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Abstract
This contribution is concerned with the analysis of the nonlinear behavior of
shape memory bars, employing the finite element method. A constitutive
equation based on Fremond’s theory is considered. The proposed
constitutive model considers four phases in the formulation (three variants of
martensite and an austenitic phase), including thermal expansion and plastic
strains. An iterative numerical process based on an operator split technique
is developed in order to deal with the nonlinearities of the formulation. On
this basis, coupled governing equations can be solved from uncoupled
problems where classical procedures can be employed. Numerical
simulations are carried out in order to illustrate the general behavior of shape
memory bars under different thermomechanical loadings. Results show that
the proposed model captures the general behavior of SMAs, allowing the
description of bars subjected to non-homogeneous thermomechanical loads.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Shape memory alloys (SMAs) are found in a great number
of applications in different fields of science and engineering.
Self-actuating fasteners (La Cava et al 2000, van Humbeeck
1999, Kibirkstis et al 1997, Borden 1991), thermal actuator
switches and several bioengineering devices provide some
examples of such applications (Machado and Savi 2002,
2003, Duerig et al 1999, Lagoudas et al 1999). Aerospace
technology is also using SMAs for solve important problems,
in particular those concerning space saving achieved with
self-erectable structures, stabilizing mechanisms and non-
explosive release devices (Pacheco and Savi 1997, Denoyer
et al 2000). Micromanipulators and robotic actuators have
been built employing SMA properties to mimic the smooth
motions of human muscles (Garner et al 2001, Webb et al
2000, Fujita and Toshiyoshi 1998, Rogers 1995). Moreover,
SMAs are being used as actuators for vibration and buckling

control for flexible structures (Pietrzakowski 2000, Birman
1997, Rogers 1995). Despite all these applications, the
modeling of SMAs is still the object of much research carried
out in order to obtain a full description of the details of their
thermomechanical behavior.

This contribution proposes a finite element (FE)
formulation for dealing with shape memory bars. Finite
element modeling of SMA structures has previously been
addressed by Brinson and Lammering (1993): a constitutive
theory based on Tanaka’s model (Tanaka 1986), and later
modified by Brinson (1993), was employed to describe the
SMA behavior. More recently, Auricchio and Taylor (1996)
have also proposed a three-dimensional finite element model.
Savi et al (1998) discuss an iterative numerical procedure
that has been developed to deal with both geometrical and
constitutive nonlinearities in the finite element model for
adaptive trusses with SMA actuators. Lagoudas et al (1997)
consider the thermomechanical response of a laminate with
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Figure 1. The tetrahedron of the constraints, π .

SMA strips where the thermomechanical response is based on
the Boyd–Lagoudas polynomial hardening model (Boyd and
Lagoudas 1996). Kouzak et al (1998) also treats SMA beams
using a constitutive equation proposed by Brinson (1993).
Trochu and Qian (1997), Masud et al (1997), Bhattacharyya
et al (2000), Liu et al (2002) are other contributions in this
field. Moreover, dual kriging interpolation has been employed
with a finite element method (FEM) in order to describe the
shape memory behavior (Trochu and Qian 1997, Trochu and
Terriault 1998, Trochu et al 1999).

Here, the finite element method is employed, facilitating
the spatial discretization of bars using a constitutive model
proposed by Savi et al (2002) and Baêta-Neves et al
(2004) to describe the thermomechanical behavior of SMAs.
The main goal is the use of the classical FEM associated
with a constitutive model that represents the general
thermomechanical behavior of SMAs. The tool developed
allows one to describe the general behavior of SMA bars
subjected to non-homogeneous thermomechanical loads using
well-established numerical procedures.

The constitutive model is based on Fremond’s theory
(Fremond 1987, 1996) and includes four phases in the
formulation: three variants of martensite and an austenitic
phase. Furthermore, different material parameters for the
austenitic and martensitic phases are involved. Thermal
expansion and plastic strains are also included in the
formulation and the hardening effect is represented by a
combination of kinematic and isotropic behaviors. A plastic
phase transformation coupling is incorporated into the model
allowing a correct description of the thermomechanical
behavior of SMAs. Moreover, horizontal enlargement of
the stress–strain hysteresis loop is considered, allowing better
adjustments with experimental data.

