-smooth dynamics was illustrated for the classical FitzHugh-Nagumo neu-
ronal model excited by rectangular pulses. In such case, the computation of
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Lyapunov exponents can offer valuable bases for studying biological informa-
tion processing in the light of dissipative nonlinear dynamical systems theory,
by its close connection to information theory [13,21]. It is already known that
chaotic processes can lead to an efficient way of transmitting and codifying
information, as was shown for some classical dynamical systems [4], and has
been, in a few steps, related to cognitive processes through the analysis of low-
and high-dimensional neuronal systems in real and artificial paradigms [14,19,
23].

Finally, complex systems constituted of nonlinear coupled neuronal oscil-
lators have been intensively studied in an attempt to explain the emergence
of biopotential patterns which can be related to memory formation, learning
and recognition [23] due to nonlinear phenomenons as transient synchronism
[25] and chaotic itinerancy [12]. The characterizations of such mechanisms are
closely related to the convergence of Lyapunov exponents (e.g., in the fluctua-
tions of largest Lyapunov exponent that characterize chaotic itinerancy [12]),
there being a possibility that the proposed method be capable of leading to
contributions.

A Appendix

The Lorenz model is described by as:

ẋ = σ(y − x)

ẏ = −xz + rx− y (17)

ż = xy − bz

with the following employed parameters: σ = 10, r = 28, b = 8
3
. The units of the state vari-

ables are arbitrary and time is assumed to be in seconds.
The Rössler system is described as:

ẋ = −y − z

ẏ = x+ ay (18)

ż = b+ z(x− c)

with the following employed parameters: a = 0.15, b = 0.2, c = 10. The units of state vari-
ables are arbitrary and time is assumed to be in seconds.

The Hyperchatic Rössler system is described as:

ẋ = −y − z

ẏ = x+ ay + w

ż = b+ xz (19)

ẇ = cw − dz

with the following employed parameters: a = 0.25, b = 3.0, c = 0.05, d = 0.5. The units of
the state variables are arbitrary and time is assumed to be in seconds.

The FitzHugh-Nagumo system is described as:
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V̇ = V −
V 3

3
−W + I(t)

Ẇ = c (V + a− bW ) (20)

I(t) = A · square(ωt)

with the following employed parameters: a = 0.7, b = 0.8, c = 0.1. The function square rep-
resents a train of rectangular pulses of amplitude A and frequency ω = 1 rad/a.u. (arbitrary
units). V represents the membrane potencial and W its refractoriness, in arbitrary units.
Time is given in arbitrary unit, as well.

The logistic map is described as:

Xn+1 = rXn(1−Xn) (21)

with the employed parameter r = 3.75. The state variable assumes arbitrary units.
The Hénon system is described as:

Xn+1 = 1− aX2
n + bYn

Yn+1 = Xn (22)

with the following employed parameters: a = 1.4 and b = 0.3. The state variables have ar-
bitrary units.

All continuous dynamical systems were integrated using a 4th-order variable step Runge-
Kutta method with relative and absolute precision equal to 10−12.
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