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The use of shape memory alloys (SMAs) in engineering applications has increased
the interest of the accuracy analysis of their thermomechanical description. This work
presents an uncertainty analysis related to experimental tensile tests conducted with
shape memory alloy wires. Experimental data are compared with numerical simulations
obtained from a constitutive model with internal constraints employed to describe the
thermomechanical behavior of SMAs. The idea is to evaluate if the numerical simula-
tions are within the uncertainty range of the experimental data. Parametric analysis is
also developed showing the most sensitive constitutive parameters that contribute to the
uncertainty. This analysis provides the contribution of each parameter establishing the
accuracy of the constitutive equations.

Keywords: Shape memory alloys; smart materials; constitutive model; uncertainty; exper-
imental.

1. Introduction

Shape memory alloys (SMAs) have a thermomechanical behavior that provides a
wide range of applications in different fields of knowledge. The thermomechanical
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behavior of these alloys is associated with thermoelastic martensitic phase transfor-
mations that are responsible for the unique characteristics of these smart materi-
als. Literature presents several articles that investigate the SMA thermomechanical
behavior, discussing distinct aspects of modeling, simulation and experimental
approaches.

In brief, it is possible to say that SMA thermomechanical behavior is very com-
plex due to the coupling of several phenomena, presenting hysteretic response. Pseu-
doelastic and shape memory effects are the most important behaviors in terms of
SMA applicability. Nevertheless, the general behavior has other important aspects
that need to be understood properly in order to define SMA applications. Transfor-
mation induced plasticity is one of these aspects that imposes a previous training
process to SMA devices before their use in a specific application.

Lagoudas [2008] and Paiva and Savi [2006] presented a general overview of SMA
applications especially in engineering field. Self-expanded structures, multi-actuated
structures and robotics are some possibilities that are exploiting SMA character-
istics. Machado and Savi [2003] discussed SMA biomedical devices that are usu-
ally employed in surgical instruments, cardio-vascular, orthopedic and orthodontic
devices, among other possibilities. Self-expansive structures constitute one of the
main applications of SMAs, as the Simon filters and stents. Czechowicz [2013] pre-
sented an overview of automotive applications related to SMAs. An overview about
dynamical applications involving systems with SMA elements was discussed in Savi
[2014]. Basically, dynamical applications try to exploit both the adaptive dissipation
associated with hysteretic behavior and changes in mechanical properties caused by
phase transformations.

Due to the complex thermomechanical behavior of SMAs, several researches are
dedicated to investigate a proper SMA description. The three-dimensional (3D)
description is even more complex, involving difficulties introduced either by the
modeling or by experimental analyses related to multiaxial tests. The constitu-
tive modeling of SMAs is based on macroscopic features of their thermomechancial
behavior. Lagoudas [2008] and Paiva and Savi [2006] presented a general overview
of these efforts, highlighting phenomenological constitutive models for SMAs. Con-
cerning recent reports, it is important to highlight 3D modeling efforts: Auricchio
et al. [2014], Mehrabi et al. [2014], Andani and Elahinia [2014], Andani et al.
[2013], Chapman et al. [2011], Lagoudas et al. [2011] and Panico and Brinson
[2007].

Paiva et al. (2005) developed a one-dimensional (1D) constitutive model based
on the Fremond theory [Fremond, 1996], within the scope of standard generalized
materials [Lemaitre and Chaboche, 1990]. Oliveira et al. [2010] treated a 3D exten-
sion of a simplified version of this model. Several references discussed the main
aspects of this model. Among them, it is important to highlight the following ref-
erences: Savi et al. [2002], Baêta Neves et al. [2004], Paiva et al. [2005], Savi and
Paiva [2005] and Aguiar et al. [2010].
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Mathematical models are usually employed to describe a physical phenomenon
and it is expected that they produce similar results compared with experimental
tests. Nevertheless, deviations between experimental data and theoretical results
are common. This discrepancy may be related to uncertainty issues associated
with experimental measurements and their calculations provide a better comparison
between numerical and experimental results. This analysis increases the possibility
of numerical results to be within a proper range.

In this regard, it is important to observe that inaccuracies are unavoidable in
experimental tests being related to different sources and magnitudes of systematic
and random errors that can influence the measurements. Therefore, it is important
to investigate the main aspects about them evaluating the uncertainty associated
with experimental data. This approach allows one to establish a proper comparison
between numerical and experimental data. Moffat [1985, 1988], Coleman and Steele
[1995], Steele and Coleman [1987] and Barbato et al. [2005] presented a description
of the sources of errors in engineering measurements and the relationship between
errors and uncertainties.

This work presents an uncertainty analysis related to experimental tensile tests
conducted with SMA wires. Features of the tensile equipment are evaluated for the
uncertainty calculation. Under this assumption, it is defined a range around exper-
imental data imposed by the uncertainties. Experimental data are compared with
numerical simulations obtained from the constitutive model proposed by Paiva et al.
[2005] to describe the thermomechanical behavior of SMAs. The idea is to evaluate
if the numerical simulations are within the uncertainty range of the experimental
data. Parametric analysis is also developed showing the most sensitive constitutive
parameters that contribute to the uncertainty.

2. Experimental Test

SMA characterization is associated with several experimental tests including tensile
and digital scanning calorimeter (DSC) tests. The first one establishes the gen-
eral thermomechanical behavior while the second defines the phase transformation
temperatures. SMA wires are in focus and ASTM F2063 is employed to guide the
tests. It is assumed that only tensile tests contribute to uncertainty analysis since
it defines the main features related to the thermomechanical behavior of SMAs.

