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Nonlinear dynamics of earthquake-
resistant structures using shape
memory alloy composites
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Abstract
Earthquake-resistant structures have been widely investigated in order to produce safe buildings designed to resist seis-
mic activities. The remarkable properties of shape memory alloys, especially pseudoelastic effect, can be exploited in
order to promote the essential energy dissipation necessary for earthquake-resistant structures. In this regard, shape
memory alloy composite is an idea that can make this application feasible, using shape memory alloy fibers embedded in
a matrix. This article investigates the use of shape memory alloy composites in a one-story frame structure subjected to
earthquakes. Different kinds of composites are analyzed, comparing the influence of matrix type. Both linear elastic
matrix and elastoplastic matrix with isotropic and kinematic hardening are investigated. Results indicate the great energy
dissipation capability of shape memory alloy composites. A parametric analysis allows one to conclude that the maxi-
mum shape memory alloy volume fraction is not the optimum design condition for none of the cases studied, highlighting
the necessity of a proper composite design. Despite the elastoplastic behavior of matrix also dissipates a considerable
amount of energy, the associated residual strains are not desirable, showing the advantage of the use of shape memory
alloys.
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1. Introduction

Seismic activity is a natural phenomenon that can be
related to catastrophic consequences. Since 2000, it was
registered between 1300 and 2500 earthquakes with a
magnitude greater than 5 on the Richter scale world-
wide every year (see Figure 1). This scenario causes an
average of 50,102 deaths per year (U.S. Geological
Survey, 2019). Some reports describing damages due to
earthquakes can be found in Padgett et al. (2008) and
DesRoches et al. (2011). In this regard, earthquake-
resistant structures have an especial importance in
order to reduce the severe effects of seismic activities.
The main idea is to build structures that can resist to
seismic activities better than the usual ones, avoiding
critical damages. Several approaches are employed for
this aim.

Bridges usually adopt hinge restrainers to perform
join frames. DesRoches and Fenves (2000) proposed a
methodology for the design of these restrainers,
decreasing the earthquake effects. The application of
viscoelastic dampers on the structural basis is investi-
gated by Xu (2007) and later extended by Xu (2009)

and Xu et al. (2017) where multidirectional load condi-
tions are considered.

Structural retrofit is an interesting approach
employed on earthquake-resistant structures. Yeghnem
et al. (2009) suggested the application of composite
plates bonded in shear wall structures in order to
improve the structural stiffness and strength. Kim and
Jeong (2016) suggested the coupling of steel plates able
to slip, inducing damping. Colalillo and Sheikh (2012)
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promoted shear strength increase by considering rein-
forced bonded fiber. An additional important device
developed with this purpose is the friction pendulum
system, which isolates seismic ground motion by bear-
ings (Eröz and DesRoches, 2008).

Structures with variable stiffness and damping are
an alternative widely investigated to enhance resistance.
Sahasrabudhe and Nagarajaiah (2005) proposed a vari-
able stiffness device built with a set of four springs. The
system is able to change the directions of these springs
by active control, varying its stiffness according to the
load condition.

The use of smart materials is another possibility to
build earthquake-resistant structures. Basically, smart
materials present a coupling among different physical
fields, being characterized by adaptive behavior. In
brief, piezoelectric materials, magnetorheological fluids,
and shape memory alloys (SMAs) are candidates for
this kind of application.

The remarkable properties of SMA devices can be
employed exploiting either phase transformations or
property changes. SMA dynamical systems usually
present a rich, complex behavior that can be used for
both passive and active control. For instance, Zhang
et al. (2017) and Zhang et al. (2019) investigated SMA
beam stability and Rodrigues et al. (2017) and Fonseca
et al. (2019) investigated nonlinear dynamics of SMA
origami structures. A general overview of the nonlinear
dynamics of SMA systems is presented by Savi (2015).

