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Abstract This contribution deals with the nonlinear analysis of shape memory alloy (SMA) adaptive trusses
employing the finite element method. Geometrical nonlinearities are incorporated into the formulation together
with a constitutive model that describes different thermomechanical behaviors of SMA. It has four macroscopic
phases (three variants of martensite and an austenitic phase), and considers different material properties for
austenitic and martensitic phases together with thermal expansion. An iterative numerical procedure based on
the operator split technique is proposed in order to deal with the nonlinearities in the constitutive formulation.
This procedure is introduced into ABAQUS as a user material routine. Numerical simulations are carried out
illustrating the ability of the developed model to capture the general behavior of shape memory bars. After
that, it is analyzed the behavior of some adaptive trusses built with SMA actuators subjected to different
thermomechanical loadings.

Keywords Shape memory alloy · Finite element · Abaqus · Numerical simulation

1 Introduction

Shape memory alloys (SMAs) have been found in a great number of applications in different fields of sciences
and engineering. Self-actuating fasteners [9,18,19,21], thermally actuator switches and several bioengineering
devices are some examples of these applications [15,24,27,28]. Aerospace technology are also using SMAs
to solve important problems, in particular those concerning with space savings achieved by self-erectable
structures, stabilizing mechanisms, non-explosive release devices and other possibilities [14,31]. Microma-
nipulators and robotics actuators have been built employing SMAs properties to mimic the smooth motions of
human muscles [16,17,37,49]. Moreover, SMAs are being used as actuators for vibration and buckling control
of flexible structures [8,35,37].

This contribution proposes a finite element formulation to deal with shape memory bars with geometrical
nonlinearities. Finite element modeling of SMA structures has been previously addressed by Brinson and
Lammering [12], where a constitutive theory based on Tanaka’s model [41,42], and later modified by Brin-
son [11], has been employed to describe the SMA behavior. Auricchio and Taylor [1] have also proposed a
three-dimensional finite element model. Savi et al. [39] discuss an iterative numerical procedure that has been

E. L. Bandeira · M. A. Savi (B)
Departamento de Engenharia Mecânica, COPPE – Universidade Federal do Rio de Janeiro, 21.941.972,
P.O. Box 68.503, Rio de Janeiro, Brazil
E-mail: eduband@terra.com.br; savi@ufrj.br

P.C. da Camara Monteiro Jr. · T. A. Netto
Departamento de Engenharia Oceânica, COPPE–Universidade Federal do Rio de Janeiro, LTS 21.945.970,
P.O. Box 68.508, Rio de Janeiro, Brazil
E-mail: camara@lts.coppe.ufrj.br; tanetto@lts.coppe.ufrj.br



134 E. L. Bandeira et al.

developed to deal with both geometrical and constitutive nonlinearities in the finite element model for adaptive
trusses with SMA actuators. Langoudas et al. [23] consider the thermomechanical response of a laminate
with SMA strips where the thermomechanical response is based on Boyd–Lagoudas’ polynomial hardening
model [10]. Kouzak et al. [20] also treats SMA beams using a constitutive equation proposed by Brinson [11].
Recently, La Cava et al. [22] considers SMA bars with the constitutive model developed by Baêta-Neves et al.
[6] exploiting some non-homogeneous situations.

Literature presents other references employing the finite element method (FEM) to analyze the SMA
behavior. The response of SMA beams is treated by Collet et al. [13], which analyzes the dynamical response,
as well Auricchio and Sacco [2]. Helical springs are modeled with the aid of FEM as can be seen in Toi et al.
[44]. Moreover, Wang et al. [48] analyze the effect of crack in phase transformations. SMA composites are
recently treated by Auricchio and Petrini [3,4] in three-dimensional medias. A solid finite element is presented
to describe the thermo-electro-mechanical problem that is used to simulate different SMA composite applica-
tions. Dual kriging interpolation has been employed with FEM in order to describe the shape memory behavior
in different reports [45–47]. Masud et al. [29], Bhattacharyya et al. [7], Liu et al. [26] are other contributions
in this field.