2.1. Tensile tests

This subsection deals with tensile tests performed with SMA wires. Ni-Ti wires with
a circular cross section of 0.853mm diameter, manufactured by Dynalloy Inc., are
of concern. A universal testing system “INSTRON 6022” is employed with a 10 kN
load cell. Tests are conducted considering a prescribed strain loading with a ratio
of 0.205/s and a maximum force of 200N that provides strains within the yield
surface. The equipment is connected to a computer that controls the test details
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(a) (b)

Fig. 1. (Color online) (a) Test-rig for tension test of SMA wires. The upper grip (A) and lower
grip (B) hold the SMA wire, which is inside the oven (C). The air inlet from a heat gun for the
oven is (D). Forces are measured by a 10KN load cell. (b) Schematics of test-rig used for tension
tests of SMA wires (blue) at different constant temperatures controlled with use of a heat gun
(red). The grips (light gray) are attached to the INSTRON testing system (dark gray).

and records experimental data. A device assembled with a heat gun promotes air
inflation employed for temperature control. Figure 1 shows the experimental test
apparatus.

Tensile tests are performed at different temperatures and all specimens are
subjected to a proper training process. Initially, the SMA specimen is trained by
assuming a temperature T = 303K, and being subjected to 50 mechanical cycles.
Figure 2(a) shows stress–strain curves of this training procedure. Note that SMA
response has an asymptotic behavior converging to a hysteresis loop. After this
training process, the wire is heated to a temperature of 373K and cooled down to

(a) (b)

Fig. 2. Pseudoelastic test. (a) Training process of 50 cycles. (b) Pseudoelastic test of 20 cycles
using the trained specimen.
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a temperature of 303K and afterward, a 20 cycles test is carried out. Figure 2(b)
shows the stress–strain curve of the trained specimen.

This result illustrates the classical pseudoelastic effect characterized by the hys-
teresis loop. In brief, the SMA sample presents a linear elastic response until a
critical stress value is reached. After this point, austenite–martensite phase trans-
formation starts. When this phase transformation finishes, the SMA presents a
linear elastic response in the martensitic phase. During the unloading, the sample
presents a linear response until the critical stress value for reverse transformation is
reached. Afterward, martensite–austenite phase transformation starts. At the end
of this phase transformation, linear elastic response occurs again. When the load
is completely removed, the sample returns to the original configuration. Neverthe-
less, it is important to note that the irreversibility of the process is related to the
dissipation associated with the hysteresis loop.

2.2. DSC test

Differential Scanning Calorimeter (DSC) test has the objective to evaluate the phase
transformation temperatures in SMAs. The equipment heats up and cools down the
specimen in a chosen temperature range and captures the amount of thermal power
needed for maintaining a specified constant temperature rate in time. The DSC test
is performed with the equipment “DSC 200 F3 Maia”, presented in Fig. 3(a).

DSC test is expressed by means of the heat as a function of the temperature,
containing peaks at the phase transformation temperatures of the material. Exother-
mic or endothermic reactions are possible depending on the direction of the phase
transformation. Usually, four temperatures defines the SMA behavior: TM

i and TM
f ,

respectively the temperatures where martensitic phase transformation starts and
finishes; TA

i and TA
f , the temperatures where the austenitic phase starts and fin-

ishes. A cycle of a sequence of 11 cycles is shown in Fig. 3(b). This result defines the
phase transformation temperatures that are calculated from the tangent method,

Liquid 
Hydrogen 

Weight 
sacale 

DSC 

(a) (b)

Fig. 3. DSC Test. (a) DSC 200 F3 Maia. (b) Phase transformation temperatures.
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Table 1. The initial and final martensite phase transformation
temperatures for each cycle.

T M
f (K) T M

i (K) T M
f (K) T M

i (K)

Cycle 1 269.05 292.80 Cycle 7 269.95 293.00
Cycle 2 271.95 293.70 Cycle 8 270.45 292.70
Cycle 3 270.45 293.40 Cycle 9 269.85 292.80
Cycle 4 269.75 293.10 Cycle 10 270.85 293.30
Cycle 5 268.95 293.40 Cycle 11 269.25 291.30
Cycle 6 270.85 294.10 Average 270.12 293.30

indicated in Fig. 3(b). The tangent method is employed for the determination of
the phase transformation temperatures. Table 1 presents martensitic phase trans-
formation temperatures for each one of the eleven cycles together with their average
values.

For the sake of simplicity, the uncertainties related to phase transformation
temperatures evaluated from the DSC tests are neglected. The average temperature
TM

i is used for uncertainty analysis. Therefore, all uncertainties are related to the
tensile tests.

3. Uncertainty Analysis

The uncertainty analysis considers tensile tests of the SMA wire at different tem-
peratures presenting pseudoelastic behavior. The first step is to promote a filtering
process, eliminating systematic errors using outlier detection technique. After-
ward, constitutive model is presented defining sensitivity coefficients for each model
parameter. Uncertainty contributions are then analyzed considering type A, esti-
mated using statistical methods, and type B, evaluated according to non-statistical
methods. Figure 4 shows a sequence employed by the uncertainty analysis.

3.1. Methods for uncertainty analysis

International organizations related to methodologies and standards published a fun-
damental text known as GUM [2008] (Guide to the Expression of Uncertainty in
Measurement), which was incorporated into European standard ENV 13005. This
reference defines two types of uncertainty contributions: type A, related to statisti-
cal methods; and type B, associated with non-statistical methods. This classification
provides two different ways for uncertainty evaluation, and does not indicate a dif-
ference in the nature of these two types of evaluation. The resulting uncertainty
components of each type are quantified by variance or standard deviation. In this
work, uncertainties are evaluated from the constitutive model considering the influ-
ence of the parameters, the temperature T , and the number of cycles. The first two
cases can be classified as type B, while the last one is of type A [Barbato et al.,
2005].
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Experimental Test 

Filtering 

Constitutive Model 

Sensitivity Coefficients

Uncertainty Calculation 

Uncertainty Type A Uncertainty Type  B 

Fig. 4. Flowchart of the uncertainty analysis.