An iterative numerical procedure based on an operator
split technique (Ortiz et al 1983) is developed in order
to deal with the nonlinearities in the formulation. On
this basis, coupled governing equations can be solved from
uncoupled problems where classical numerical procedures
can be employed. Numerical simulations are carried out,
revealing the different behaviors of SMA bars. The results
show that the proposed model is able to capture the general
behavior of SMAs, including pseudoelastic behavior, shape
memory effects and phase transformations due to temperature
variations.
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Figure 2. A composite bar with a SMA actuator.
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Figure 3. A SMA bar subjected to a homogeneous axial load
process.

2. Constitutive model

The description of the thermomechanical behavior of SMAs
has been the objective of much recent research. In this paper,
the constitutive model proposed by Savi et al (2002) and Baêta-
Neves et al (2004), which is built upon the Fremond model
(Fremond 1987, 1996), is employed in order to describe the
SMA behavior.

The proposed model is constructed within the scope of
the standard generalized material approach (Lemaitre and
Chaboche 1990) considering one-dimensional media. On this
basis, the thermomechanical behavior can be described in
terms of the Helmholtz free energy, ψ , and the dual of the
pseudopotential of dissipation, φ∗, automatically satisfying the
second law of thermodynamics. Here, a brief description of the
constitutive model is presented. A more detailed description of
this model may be found in Savi et al (2002) and Baêta-Neves
et al (2004).

The description of the thermomechanical behavior of
SMAs is given, considering the following state variables:
strain, ε; temperature, T ; the volumetric fractions of the
martensitic variants β1 and β2, which are associated with
detwinned martensites (M+ and M−, respectively), and the
austenite (A), β3. The fourth phase is associated with twinned
martensite (M) and its volumetric fraction is β4. Notice,
however, that the variable β4 can be eliminated since β1 +
β2 + β3 + β4 = 1. The plasticity phenomenon is described
considering classical plasticity with the aid of the plastic strain,
εp, and the hardening effect is represented by a combination of
kinematic and isotropic behaviors, described using variablesµ
and γ , respectively. Additive decomposition is assumed and
the constitutive model may be presented as follows:

σ = E(ε − εp) + (α + EαH)(β2 − β1)−	(T − T0) (1)

β̇1 = 1

η

[
α(ε − εp) +

LM

TM
(T − TM)

+ αH
[
E(ε − εp) + (2α + EαH)(β2 − β1)−	(T − T0)

]

− ηci Kγ − ηck
µ

H
− ∂1 J

]
(2)
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(a)

(c)(b)

Figure 4. Pseudoelasticity. (a) Thermomechanical loading. (b) The stress–strain curve. (c) Volumetric fractions of phases.

(a)

(b) (c)

Figure 5. The shape memory effect. (a) Thermomechanical loading. (b) The stress–strain curve. (c) Volumetric fractions of phases.
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(a)

(b) (c)

Figure 6. The phase transformation due to temperature variation. (a) Thermomechanical loading. (b) The strain–temperature curve.
(c) Volumetric fractions of phases.

β̇2 = 1

η

[
−α(ε − εp) +

LM

TM
(T − TM)

− αH
[
E(ε − εp) + (2α + EαH)(β2 − β1)−	(T − T0)

]

− ηci Kγ − ηck
µ

H
− ∂2 J

]
(3)

β̇3 = 1

η

[
−1

2
(EA − EM)[(ε − εp)− αH(β1 − β2)]

2

+
(LM + LA)

TM
(T − TM) + (	A −	M)(T − T0)

× [(ε − εp)− αH(β1 − β2)] − 1
2 (KA − KM)γ

2

−
(

1

2HA
− 1

2HM

)
µ2 + ηci Kγ + ηck

µ

H
− ∂3 J

]
(4)

ε̇p = λ sgn(σ − µ) (5)

γ̇ = |ε̇p| + ηci(β̇1 + β̇2 − β̇3) (6)