Here, the FEM is employed promoting the spatial discretization of bars using a constitutive equation pro-
posed by Paiva et al. [33,34] to describe the thermomechanical behavior of SMA trusses. This model includes
four macroscopic phases in the formulation: three variants of martensite and an austenitic phase. Furthermore,
different material parameters for austenitic and martensitic phases are concerned. The constitutive model
captures the general behavior of themomechanical behavior of SMAs providing the description of different
phenomena. Geometrical nonlinearities are also included into the formulation. An iterative numerical pro-
cedure based on the operator split technique [30] is employed in order to deal with the nonlinearities in the
constitutive formulation. This procedure is introduced into ABAQUS as a user material routine. Therefore,
Newton method is used together with the orthogonal projection algorithm. Numerical simulations are carried
out showing different behaviors of SMA bars. Results show that the finite element model is able to capture
the general behavior of SMAs. The analysis of adaptive trusses with SMA actuators subjected to different
thermomechanical loadings is carried out showing some interesting behaviors.

2 Mathematical modeling

This section presents the mathematical modeling related to shape memory trusses with geometrical nonlin-
earities. Basically, a brief introduction is presented to the constitutive model developed by Paiva et al. [33,34]
and its coupling with the FEM.

2.1 Constitutive model

There are different ways to describe the thermomechanical behavior of SMAs [32]. Here, a constitutive model
presented by Paiva et al. [33,34] is employed [6,38,40]. This model describes different aspects related to the
thermomechanical behavior of SMAs, considering different material properties and four macroscopic phases.
The model also considers plastic strains and plastic-phase transformation coupling, which turns possible the
two-way shape memory effect description. Moreover, tensile–compressive asymmetry is taken into account.
The following set of equations is used to describe the thermomechanical behavior of SMA. Notice that, for
simplicity, plastic effect is not presented. With these assumptions, the constitutive equations describe the uni-
axial stress, σ , as a function of total strain, ε, temperature, T, and three volumetric fractions related to two
variants of martensite, β1 and β2, and austenite, β3.
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where E = EM + β3 (EA – EM) is the elastic modulus while � = �M + β3 (�A − �M ) is related to the
thermal expansion coefficient. The term T0 represents a reference temperature where the strain vanishes in a
free stress state. Notice that subscript “A” refers to austenitic phase, while “M” refers to martensite. Besides,
different properties are assumed to consider tension–compression asymmetry, where the superscript “T” refers
to tensile while “C” is related to compressive properties. Hence, αC,T and α

C,T
h are parameters, respectively

associated with the vertical and horizontal sizes of the hysteresis loop. Moreover, parameters �1, �2 and �3
are associated with phase transformations stress levels and are temperature dependent as follows:

�1 = LT

TM
(T − TM); �2 = LC

TM
(T − TM) and �3 = LA

TM
(T − TM) (5)

where TM is the temperature below which the martensitic phase becomes stable, while LT, LC and LA are
parameters related to critical stress for the various phase transformations.

The terms ∂n Jπ (n = 1,2,3) corresponds to the sub-differentials of the indicator function Jπ with respect
to βn [36]. The indicator function Jπ (β1, β2, β3) is related to the convex set π , which provides the internal
constraints related to the phases’ coexistence. With respect to the evolution equations of volumetric fractions,
η1, η2 and η3 represent the internal dissipation related to phase transformations. Moreover ∂n Jχ (n = 1,2,3)
are the sub-differentials of the indicator function Jχ with respect to β̇n [36]. This indicator function is related
to the convex set χ , establishing conditions for the correct description of internal sub-loops due to incomplete
phase transformations and also avoids phase transformations of the type: M + → M or M–→ M [38].

Besides, in order to consider different phase transformation kinetics for loading and unloading processes,
the parameters ηn (n = 1,2,3), related to phase transformation internal dissipation, may assume different values.
Therefore, ηn = ηL

n if ε̇ > 0 and ηn = ηU
n if ε̇ < 0.

2.2 Finite element method

In order to present the finite element formulation, consider a SMA bar subjected to a constant axial load. By
assuming that t+�t

t σ is the second Piola–Kirchhoff tensor, t+�t
t ε is the Lagrange strain tensor and t+�t R is

the work of external forces, all of them evaluated in time instant t + �t, the principle of virtual work [5] is
given by,

∫
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t ε

)
dt V = t+�t R (6)

Notice that δ( ) represents a variation of the quantity ( ). The stress tensor can be split into two parts: the
increment tensor �σ , and the stress tensor evaluated in the instant t, t

tσ . Therefore,

t+�t
t σ = t

tσ + �σ (7)