3.1.1. Statistical methods

The application of statistical methods can be used in filtering data in order to
eliminate systematic errors. Barbato et al. [2005] considers the use of statistical
methods as a type A analysis. Systematic effects are characterized by three factors:
Constant systematic errors; variable systematic errors; and measurement accidents.
The first group includes calibration errors, and may be avoided by a proper instru-
ment calibration and measurement procedures. Variable systematic errors include
the effect of large temperature variation over replicated measurements. Concerning
measurement accidents, they are usually related to electromagnetic disturbances,
being detected by normality tests and exclusion principles.

The detection and estimation of systematic and random errors can be done
through tools such as normal and student distributions. Outlier technique can be
employed to eliminate these errors. Normal distribution has less accurate values
for small samples, which leads us to the use of the student distribution. Moreover,
the uncertainty analysis can be performed using the standard deviation, confidence
level, expanded uncertainty and degree of freedom for the analyzed data.

The correction of systematic errors is usually performed using statistical meth-
ods that promote a consistent adjustment with experimental data. In this regard,
polynomial regression is widely employed for this purpose. Based on residue, r1,
defined as the difference between experimental data and the value obtained by the
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regression model, it is possible to determine important variables related to uncer-
tainty analysis: trend; standard deviation of each parameter and determination
coefficient.

The determination coefficient is defined as the square of the Pearson correla-
tion coefficient, R, which is a measure of the degree of linear relationship between
two quantitative variables. The Pearson correlation coefficient varies between −1
and +1. This coefficient vanishes when the adopted regression is not appropriate.
Therefore, the closer the coefficient is to +1 or −1, the stronger is the association
between two variables. The Pearson correlation coefficient is calculated according
to the following expression:

R =
∑n

i=1(εi − ε̄)(r1i − r1)√∑n
i=1(εi − ε̄)2

√∑n
i=1(r

1
i − r1)2

(3.1)

where

r1 =
1
n

n∑
i=1

r1i , (3.2)

ε̄ =
1
n

n∑
i=1

εi. (3.3)

The Pearson correlation coefficient is interpreted as follows:

• |R| ≥ 0.70 – strong correlation.
• 0.30 ≤ |R| < 0.7 –moderate correlation.
• 0 ≤ |R| < 0.30 – weak correlation.

The standard deviation or standard error of the residues, sr1
, is employed to

indicate how the data are sparse. The number of degrees of freedom is the differ-
ence between the number of analyzed data and the number of coefficients of the
polynomial chosen to perform the regression.

Outlier technique is employed by applying the Chauvenet’s criterion on residue
values. This criterion specifies that a measurement may be rejected if the probability
of obtaining a particular deviation of the estimated average is less than 1

4nd , where
nd is the number of residues. By applying the Chauvenet’s criterion to eliminate
unreliable data, it is necessary to calculate the residues average, mr1

, and the stan-
dard deviation of the residues, sr1

, using all the obtained data. The rejected data
occupy the extreme areas under the normal curve, as represented in Fig. 5. Thus, for
each value of nd it is possible to calculate the probability (1− 1

4nd ). By integrating
the density function of the normal distribution it is determined the coefficient z that
corresponds to the number of standard deviations of the range of acceptable values.
The point is eliminated if the residue value exceeds the limits of the considered
interval defined, mr1 ± zsr1

.
The adjustment validation is another important analysis that is done consider-

ing the regression robustness. A proper validation is evaluated from the robustness
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1 14n

rejected 

data

probability

Fig. 5. Normal distribution.

index, when it has values much greater than 1. This procedure checks if the adjust-
ment introduces significant changes when the experiment is repeated. Standard
deviation of the polynomial coefficients defines a variation range, considering the
corresponding confidence interval.

The uncertainty U is defined from the product of the student factor of the
distribution for a given confidence level, J , and the standard deviation of the
coefficients, s.

U = Js. (3.4)

The degree of freedom can be classified as follows: very reliable: 100; reliable:
30; unreliable: 15. Robustness is the ratio between the coefficient and the relevant
uncertainty of the coefficient. The higher is the robustness the more stable is the
variation range of the coefficients.

The coefficient analysis χ2 [chi-square] identifies systematic errors. Its calculation
needs the introduction of some coefficients. First, let us define the number of classes,
nc, to define the theoretical normal distribution [Barbato et al., 2005].

nc =
√
nd + z. (3.5)

The limits of the range is defined by mr1 ± zsr1
, where it is assumed z = 4.