µ̇ = H ε̇p + ηck(β̇1 + β̇2 − β̇3) (7)
where: σ is the stress; α, LM = LM(T ) and LA =
LA(T ) are material parameters that are used to describe the
martensitic transformation; EM and EA represent the elastic
moduli for the martensitic and austenitic phases, respectively;
	M and 	A represent the thermal expansion coefficients for
martensitic and austenitic phases, respectively; KM and KA

are the plastic moduli for martensitic and austenitic phases
while HM and HA are the kinematic hardening moduli for

1 1 4433221 1 22 554433

FxFx

1 1 4433221 1 22 554433

FxFx

 

Figure 7. A bar subjected to an axial load at the mid-point and
restricted at both ends.

martensitic and austenitic phases; TM is a temperature below
which the martensitic phase starts its formation in the absence
of stress while T0 is a reference temperature; ρ is the density.
The parameter αH defines the horizontal width of the stress–
strain hysteresis loop. On the other hand, the parameter
η is associated with the internal dissipation of the material
while ηci and ηck are related to plastic phase transformation
coupling. The parameter ηci is associated with isotropic
hardening coupling while ηck is associated with kinematic
hardening coupling. Moreover, λ is the classical plastic
multiplier and the following definitions are assumed in the
previous equations:

E = EM − β3(EM − EA) (8)

	 = 	M − β3(	M −	A) (9)
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Figure 8. The pseudoelastic effect for a bar subjected to an axial load at the mid-point and restricted at both ends. (a) Stress–strain curves.
(b) Volumetric fractions of phases. (c) A schematic representation of the phase distribution.

K = KM − β3(KM − KA) (10)

1

H
= 1

HM
− β3

(
1

HM
− 1

HA

)
. (11)

The definitions of the parameters LM and LA are associated
with a material parameter L and a temperature TC, defined as
the temperature below which there is no change in the stress–
strain hysteresis loop position. This definition is introduced
with the objective of limiting the displacement of the hysteresis
loop with respect to temperature when T < TC. The following
expressions are obtained:

LM(T ) =



LM = L if T � TC

LM = L
(TC − TM)

(T − TM)
if T < TC

(12)

LA(T ) =




LA = L if T � TC

LA = 2L −
[

L
(TC − TM)

(T − TM)

]
if T < TC.

(13)

Moreover, J = J (β1, β2, β3) represents the indicator
function of the tetrahedron π of the set (figure 1)

π

=
{
βi ∈ Re

∣∣∣∣ 0 � βi � 1(i = 1, 2, 3);β1 + β2 + β3 � 1;
β1 = β2 = 0 if σ = 0 and βS

1 = βS
2 = 0

}
.

(14)

This set also includes the constraints where detwinned
martensites, M+ and M−, are induced by stress fields. The
definition of this physical aspect is considered when σ = 0
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(a)

(b)

Figure 9. The shape memory effect for a bar subjected to an axial load at the mid-point and restricted at both ends. (a) Stress–strain curves.
(b) Volumetric fractions of phases. (c) A schematic representation of the phase distribution.

and βS
1 = βS

2 = 0, where βS
1 and βS

2 are the values of β1 and
β2, respectively, when the phase transformation begins to take
place.

As regards plastic behavior, the yield surface is defined as
follows (Lemaitre and Chaboche 1990):

f (σ, µ, γ ) = |σ − µ| − (σY + Kγ ). (15)

The irreversible nature of plastic flow is represented by
means of the Kuhn–Tucker conditions. Another constraint
must be satisfied when f (σ, γ, µ) = 0. It is referred to
as the consistency condition and corresponds to the physical
requirement that a stress point on the yield surface must persist
on it. These conditions are presented as follows (Simo and

Hughes 1998):

λ � 0 f (σ, γ, µ) � 0 λ f (σ, γ, µ) = 0

λ ḟ (σ, γ, µ) = 0 if f (σ, γ, µ) = 0.
(16)

The proposed model captures the general behavior of
SMAs, being capable of describing pseudoelasticity, the phase
transformation due to temperature variation and both one-way
and two-way shape memory effects (Savi et al 2002).