The second Piola–Kirchhoff tensor in the time instant t is the same as the Cauchy stress tensor in this time
instant, tτ Therefore, t+�t

t σ = tτ + �σ .
Since the strain component t+�t

t ε is unknown, it is assumed that this strain tensor is approximated by its
increments in the time t, �ε. Moreover, this increment can be split into two terms, associated with the linear
and nonlinear part of strain, denoted respectively, by �e and �η. Hence,

�ε = �e + �η (8)

At this point, all these definitions are introduced into the principle of virtual work:
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Now, for the sake of simplicity, SMA constitutive equation is rewritten as follows:
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Notice that, �e = �u,x and �η = (�u,x )2

2 , where ( ),x represents derivation with respect to x. Therefore,
neglecting higher order terms, the equation can be written in terms of increments,

∫

t V

tτδ(�u,x )d
t V +

∫

t V

tτ�u,x δ(�u,x )d
t V +

∫

t V

E�u,x δ(�u,x )d
t V +

∫

t V

��δ(�u,x )d
t V

+
∫

t V

���u,x δ(�u,x )d
t V = t+�t R. (12)

The work of external forces can be evaluated by the following equation

t+�t R =
∫

t+�t V

t+�t f Bδ(�u)dV +
∫

t+�t S

t+�t f Sδ(�u)dS, (13)

where t+�t f B are the body forces and t+�t f Sare the surface forces acting on the bar.
At this point, the continuous function �u is discretized with the aid of the finite element formulation.

Therefore assuming a two-point element, where Lagrange shape functions are considered, one writes a dis-
crete version of the SMA bar governing equation:

[K ]{U } = {F} − {F̂} (14)

where {U } are the nodal displacement increment vector, [K ] = [KL] + [KNG] + [KNC] is the stiffness matrix.
Notice that [KL] is the linear stiffness matrix and the terms related to geometrical nonlinearities are expressed in
[KNG], while constitutive nonlinearities are expressed in [KNC]. Moreover, {F} = {R}−{Fτ } is the increment
force vector while {F̂} = {F�} is the nonlinear vector force. All these matrixes and vectors are given by:
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In order to deal with nonlinearities in the formulation, an iterative numerical procedure is employed. In
terms of constitutive equations, numerical procedure is explained in Paiva et al. [33,34]. Nevertheless, it is
necessary to consider Newton method in order to solve the discrete governing equations.
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3 Model verification

The proposed formulation is introduced into ABAQUS as user material procedure. This section presents the
model verification through comparisons between the results predicted by the proposed model and experimen-
tal data reported in Tobushi et al. [43], which describes tensile tests on Ni–Ti wires at different temperatures.
Basically, two different temperatures are considered: 373 K and 353 K. The model parameters identified for
this simulation are presented in Table 1, which is used for all numerical simulations of this article [33,34].
Notice that tensile-compressive symmetry is assumed and therefore, αC = αT = α and αT

h = αC
h = αh. After

that, some numerical simulations are performed in order to verify the ability of the proposed model to describe
the SMA behavior. Since experimental results are related to a tensile test, it is assumed a homogeneous ther-
momechanical load process, allowing a comparison between the FEM formulation with experimental results,
considering a single constitutive point. A single element is used with this aim, assuming a maximum time step
of 5 × 10−3.

Figure 1 presents a comparison between numerical and experimental results for two different temperatures.
Notice that, even though this is a pseudoelastic test, experimental data presents a residual strain at the end
of the loading–unloading process, which is probably related to transformation induced plasticity [25,33,34].
However, it should be pointed out the ability of the finite element model to describe the SMA behavior.

Table 1 Model parameters obtained through comparison between numerical and experimental results provided by Tobushi et al.
[43] for a Ni–Ti SMA alloy

EA (GPa) 54
EM (GPa) 42
�A (MPa/K) 0.74
�M (MPa/K) 0.17
α (MPa) 330
LT, LC(MPa) 229
LA (MPa) 44
TM (K) 291.4
T0 (K) 295
αh 0.047
ηL

1 (MPa.tu) 1
ηU

1 (MPa.tu) 2.7
ηL

3 (MPa.tu) 1
ηU

3 (MPa.tu) 2.7

Fig. 1 Model verification
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4 Adaptive trusses

In this section, the proposed procedure is applied to analyze some adaptive trusses with shape memory actu-
ators considering three examples. The first one treats a two-bar truss while the second one considers a truss
with nine bars. The third example considers a truss structure clearly showing geometric nonlinearities. These
examples consider different thermomechanical loadings.