Therefore, the size of each class is calculated as follows:

Dc =
(mr1

+ zsr1
) − (mr1 − zsr1

)
nc

. (3.6)

Experimental absolute frequency fa (observed frequency) is calculated from the
number of times that each residue value appears at the interval for each class. The
definition of the limits of each interval of the respective classes (l1 and l2), allows
one to calculate the normal distribution of the average and the standard deviation
of the residue for each limit value (dl1

n and dl2
n ), respectively, and estimate the differ-

ence between them. The absolute theoretical frequency, fat (expected frequency),
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is calculated as:

fat = (dl1
n − dl2

n )nd. (3.7)

The experimental coefficient χ2
e is calculated as follows:

χ2
e =

(fa − fat)2

fat
. (3.8)

From the experimental coefficient χ2
e, it is possible to calculate the lower and upper

bounds for the theoretical coefficient χ2
T . The lower limit is estimated using the

inverse of the probability of the chi-square distribution where the probability is
given by

Probti = 1 − (1 −N c)
2

. (3.9)

On the other hand, the upper limit is calculated using the inverse of the proba-
bility of the chi-square distribution where the probability is calculated as follows:

Probts =
(1 −N c)

2
, (3.10)

where N c is the confidence level. Here, it is assumed a value of 80%. The definition
of degrees of freedom for the class number (dof) is given by:

dof = nc − 1 − 2, (3.11)

where the value 1 refers to the average where the value 2 refers to the lower and
upper limits of each class. In this work, it is assumed that the number of class is
equal to 14 and the degree of freedom is equal to 11.

After the definition of the lower and upper bounds for the theoretical coefficient
χ2

T , it is important to check if the experimental coefficient χ2
e is within the range of

the theoretical coefficient χ2
T . In positive case, the data does not present systematic

errors.

3.1.2. Non-statistical methods

The uncertainty contributions of type B are associated with non-statistical meth-
ods. The variance is estimated from available information on possible variability
of measurement magnitudes. This information may include: data from previous
measurements; experience or general knowledge of the behavior and properties of
materials and relevant instruments manufacturer’s specifications data provided in
calibration’s certificates and other certificates, uncertainties assigned to reference
data taken from handbooks. The uncertainty calculation uses the method PUMA
(Procedure for Uncertainty Management) introduced by ISO 14253-2 that allows the
calculation without the knowledge of details about the uncertainties contribution.

The uncertainty analysis of type B related to the constitutive model requires the
definition of sensitivity coefficients related to the constitutive parameters and tem-
perature, treated as independent variables. The definition of sensitivity coefficients

1450067-10
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is done considering a given dependent variable, Y , expressed as a function of inde-
pendent variables X1, . . . , Xj , . . . , Xq

Y = G(X1, . . . , Xj , . . . , Xq). (3.12)

From the Taylor series expansion, it is possible to write:

δY =
(
∂G

∂X1

)
dX1 + · · · +

(
∂G

∂Xj

)
dXj + · · ·

(
∂G

∂Xq

)
dXq, (3.13)

where Cj = ( ∂G
∂xj

) are the sensitivity coefficients. The variance of Y is given by:

u2(Y ) =
q∑

j=1

C2
j u

2(Xj). (3.14)

The uncertainty of type B, UV , is the square root of the sum of the contribution
of each independent variable multiplied by the student distribution factor. This
contribution is evaluated by the variance of each independent variable multiplied
by the sensitivity coefficient:

UV = J

√√√√ q∑
j=1

C2
j u

2(Xj), (3.15)

where q is the number of independent variables; the independent variable variance
is given by

u2(Xj) = a2
j

ndj

kan rj

. (3.16)

The value of ka depends on the distribution forms. It assumes values 2, 3 and 6
corresponding to U-shape, triangular or uniform distribution, respectively [Barbato
et al., 2005]. The value of ndj corresponds to the input number of the magnitude
and nrj is the number of operators that measures this magnitude; aj is the variation
of independent variables for different adjustments divided by 2.

The total uncertainty, UT , is defined as combination of all uncertainties. Here,
it represents a sum of uncertainty due the number of cycles, UC , and sensitivity
coefficients, UV .

UT = U c + UV , (3.17)

where UC is calculated from Eq. (3.4).
The relative uncertainty is defined as the relation between the total uncertainty

and the dependent variable:

UR =
UT

Y
. (3.18)

3.2. Filtering

The first step on the uncertainty analysis is to establish a filtering process of
the experimental data. Hence, consider the SMA wire experimental tensile tests.
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(a) (b)

Fig. 6. Experimental tensile tests. (a) Stress–strain curve for 20 cycles. (b) Zoom related to the
strain range (0.02, 0.025), specific region used as example.

The hysteresis curve is divided into 2960 sub-ranges, being 1480 on the upper
plateau of the hysteresis loop, associated with the austenite–martensite phase trans-
formation, and 1480 on the lower plateau, associated with the martensite–austenite
phase transformation. The strain sub-range (0.02, 0.025) is used to explain the pro-
cedure. Figure 6 shows 20 cycles of the stress–strain curve and also a zoom of the
specific range.

Linear regression is carried out assuming that y = ax + b, where a and b are
the adjusted coefficients. First-order residues are calculated from this regression.
Figure 7 shows the first-order residue as a function of strain, indicating the trend.
Table 2 presents the data corresponding to the linear adjustments and the calcu-
lations associated with the standard deviation of the coefficients a and b. In addi-
tion, the coefficient of determination (R2), the standard deviation of the first-order

Fig. 7. First-order residue-strain of the range (0.02, 0.025).
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Table 2. Statistical data provided by a linear regression for the strain
sub-range (0.02, 0.025).

b a

Coefficients 1258.67 93.63
Standard deviations of the coefficients 265.04 6.02
Robustness 2.39 7.84

Standard deviation of the residues of the first-order 3.87
Number of degrees of freedom 97.00

R
2 0.19

Table 3. First-order residue value.