3. Finite element formulation

In order to present the finite element formulation, we consider
a composite bar reinforced with a SMA actuator (figure 2),
subjected to an axial load. The actuator is assumed to have
a thickness significantly less than the cross-sectional width of
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(c)

Figure 9. (Continued.)
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Figure 10. A bar with a variable cross-section.

(a)

(b)

Figure 11. The pseudoelastic effect for a bar with a variable cross-section subjected to an axial load. (a) Stress–strain curves.
(b) Volumetric fractions of phases.

the bar and also to be constructed in such a way as to preserve
the symmetry of the axial load, avoiding flexure loads.

The internal energy increment may be written as follows:

δ� =
∫

Vm

σmδε dV +
∫

Va

σaδε dV (17)

where V is the volume and the subscripts m and a indicate
association with the matrix and the actuator, respectively. An
elastic relation is considered for the matrix: σm = Emε, where
Em is the matrix elastic modulus; σa is given by the constitutive
equation presented in the preceding section. For simplicity, a
compact form of the stress–strain relation is presented here:

σa = Eε +�a (18)

where �a represents the nonlinear terms related to the phase
transformation and plastic behavior:

�a = −Eεp + (α + EαH)(β2 − β1)−	(T − T0). (19)

A kinematics equation similar to infinitesimal strain
hypothesis is adopted:

ε = u,x (20)

where ( ),x = d( )/dx . Now, it is possible to consider the
principle of virtual work as follows, since the term �a is
assumed to be constant in the actuator:
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(b)

(a)

Figure 12. The shape memory effect for a bar with a variable cross-section subjected to an axial load. (a) Stress–strain curves.
(b) Volumetric fractions of phases.
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Figure 13. A bar subjected to a non-homogeneous temperature
distribution.

(Em Am + E Aa)

∫
l
(u,x δu,x ) dx +�a

∫
l
(Aaδu,x ) dx

−
∫

l
(pδu) dx = 0 (21)

where Aa and Am represent, respectively, the cross-sectional
areas of the actuator and the matrix, l is the length of the bar and
p is the axial load per length. Notice that the nonlinear term
�a is assumed to be constant in the actuator. The description
of an entire SMA bar may be produced by considering the bar
to be constructed from several actuators.

Spatial discretization is considered using the finite element
method, which establishes the following approximation:

u(x) =
2∑

j=1

U e
jϑ j (x) (22)

where U e
j are the element nodal displacements and ϑ j(x) are

Lagrange shape functions, presented below (Reddy 1984):

ϑ1 = 1 − x

l
ϑ2 = x

l
. (23)

With this approximation, equation (19) is rewritten as follows:

(Em Am + E Aa)

∫
l
[Bu]T [Bu] dx

{
Ue}

+ �a

∫
l

(
Aa [Bu]T)

dx
{
Ue} −

∫
l

(
p [Nu]T)

dx = 0 (24)

which follows a discrete version of the governing equation for
a generic element:

[K e]{U e} = {Fe} − {F̂e} (25)

where [K e] is the stiffness matrix, {U e} is the displacement
vector, {Fe} is the load vector and {F̂e } is related to the behavior
of the nonlinear shape memory actuator. The definition of these
matrices is as follows:

[K e] = (Em Am + E Aa)

∫
l
[Bu]T[Bu] dx (26)

{Fe} =
∫

l

(
p[Nu]T)

dx (27)

{F̂e} = �a

∫
l

(
Aa[Bu]T)

dx . (28)

After the construction of the global system, an operator
split technique (Ortiz et al 1983) associated with an iterative
numerical procedure is applied in order to deal with the
nonlinearities in the formulation. First, the global vector F̂(i),
for iteration i , is evaluated assuming that neither a phase
transformation nor plastic straining has taken place, which
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(a) (b)

(c)

(d)

Figure 14. The response of the bar under a non-homogeneous temperature distribution. (a) Thermomechanical loading. (b) Stress–strain
curves. (c) Volumetric fractions of phases. (d) Plastic strains.

means that it has the same value as in the previous time instant.
Under this assumption, displacements U(i) are calculated by
solving a linear system. In the next step, all variables related
to the SMA actuator (strain, stress, volumetric fractions of the
phases etc) are evaluated by considering constitutive equations.