4.1 Two-bar truss

A two-bar truss built by bars with cross-section area 1 cm2, subjected to thermomechanical loadings presented
in Fig. 2, is now considered.

Initially, it is assumed that a single bar is built with SMA ➀, while the other one is a typical steel ➁
(E = 200 GPa, ν = 0.3). Figure 3 shows deformed configuration compared with the initial one for two different
time instants: the first is related to the end of the mechanical process while the second is associated with the
end of thermal loading. The displacements are shown in real scale and their vertical values must be seen in
Fig. 4. Notice that the thermal loading changes the position of the truss, although the mechanical loading is
not removed.

Figure 4 shows the vertical displacement related to the node where the force is applied and also the stress–
strain curve. Again it is possible to see the movement of the bar caused by the temperature variation. It is
noticeable that geometrical nonlinearities introduce some characteristics of the response as the non-horizontal
curve of the stress–strain relation in the region related to the thermal loading.
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Fig. 2 Two-bar truss

Fig. 3 Comparison between deformed and initial configurations of the two-bar truss
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Fig. 4 Displacement time history and stress–strain curve

Fig. 5 Two-bar truss with two SMA bars

Fig. 6 Nine-bar truss

At this point, it is assumed that both truss bars are built with SMA. This new truss has smaller stiffness
presenting greater displacements. Figure 5 compares results of both problems showing that SMA can also
recover displacements even though mechanical force is not removed.
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Fig. 7 Comparison between deformed and initial configurations of the nine-bar truss

Fig. 8 Time history of displacements

Fig. 9 Adaptive truss built with shape memory alloy bars
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Fig. 10 Adaptive truss response in different time instants
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Fig. 11 a Horizontal displacement. b Vertical displacement

4.2 Nine-bar truss

At this point, a nine-bar truss is treated considering that each bar has a cross-section area of 1 cm2 (Fig. 6),
subjected to a thermomechanical loading presented in Fig. 3. Bars 3 and 5 are built with SMA, while the
others are constructed with typical steel (E = 200 GPa, ν = 0.3). With this assumption, the SMA bars represent
discrete actuators of this structure.

Figure 7 shows deformed configuration compared with the initial one for two different time instants: the
first is related to the end of the mechanical process while the second is associated with the end of thermal
loading. Notice that, again, the thermal loading changes the truss position, although the mechanical loading
is not removed. This behavior is clearly observed in the time history of displacements. Figure 8 shows the
vertical displacement related to the node where the force is applied, showing the truss movement caused by
the temperature variation.

4.3 Truss structure

An adaptive truss built with 16 SMA bars is now focused on. Each bar has a cross-section area of 1 cm2. Figure 9
shows a schematic picture of the structure together with the thermomechanical loading process related to a
shape memory effect. Basically, the mechanical loading is applied when the structure is at T = 280 K (T < TM).
Since this structure presents large displacements, it is assumed that force follows the application node. When
the mechanical loading is finished, a temperature variation is imposed to the structure.

Figure 10 shows different configurations of the structure response for the cited thermomechanical loading,
considering different time instants. The first picture shows the time instant related to the maximum value
of the mechanical loading. Notice the large displacements and rotations associated with this configuration.
The second picture presents the time instant when the mechanical loading is completed removed. Under this
condition, the system present a residual strain related to the martensitic phase. Finally, the last picture presents
the time instant after the temperature increasing. At this point, the structure eliminates all residual strains.
Figure 11 presents both horizontal and vertical displacement time history related to the node where the force is
applied. Notice linear regions associated with elastic response and also nonlinear regions related to the phase
transformation response.
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5 Conclusions

This article presents a nonlinear finite element analysis of shape memory adaptive trusses. A constitutive
model proposed by Paiva et al. [33,34] is used to describe the thermomechanical behavior of SMAs. FEM
is used to perform spatial discretization allowing the analysis of non-homogeneous problems. Geometrical
nonlinearities are incorporated into the formulation. An iterative numerical procedure based on the operator
split technique is employed in order to deal with constitutive nonlinearities. This procedure is introduced into
ABAQUS as a user material routine and, therefore, Newton method is used together with this orthogonal
projection algorithm. Numerical simulations show that results from FEM capture the SMA general behavior.
Moreover, other simulations show the response of adaptive truss built with SMA actuators. The capability of
the proposed formulation to describe SMA adaptive truss may be exploited in different applications, becoming
an important tool for design purposes.
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