0.725 −1.734 −2.745 0.838 −2.155 −1.395 −2.543 3.251 −1.128 1.607 −1.088
1.049 −1.752 17.442 −0.606 −3.800 1.173 −2.633 0.864 −2.332 3.178 −0.443
2.224 −1.273 1.345 −1.349 −2.203 1.110 −1.835 −1.436 −2.332 0.857 −1.089
0.367 −2.193 1.602 −1.463 16.968 −0.397 −3.505 1.073 −2.399 0.854 −2.559
0.072 −3.080 2.880 −0.778 1.520 −1.076 −1.740 1.259 −1.617 −1.483 −2.342

−2.030 −3.291 0.915 −1.574 1.750 −1.150 16.445 −0.503 −3.429 1.129 −2.551
0.272 −3.200 −1.630 −2.774 3.066 −0.543 1.582 −0.993 −1.543 −0.608 −1.656
0.327 −2.645 0.652 −2.896 1.048 −1.202 1.687 −0.969 15.720 1.061 −3.467

−0.972 −4.178 0.950 −2.798 0.737 −2.345 1.089 −0.256 1.495 −0.935 −1.544

residues, sr1
, the number of degrees of freedom and the robustness are also presented

in the Table 2.
The outlier detection and exclusion are done applying Chauvenet’s criterion over

the values of the first-order residues, presented in Table 3. The values 17.705, 16.629,
15.982 and 15.16 are eliminated for this analysis.

After detecting and excluding all the outliers, the analysis is repeated, evaluating
the first-order residues. Figure 8 and Table 4 present the new results. Results of
Fig. 8 show the elimination of the systematic errors associated with results of Fig. 7.
Linear tendency of the first-order residues is observed.

(a) (b)

Fig. 8. Analysis of the strain range (0.02, 0.025). (a) Stress–strain curve. (b) First-order residue-
strain curve.
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Table 4. Statistical data provided by the linear projection function.

b a

Coefficients 1359.82 90.63
Standard deviations of the coefficients 123.55 2.81
Robustness 5.54 16.26

Standard deviation of the residues of the first-order 121.14
Number of degrees of freedom 93.00

R
2 0.57

Table 5. Normal distribution data.

Confidence level 80%
Number of classes 14
Number of constraints 3
Degrees of freedom [d.o.f] 11
Lower boundary of χ2 5.58
Upper boundary of χ2 17.28
Experimental χ2 12.38

Table 4 is used to verify the regression model. Note that the robustness value is
greater than 1 indicating that the linear regression is appropriate to represent the
experimental data. The coefficient of determination (R) is another important factor
to be analyzed indicating how the data is dispersed around the model. For values
greater than 0.7 the model represents the data in an appropriate form. Table 5 shows
that the experimental Pearson coefficient of correlation (χ2) defining the lower and
upper boundaries of the theoretical values. Figure 9 represents the normal distribu-
tion of the residues considering the analysis before and after the outlier detection
and exclusion. Note that the procedure brings the experimental distribution closer
to a normal distribution.

(a) (b)

Fig. 9. Effect of outlier detection and exclusion of systematic errors. (a) Before the analysis.
(b) After the analysis.
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This analysis identifies that the first of the 20 cycles is an outlier. Therefore, it
is neglected and all the analysis considers just the subsequent 19 cycles.

4. Constitutive Model

The thermomechanical description of SMAs is very complex, being the objective
of several research efforts. Lagoudas [2008] and Paiva and Savi [2006] presented
a general overview of the constitutive models employed for this aim. This work
employs the model with internal constraints proposed by Paiva et al. [2005], and
discussed in the following references: Savi et al. [2002], Baêta-Neves et al. [2004], Savi
and Paiva [2005] and Monteiro et al. [2009]. This 1D macroscopic model considers
different material properties for each phase. It includes four macroscopic phases:
three variants of martensite (M+,M−,M) and an austenitic (A) phase. M+ and
M− are detwinned martensites, which are induced by stress fields and M is twinned
martensite, which is stable in low temperatures, in the absence of a stress field. For
the sake of simplicity, this work does not take into account tension–compression
asymmetry, the plasticity and the transformation induced by plasticity, considered
in the previous versions of the model. In addition, only tensile martensite is of
concern in order to reproduce the experimental tests. Under these assumptions, it
is possible to highlight the most important effects and the uncertainty influences.

The constitutive equations are defined from state variables that include strain, ε,
and temperature, T . Besides, two volume fractions are considered: β+ is associated
with tensile detwinned martensite (M+) and βA represents austenite (A). Twinned
martensite M can be obtained from the phase coexistence argument: βM = 1 −
β+ − βA. The set of constitutive equations is presented in the sequence:

σ = Eε− (Eαh + α)β+ − Ω(T − T0) (4.1)

β̇+ =
1
η+

+ {αε+ Λ+ − (2αhα+ E(αh)2)β+ + αh(Eε− Ω(T − T0)) − τ+} + τ+,

(4.2)

β̇A =
1
ηA

{
1
2
(EA − EM )(ε+ αhβ+)2 + ΛA

+ (ΩA − ΩM )(T − T0)(ε+ αhβ+) − τA

}
+ τA. (4.3)

In these equations, the following terms are related to projections that assure a
proper coexistence of the involved phases.

τ = [τ+, τA] ∈ ∂Iπ(β+, βA), (4.4)

τ = [τ+, τA] ∈ ∂Iχ(β̇+, β̇A). (4.5)

These projections are defined from the sub-differential of the indicator functions
related to internal constraints. The indicator function Iπ(β+, βA) is related to the
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Fig. 10. Geometrical representation of the phase’s coexistence restriction.

convex set that can be geometrically interpreted by a triangle in β+, βA – space,
shown in Fig. 10.

π = {βm ∈ R | 0 ≤ βm ≤ 1(m = +, A);β+ + βA ≤ 1}. (4.6)

Moreover, Iχ is the indicator function related to the convex set χ, which pro-
vides constraints associated with phase transformation evolution, such as internal
subloops due to incomplete phase transformation description [Savi and Paiva, 2005].