The numerical procedure for addressing the constitutive
equations uses, again, the operator split technique associated
with the iterative numerical procedure. The procedure isolates
the sub-differentials and uses the implicit Euler method
combined with an orthogonal projection algorithm (Savi et al
2002). Orthogonal projections ensure that the volumetric
fractions of the phases will obey the imposed constraints. In
order to satisfy the constraints related to the coexistence of
phases, the values for the volumetric fractions must stay inside

or on the boundary ofπ , the tetrahedron shown in figure 1. The
elastoplastic behavior is simulated with the aid of the return
mapping algorithm proposed by Simo and Taylor (1986). In
this algorithm, a trial state is defined by considering an elastic
predictor step, using the implicit Euler algorithm to effect the
time discretization of the evolution equations. If f trial

(i+1) � 0,
this means that the state is in the elastic domain and the trial
state is the actual one. Otherwise, if f trial

(i+1) > 0, we are outside
the elastic domain and a plastic step must be considered.
Hence, the trial state must be corrected via a projection (Simo
and Taylor 1986, Simo and Hughes 1998).

After performing the evaluation of variables related to
the constitutive model, the matrix K(i) and the vector F̂(i) are
recalculated for the next iteration. This procedure is repeated
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to ensure that the norm� is less than a prescribed convergence
tolerance:

� = ‖[K′]{U} − {F} + {F̂′}‖
‖{F} − {F̂′}‖ (29)

where ‖v‖ = (∑n
i=1 |vi |2

)1/2
.

It should be pointed out that the proposed model in
association with classical finite element procedure allows one
to analyze SMA bars. Therefore, it is possible to incorporate
all potentialities of the constitutive model in the analysis of
bars subjected to complex load processes.

4. Numerical simulations

This section considers numerical simulations performed
using the proposed formulation. The spatial and temporal
discretizations used to obtain all results given in this paper
are consistent with the convergence analysis performed. The
material properties are those discussed in Baêta-Neves et al
(2004) and they are presented in table 1.

For all simulations it is assumed that ηck = ηci = 0. The
yield limit σY has a linear variation with T , evaluated from the
following expressions:

T � TM ⇒ σY = σM
Y (30)

TM < T � TA ⇒ σY = σM
Y (TA − T ) + σA,i

Y (T − TM)

TA − TM
(31)

TA < T � TF ⇒ σY = σ
A,i
Y (TF − T ) + σA,f

Y (T − TA)

TF − TA
(32)

where TA is the temperature above which austenite is stable in
the absence of stress and TF is used to determine the angular
coefficient of the linear interpolation.

First, a bar of SMA material with a 10 mm side
square cross-section and 100 mm length is analyzed.
Moreover, a homogeneous thermomechanical loading process
is considered, allowing a comparison between the FEM
formulation and results obtained from simulations carried out
by Baêta-Neves et al (2004), considering a single constitutive
point. The cited results were obtained using just the numerical
algorithm related to the constitutive equations and, therefore,
a FEM is not employed. These comparisons are used as a
verification of the proposed finite element model.

Hence, consider a SMA bar with four elements (figure 3),
subjected to an axial load Fx . Two different effects are treated:
pseudoelastic and shape memory.

The pseudoelastic effect is now focused on, for a SMA
specimen subjected to an isothermal mechanical loading
performed at T = 313 K (T > TA). Figure 4 shows
this loading process, the stress–strain curve and the evolution
of the volumetric fractions of the phases. Notice that the
FEM simulations and those of Baêta-Neves et al (2004) are
in agreement. All characteristics of the constitutive model
are captured by the FEM analysis. During the loading
process, the specimen experiences phase transformations from
the austenitic phase A to the positive martensitic variant
M+. Afterwards, during the unloading process, the reverse
transformation is induced.