Energy dissipation capacity is the essential character-
istic to be employed for earthquake-resistant structures
(Asgarian et al., 2016; Cardone and Dolce, 2009; Qian
et al., 2013; Yang et al., 2010). Pseudoelasticity offers
an intrinsic energy dissipation due to its hysteretic beha-
vior and, when compared to the plasticity of traditional
materials, it has the advantage to be not related to irre-
versible residual strains (Baratta and Corbi, 2002).

Khodaverdian et al. (2012) explored the combination
of energy dissipation due to friction and SMA

behavior. A steel–polytetrafluoroethylene (PTFE)-
bearing device is proposed to be installed on the con-
nection between bridge-span and piers using SMA
wires to link both parts of the bar, increasing the
energy dissipation capability. The use of SMA to
improve frictional dissipation is also possible by con-
sidering two blocks in contact and attached to the
structure with SMA wires promoting the connection
of these blocks (Zhang and Zhu, 2007).

Smart material adaptability is also employed in
order to produce stiffness and damping variations.
In this regard, magnetorheological (Li et al., 2013;
Xu and Guo, 2006) and piezoelectric (Lu and Lin,
2009) are interesting possibilities where the main
challenge is the control capability. Rabiee and Chae
(2019) presented a discussion about this issue,
proposing a novel approach to control the variable
friction devices.

The use of shape memory alloy composite (SMAC)
considering SMA fibers embedded in a matrix is an
attractive idea that allows the combination of different
materials for an interesting structure performance. For
a detailed discussion about perspectives and applica-
tions of SMAC, see Lester et al. (2015). Billah and
Alam (2012) investigated the combination of SMA and
carbon fiber polymeric bars embedded in a concrete
column to promote vibration absorption. Zafar and
Andrawes (2015) joined SMA and glass fibers in a
polymeric matrix to build bars used to reinforce con-
crete structure in horizontal and vertical directions.
Alternatively, Abou-Elfath (2017) highlighted that a
hybrid brace built by SMA and steel may improve the
capability to seismic load resistance. An arrangement
of SMA and steel wires is modeled, but the conclu-
sions can also be extended for composites with SMA
inclusions in metallic matrix. The analysis of
martensite–austenite phase transformation is not
explicitly indicated in these investigations pointing to
the necessity of this analysis for a more general

Figure 1. Amount of earthquake per year (U.S. Geological Survey, 2019).
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comprehension of the use of SMA composites on
earthquake-resistant structures.

The design of composite materials requires a deep
analysis due to the great number of variables involved
(Tsai and Melo, 2014; Vignoli et al., 2019). Although
there are some experimental reports indicating the
improvement on the earthquake resistance capability
with pure SMA (Boroschek et al., 2007; Dolce et al.,
2005; Johnson et al., 2008; Shrestha et al., 2015) and
composite with SMA fibers (Nehdi et al., 2010), a
detailed parametric study becomes a fundamental tool
to understand the structural response for the design of
SMAC.

Earthquake-resistant structures are usually analyzed
from archetypal models as the n-story frames (Ozbulut
et al., 2011; Saadat et al., 2001; Ozbulut and Hurlebaus,
2012). The use of diagonal braces that can reinforce the
structure is especially attractive due to the ease of cou-
pling. Yan et al. (2013) presented numerical and experi-
mental studies of three-story frames with SMA braces,
comparing four different conditions: without reinforced
braces, with braces just on the first floor, with braces
on the two first floors, and with braces in all the floors.
Despite the addition of braces in more than one floor
decreases the amplitude of oscillation, the martensitic
volume fraction variation is difficult to be measured
and therefore, it is not possible to conclude whether this
effect is due to pseudoelasticity or the increased
stiffness.