In the previous equations, subscript M is related to the martensitic phase while
A is associated with austenite; α is the parameter related to the vertical size of the
stress–strain hysteresis loop, αh is the parameter related to the horizontal size of
the stress–strain hysteresis loop while Λ’s are associated with phase transformations
stress levels; E’s represent the elastic modulus, Ω’s are related to the thermal expan-
sion coefficients; T0 is a reference temperature; and ηm(m = +, A) are associated
with the internal dissipation of each material phase. Furthermore, the parameters
E and Ω are defined from their austenitic and martensitic phase values:

E = EM + βA[EM − EA], (4.7)

Ω = ΩM + βA[ΩM − ΩA], (4.8)

while Λ+ and ΛA are temperature dependent being defined as follows:

Λ+ =



−L+

0 +
L+

TM
(T − TM ), if T > TM

−L+
0 , if T ≤ TM

(4.9)

ΛA =



−LA

0 +
LA

TM
(T − TM), if T > TM

−LA
0 , if T ≤ TM

(4.10)
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Table 6. Constitutive parameters.

EA (GPa) EM (GPa) ΩA (MPa/K) ΩM (MPa/K) α (MPa) αh

9.9 9.9 0.74 0.17 100 0.0365

L+
0 (MPa) L+ (MPa) LA

0 (MPa) LA (MPa) η+ (MPa.s) ηA (MPa.s)

0.01 74 1 108 2 2

TM (K) T0 (K)

270.12 307

where TM is the temperature below which the martensitic phase becomes stable in
a stress-free state. In addition, L+

0 , L
+
0 , L

A
0 and LA are parameters related to phase

transformation critical stresses.
Table 6 shows constitutive parameters employed to match experimental tests.

Note that model parameters are related to thermoelastic and phase transformation
properties.

5. Uncertainty Estimation

The uncertainty associated with constitutive model is estimated by consider-
ing that the stress σ is the dependent variable, while constitutive parameters,
EM , EA,ΩM ,ΩA, αh, α, L+

0 , L
+, LA

0 , L
A, η+, ηA and TM and the temperature, T ,

are independent variables.
Appendix A presents the sensitivity coefficients Cj calculated with respect to

dependent variables. This calculation considers a discretized version of the consti-
tutive equations, as follows:

σn = Eεn − (Eαh + α)β+
n − Ω(Tn − T0) (5.1)

β+
n = β+

n−1 +
{

1
η+

[αE + Λ+ − (2αhα+ E(αh)2)β+
n

+αh(Eεn − Ω(Tn − T0)) − τ+] + τ+

}
∆t, (5.2)

βA
n = βA

n−1 +
{

1
ηA

[
1
2
(EA − EM )(εn − αhβ+

n )2 + ΛA

+ (ΩA − ΩM )(Tn − T0)(εn − αhβ+
n ) − τA

]
+ τA

}
∆t, (5.3)

where subscripts n and n−1 define the actual and previous time step.
The contribution of each uncertainty is calculated by dividing the hysteresis

curve into 592 parts, being 296 on the upper plateau, associated with the austenite–
martensite phase transformation, and 296 on the lower plateau, associated with the
martensite–austenite phase transformation. Besides, each of these parts is divided
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into sub-ranges as in the previous analysis. Basically, it is assumed ranges of 0.0025
and each sub-range is divided into four equal parts.

5.1. Uncertainty related to the number of cycles

This section is dedicated to evaluate uncertainty contribution related to the number
of cycles to which SMA specimen is subjected. Basically, experimental tests consider
20 cycles, but the first one is discarded by the application of the outlier process.
Afterward, an average value concerning the stress and strain of all 19 cycles inside
each sub-range of 0.000625 is calculated with their respective number of points,
called m̄σ and m̄ε, respectively. The standard deviations, s̄σ, is then calculated.
Finally, the average of the standard deviation of the stress, the average of stress
and strain from each interval of 0.0025, sσ,mσ and mε respectively, are calculated
from the average of four values of s̄σ, m̄σ and m̄ε for each interval.

sσ =
∑4

i=1 s̄
σ

4
, (5.4)

mσ =
∑4

i=1 m̄
σ

4
, (5.5)

mε =
∑4

i=1 m̄
ε

4
. (5.6)

From Eq. (3.4), it is possible to calculate the value of the uncertainty related to
the number of cycles, U c = Jsσ, where the student factor, J , is assumed to be 2 for
a confidence level of 95%.

Figure 11(a) presents a comparison between numerical simulations and experi-
mental data expressed as the average stress,mσ, and the average strain,mε. Besides,

(a) (b)

Fig. 11. Uncertainty analysis due to the number of cycles. (a) Stress–strain curve. (b) Comparison
between upper and lower plateaus uncertainties.
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a range represented by bars with the uncertainty contribution values, U c, defines
experimental results. Figure 11(b) shows the comparison between the uncertainty of
the upper and the lower plateaus of the hysteresis loop. Note that the uncertainty
contribution of the upper plateau is greater than the one of the lower plateau.
Moreover, it is important to observe that the uncertainty is relevant. It is impor-
tant to highlight that, in general, the model in within the range of uncertainty of
the experimental data. The exceptions are the regions related to the finish of the
austenite–martensite transformation and also the region of the start of the reverse
transformation.