The shape memory effect is now focused on, in the
thermomechanical loading depicted in figure 5. First, a

constant temperature T = 263 K (T < TM) is considered,
where the martensitic phase is stable. After the mechanical
loading–unloading process, the specimen presents a residual
strain that can be eliminated by a subsequent thermal loading
(figure 5). Notice that the stress–strain curve represents the
shape memory effect. Again, the FEM results and those of
Baêta-Neves et al (2004) are in agreement except for small
variations in the evolutions of the volumetric fractions of
the phases. This small discrepancy is due to the different
convergence criteria employed in the two models.

The phase transformation due to temperature variations
is now considered for a thermal loading, depicted in
figure 6, with the specimen free of stress. The response
of the material under this loading process presents thermal
expansion/contraction and the phase transformations. Notice
the hysteretic characteristics of the phase transformation in the
strain–temperature curve. Again, the FEM results and those
of Baêta-Neves et al (2004) are in agreement.

The forthcoming analysis considers finite element
simulations for different thermomechanical loads and
boundary conditions. First, different boundary conditions are
focused on, for a bar restricted at both ends with an axial
load applied at the mid-point (figure 7). The evolution of this
loading is similar to that presented in figure 4. Nevertheless, it
is clear that its distribution through the bar is different. Under
these conditions, different martensitic variants are induced on
the left and right sides of the bar. For high temperatures, for
example, the bar presents a pseudoelastic effect in all elements.
However, on its left side (elements 1 and 2), a positive variant
is induced (M+), while a negative variant is induced on the right
side (elements 3 and 4) (M−). Figure 8 shows this behavior.

Similar behavior is observed for situations where a
shape memory effect is of concern. With this in mind, the
thermomechanical loading presented in figure 4 is considered.
On the left side of the bar (elements 1 and 2) a positive variant
is induced (M+), while a negative variant is induced on the
right side (elements 3 and 4) (M−). When the mechanical
loading process is finished, there are residual strains that
can be eliminated by heating the bar. After this process,
when the phase transformation is finished, the bar begins to
present stresses due to thermal expansion since its movement
is restricted by the boundary conditions. Figure 9 shows this
behavior.

At this point, the behavior of a bar with variable cross-
section is discussed. Figure 10 presents a representation of
the beam with a square cross-section and with a height varying
from 2 to 1 mm. As in the preceding example, this geometrical
characteristic of the bar induces a non-homogeneous phase
transformation through the length of the bar. First, consider
a high temperature example. Under these conditions, phase
transformations are induced in the smaller cross-sections (near
the free end) where stress assumes values capable of inducing
phase transformations. On the other hand, the clamped end
presents an elastic response, where no phase transformation
takes place (figure 11).

Similar behavior is expected for low temperatures. Under
these conditions, phase transformations are induced in the
smaller cross-sections (near the free end), while the bar
presents an elastic response in the clamped end (figure 12).

A bar with a non-homogeneous temperature distribution is
considered. Discretization is done by considering 20 elements
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Table 1. Thermomechanical properties.

EA (GPa) EM (GPa) α (MPa) αH L (MPa) η (MPa K−1)
67 26.30 89.42 0.0637 212 0.07

TM (K) TC (K) T0 (K) 	A (MPa K−1) 	M (MPa K−1) σM
Y (MPa)

291.40 290.99 298 0.74 0.17 70

σ
A,i
Y (MPa) σ

A,f
Y (MPa) KA (GPa) KM (GPa) HA (GPa) HM (GPa)

690 257.72 1.40 0.40 0.40 0.11

(figure 13). Figure 14 shows the thermomechanical loading
process, the stress–strain curve, volumetric fractions of the
phases and plastic strain time histories. The loading process
begins with a thermal loading that creates a non-homogeneous
temperature distribution through the length of the bar. This
induces a situation where the austenitic phase (A) and twinned
martensite (M) are distributed through the bar. Afterwards,
a mechanical load is applied. The loading process induces
the formation of a positive martensitic variant (M+). Since
the temperature distribution is non-homogeneous, different
behaviors are expected through the bar. Regions with low
temperatures present lower values of critical stresses, where
phase transformations start. Moreover, the yield limit is
also smaller and the load level causes plastification. On
the other hand, for regions with higher temperatures, phase
transformations start for higher stress levels and plastification
does not occur. The subsequent unloading process shows that,
depending on this position, there are regions with no residual
strains, related to the pseudoelastic effect, and also regions
that present residual strains, related to partial pseudoelastic
and shape memory effects. Moreover, it should be pointed out
that some regions present irreversible plastic strains.