5.2. Uncertainty related to the independent variables (type B)

Sensitivity coefficients related to independent variables are now in focus. The coef-
ficients aj are calculated using constitutive parameters presented in Table 6 as
reference values. The calculation considers perturbations from each independent
variable separately, performing a new adjustment with the perturbed value. A com-
parison between both stress–strain curves defines a perturbation responsible for the
variation. The magnitude of the difference between the reference value and the per-
turbed value of the independent variable, divided by 2, is the value of aj for the
respective independent variable. The following parameters are assumed for uncer-
tainty analysis: ka = 3 (uniform distribution); ndj = 1 (single input); nrj = 1 (single
output).

Figure 12 shows the comparison between numerical simulations and experimen-
tal data with uncertainty contributions. Figure 12(a) shows stress–strain curve
related to both numerical simulation and experimental data together with bars
representing the contribution of uncertainty UV . Figure 12(b) shows the compari-
son between the uncertainties related to lower and upper plateaus of the hysteresis
loop.

(a) (b)

Fig. 12. Uncertainty analysis due to the sensitivity coefficients. (a) Stress–strain curve. (b) Com-
parison between upper and lower uncertainty.
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(a) (b)

Fig. 13. Effects of uncertainty due to the number of cycles and parameters variations. (a) Lower
plateau of the hysteresis loop. (b) Upper plateau of the hysteresis loop.

By establishing a comparison between uncertainties related to independent vari-
ables, UV , and associated with the number of cycles, U c, it is noticeable that the first
one is less expressive than the second one with respect to the upper plateau of the
hysteresis loop, for low strain values. On the other hand, the lower plateau presents
a greater contribution of the uncertainty UV than the one of the uncertainty U c.
This comparison is shown in Fig. 13. Note that the sensitivity coefficients have
greater impact on the total uncertainty value on the lower plateau of the hysteresis
loop. On the upper plateau, the sensitivity coefficients and the number of cycles
have different impact during the process. Nevertheless, it should be pointed out
that the uncertainty due to variations of the independent variables and the number
of cycles vary during mechanical loading imposed on the specimen.

Figure 14 presents the relative uncertainty as a function of strain. Note that this
contribution is more important for small strain values. This behavior is mainly due
to the contribution of the uncertainty due to the number of cycles.

Fig. 14. Relative expanded uncertainty (UR).
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Concerning dependent variables, constitutive parameters,EA and EM , and tem-
perature, T , has the most important contributions to uncertainty. Figure 15 shows
the percentage variation of each one of these variables with respect to the total
uncertainty.

The contribution of the total uncertainty, UT , defined by a combination of
uncertainties due the number of cycles and sensitivity coefficients, is now in focus.
Figure 16 shows the comparison between numerical simulations and experimental
data with uncertainty contributions. It is important to observe that numerical sim-
ulations are inside the acceptable region defined by uncertainties. Nevertheless, it

(a) (b)

Fig. 15. Sensitivity coefficient influence with respect to the total uncertainty. (a) Lower plateau
of the hysteresis loop. (b) Upper plateau of the hysteresis loop.

Fig. 16. Comparison between numerical and experimental results of the stress–strain curve con-
sidering total uncertainty contribution.

1450067-21



2nd Reading

November 25, 2014 8:42 WSPC-255-IJAM S1758-8251 1450067

S. A. Oliveira, M. A. Savi & I. F. Santos

Fig. 17. Comparison between total uncertainties related to upper and lower plateaus of the
hysteresis loop.

should be observed that there are four critical regions, related to start and finish of
phase transformations. These regions are highlighted in Fig. 16. The region of the
finish of austenite–martensite is especially critical since experimental data defines a
region around linear elastic response. This critical situation has an influence on the
start of the reverse transformation, from martensite to austenite. Figure 17 presents
the uncertainty contributions related to the upper and lower plateaus of the hys-
teresis loop. The upper plateau has a more significant importance, exactly due to
the mentioned critical region.

Fig. 18. Comparison of the numerical simulation points that are inside and outside the uncer-
tainty range of the experimental data.
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Figure 18 represents the model ability to reproduce experimental data. It
presents the distribution of the numbers of points inside and outside the uncer-
tainty range. Note that 76.09% of the numerical results are inside the range while
23.91% are outside. If the critical region of the finish of austenite–martensite
phase transformation is discarded, these numbers change to 91.62% inside and
8.38% outside the uncertainty range. This result can be considered a close agree-
ment since it captures the general, strong nonlinear thermomechanical behavior of
SMAs.

6. Conclusions

This paper deals with the uncertainty analysis of the thermomechanical description
of SMAs. Experimental data obtained from tensile tests are treated together with
numerical simulations associated with a constitutive model proposed by Paiva et al.
[2005]. Two uncertainty contributions are investigated: due to the number of cycles;
and due to constitutive parameters. Concerning sensitivity coefficients, the consti-
tutive parameters that present the greater influence with respect to uncertainty
are the elastic moduli, EA and EM . Besides, temperature has also an important
contribution. Results show that numerical simulations are inside the uncertainty
range of the experimental data. Regions associated with the finish of austenite–
martensite phase transformation and start of martensite–austenite transformation
present some discrepancies. Nevertheless, the model is capable to capture the gen-
eral aspects of experimental data fitting the strong nonlinear thermomechanical
behavior of SMAs. This analysis should be considered as an essential verification
of the constitutive model, encouraging its use in SMA description. Different phe-
nomena related to SMA thermomechanical behavior and also more sophisticated
analyses including 3D media can be developed from the results of this uncertainty
analysis.
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This appendix presents the sensitivity coefficients calculated for each independent
variable of the constitutive model.
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Definition of auxiliary variables

γ =
(
ε− αh

(
β+

n−1 +
∆t(αε+ Λ+ − β+(2αhα+ αhE) + αh[εE − Ω(T − T0))