5. Conclusions

This paper presents a nonlinear finite element analysis of
shape memory bars. A constitutive model proposed by
Savi et al (2002) and Baêta-Neves et al (2004) is used
to describe the thermomechanical behavior of SMAs. An
iterative numerical procedure based on an operator split
technique is developed in order to deal with nonlinearities of
the formulation. The proposed procedure allows the solution of
coupled governing equations from uncoupled problems where
classical procedures can be employed. Numerical simulations
show that results from FEM capture the general behavior of
the constitutive equation due to Baêta-Neves et al (2004).
Moreover, other simulations show how non-homogeneous
loadings can produce interesting behaviors in shape memory
bars. These results indicate that the response of SMA devices
subjected to non-homogeneous loadings can be very complex;
this is of special interest for investigation. The authors believe
that the procedure proposed in this paper could be employed
as a tool to develop this investigation.
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Appendix. Notation

A Austenite phase
Aa Actuator cross-sectional area
Am Matrix cross-sectional area
E Elastic modulus
Ea Actuator elastic modulus
EA Elastic modulus for the austenitic phase
Em Matrix elastic modulus
EM Elastic modulus for the martensitic phase
f Yield surface
f trial Trail state for the yield surface
Fx Load in direction x
H Kinematic hardening modulus
HA Kinematic hardening modulus for the austenitic

phase
HM Kinematic hardening modulus for the martensitic

phase
J Indicator function
K Plastic modulus
KA Plastic modulus for the austenitic phase
KM Plastic modulus for the martensitic phase
L Material parameter related to phase transformation
LA Material parameter related to the phase

transformation associated with the austenitic phase
l Length of the bar
LM Material parameter related to the phase

transformation associated with the martensitic phase
M Twinned martensite
M+ Detwinned martensite associated with a tensile

stress state
M− Detwinned martensite associated with a

compressive stress state
p Axial load per length
t Time
T Temperature
TA Temperature above which austenite is stable

in the absence of stress
TC Temperature below which there is no change

in the stress–strain hysteresis loop position
TF Temperature used to represent the yielding

stress variation with temperature
TM Temperature below which the martensitic phase

starts its formation in the absence of stress
T0 Reference temperature
u Displacement in the direction x
U e Element nodal displacement in the x direction
V Volume
α Material parameter that describes the martensitic

transformation
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αH Parameter associated with the horizontal width
of the stress–strain hysteresis loop

βi Volumetric fraction of phase i
βS

i Value of βi when the phase transformation of
phase i begins to take place

� Convergence norm
γ Isotropic hardening variable
ε Total axial strain
εP Plastic axial strain
λ Plastic multiplier
µ Kinematic hardening variable
η Parameter associated with the internal

dissipation
ηci Parameter associated with isotropic hardening

coupling
ηck Parameter associated with kinematic hardening

coupling
	 Thermal expansion coefficient
	A Thermal expansion coefficient for the austenitic

phase
	M Thermal expansion coefficient for the martensitic

phase
ϑi(x) Lagrange shape functions
δui Virtual displacement
π Tetrahedron related to phase constraints
ρ Density
σ Axial stress
σa Actuator axial stress
σm Matrix axial stress
σY Yield stress
σAi

Y Initial yield stress for the austenitic phase

σAf
Y Final yield stress for the austenitic phase
σM

Y Yield stress for the martensitic phase

ψ Helmholtz free energy
φ∗ Dual of the pseudopotential of dissipation
�a Nonlinear terms related to phase transformation

and plastic behavior
{F} Global load vector
{F̂} Global vector related to the behavior of the

nonlinear shape memory actuator
{Fe} Element load vector
{F̂e} Element vector related to the behavior of the

nonlinear shape memory actuator
{U} Global displacement vector
{U e} Element displacement vector
[K] Global stiffness matrix
[K e] Element stiffness matrix
(),x d( )/dx
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