η+

))
,

L =


EM − (EM − EA)



βA

n−1 +

(ΛA + 0.5(−αhβ+ + ε)2(EA − EM )
+ (−αhβ+ + ε)(ΩA − ΩM )(T − T0))

ηA




,

ψ =
(ΛA + 0.5(−αhβ+ + ε)2(EA − EM ) + (−αhβ+ + ε)(ΩA − ΩM )(T − T0))∆t

ηA

(a) EMSensitivity Coefficient

CEM = −α(−αhβ+(1 − βA) + αhε(1 − βA))∆t
η+

+ γ

(
1 +

0.5(−αhβ+ + ε)2(EM − EA)∆t
ηA

− βA
n−1 − ψ

)

−L
(

(αh)2(1 − βA)(−β+ + ε)∆t
η+

)

− 0.5(−αhβ+ + ε)2(ΩM − ΩA)(T − T0)∆t
ηA

(b) EA Sensitivity Coefficient

CEA = −α(−αhβ+βA + αhεβA)∆t
η+

+ γ

(
− (0.5(−αhβ+ + ε)2(EM − EA))∆t

ηA
+ βA

n−1 + ψ

)

−L
(

(αh)2βA(−β+ + ε)∆t
η+

)

+
0.5(−αhβ+ + ε)2(ΩM − ΩA)(T − T0)∆t

ηA
.

(c) ΩA Sensitivity Coefficient

CΩA = L
(

(αh)2βA(T − To)∆t
η+

)
+
ααhβ

A(T − To)∆t
η+

− γ

(
(−αhβ+ + ε)(EA − EM )∆t

ηA

)
(T − T0)

−
(

(βA
n−1 + ψ) − (−αhβ+ + ε)(ΩM − ΩA)(T − T0)∆t

ηA

)
(T − T0)
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(d) ΩM Sensitivity Coefficient

CM
Ω = L

(
(αh)2(1 − βA)(T − T0)∆t

η+

)
+
ααh(1 − βA)(T − T0)∆t

η+

+ γ

(
(−αhβ+ + ε)(EA − EM )∆t

ηA

)
(T − T0)

−
(

(1 − βA
n−1 − ψ) +

(−αhβ+ + ε)(ΩM − ΩA)(T − T0)∆t
ηA

)
(T − T0)

(e) αh Sensitivity Coefficient

Cαh = L
(
−β+

n−1 −
(αε+ Λ+ − β+(2ααh + αhE) + αh[εE − Ω(T − To))∆t

η+

− αh(εE − β+(2α+ E) − Ω(T − T0))∆t
η+

)

− γ

(
−EA + EM

ηA

)
∆t(−β+(−αhβ+ + ε)(EA − EM )

− β+(ΩA − ΩM )(T − To))

− α(εE − β+(2α+ E) − Ω(T − T0))∆t
η+

+
−(ΩA−ΩM )(T−To)(−β+(−αhβ++ε)(EA−EM )−β+(ΩA−ΩM )(T−T0)∆t)

ηA

(f) α Sensitivity Coefficient

Cα = −α(−2αhβ+ + ε)∆t
η+

− β+
n−1 − L

(
αh(−2αhβ+ + ε)∆t

η+

)

−(αε+ Λ+ − β+(2ααh + αhE) +
αh(εE − Ω(T − T0))∆t

η+

(g) η+ Sensitivity Coefficient

Cη+ =
α∆t(αε + Λ+ − β+(2ααh + αhE) + αh[εE − Ω(T − T0))

(η+)2

+
αh∆t
(η+)2

L(αε+ Λ+ − β+(2ααh + αhE) + αh[εE − Ω(T − T0))

(h) CηA Sensitivity Coefficient

CηA =
(EM − EA)∆t

(ηA)2
γ(ΛA + 0.5(−αhβ+ + ε)2(EA − EM )

+ (−αhβ+ + ε)(ΩA − ΩM )(T − T0)) − (ΩM − ΩA)(T − T0)
ηA

ψ
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(i) L+
0 Sensitivity Coefficient

CL+
0

=
α∆t
η+

+
αhL∆t
η+

(j) LA
0 Sensitivity Coefficient

CLA
0

=
γ(EM − EA)∆t

ηA
− (ΩM − ΩA)(T − T0)∆t

ηA

(k) L+ Sensitivity Coefficient

CL+ = −α(T − TM)∆t
η+TM

− αh(T − TM )L∆t
η+TM

(l) LA Sensitivity Coefficient

LA =
(EA − EM )(T − TM )γ∆t

ηATM
− (ΩA − ΩM )(T − To)(T − TM)∆t

ηATM

(m) TM Sensitivity Coefficient

CT M =
α(L+(T−T M )

(T M )2
+ L+

T M )∆t

η+
+ γ

(EM − EA)(LA(T−T M )
(T M )2

+ LA

T M )∆t

ηA

+L
αh(L+(T−T M )

(T M )2 + L+

T M )∆t

η+

−
(ΩM − ΩA)(T − T0)(

LA(T−T M )
(T M )2 + LA

T M )∆t

ηA

(n) T Sensitivity Coefficient

CT = −ΩM − α∆t(αhΩ + L+

T M )
η+

− γ
(EM − EA)((−αhβ+ + ε)(ΩA − ΩM ) − LA

T M )∆t
ηA

− Lα
h∆t(αhΩ + L+

T M )
η+

− (ΩA − ΩM )(βA
n−1 + ψ)

+
(ΩM − ΩA)(T − To)((−αhβ+ + ε)(ΩA − ΩM ) − LA

T M )∆t
ηA

.
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