This article deals with the dynamical analysis of an
earthquake-resistant structure built with SMAC ele-
ments. A model of a one-story structure subjected to
seismic loads is of concern, considering SMAC braces.
Nonlinear dynamics of a reduced order model, a sin-
gle-degree-of-freedom oscillator, is analyzed consider-
ing the restitution force provided by the SMAC.
Micromechanics analysis allows one to propose a
macroscopic model for the composite response. A para-
metric analysis is carried out treating the influence of
SMA volume fraction on the structural response. In
addition, the influence of the matrix type is discussed
considering two matrix models: a linear elastic polymer
and an elastoplastic aluminum. The possibility to join
SMA and other fibers (e.g. glass and carbon) is also
investigated, evaluating different stiffness and plastic
effects. A detailed discussion about the stress–strain,
martensite evolution, displacement, and energy dissi-
pated according to the time is reported allowing a
proper comprehension of the system behavior. The
structure is subjected to an earthquake loading process
based on the ground acceleration data of the El Centro
earthquake (18 May 1940—Imperial Valley, USA) with
magnitude 7.1 on the Richter scale. Numerical simula-
tions show the great energy dissipation capability of
SMA composites establishing the optimum design con-
dition and the advantage of the use of composite
materials.

2. SMA composite model

The mathematical model for a SMAC considers a
constitutive model that describes the thermomechani-
cal behavior of SMAs together with a homogeniza-
tion approach to describe the composite material.
Three basic assumptions are assumed for this aim:
uniform and constant temperature on the composite;
both constituents have the same strain; and the load
is shared between matrix and fibers to provide equili-
brium requirement. Both kinematics and equilibrium
considerations are regarded as the longitudinal direc-
tion x1 (Figure 2). Under these assumptions, it is writ-
ten that

esma = em = e ð1Þ

Vsmassma +(1� Vsma)sm =s ð2Þ

where the index m denotes matrix while sma denotes
SMA, e is the strain, and s is the stress. The absence of
index is used to denote the equivalent macroscopic
quantity of the composite material. Vsma is the SMA
volume fraction and Vm = 1� Vsma is the matrix vol-
ume fraction. It should be pointed out that it is assumed
no voids on the microstructure.

2.1. SMA model

In order to proceed with the derivation of the compo-
site modeling, an SMA constitutive model needs to be
employed. There are several possibilities for this aim.
Lagoudas (2008) and Paiva and Savi (2006) performed
a general overview of some phenomenological possibili-
ties. Considering more recent alternatives, it is interest-
ing to cite Oliveira et al. (2016, 2018) and Cisse et al.
(2016). Ghodke and Jangid (2016) proposed a simpli-
fied method to compute equivalent linear stiffness and
damping of SMAs.

Figure 2. Unidirectional composite with SMA fibers.
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Based on the discussion presented by Paiva and Savi
(2006), Brinson’s model (Brinson, 1993) is chosen in
this article, introducing some modifications proposed
by Enemark et al. (2014). Since pseudoelastic effect is
in focus, just mechanical loads are of concern and tem-
perature is assumed to be constant. Under this assump-
tion, stress–strain (s–e) relation is given by

ssma � s0
sma = Esmaesma � E0

smae
0
sma

� �
� eR Esmab�E0

smab
� �

ð3Þ

where b represents martensitic volume fraction. The
original model due to Brinson (1993) considers that this
variable is split into twinned martensite induced by
temperature (bT ) and detwinned martensite induced by
stress (bS). This variable is defined in such a way that
0 ł b ł 1. Since pseudoelastic effect is in focus, bT = 0,
and in order to treat either tension or compression
behaviors, it is assumed that �1 ł b ł 1. This means
that positive values are related to tension-induced det-
winned martensite while negative values are related to
compression-induced detwinned martensite. Besides,
Esma =Esma(b)=EA + jbj(EM � EA) is the SMA equiv-
alent elastic modulus, with EA and EM representing the
austenite and martensite elastic moduli, respectively; eR

is the maximum recoverable strain due to thermal treat-
ment. The upper index ‘‘0’’ denotes the initial state.
Phase transformation kinetics is represented by cosine
functions for austenite–martensite and reverse transfor-
mations (Brinson, 1993).

The forward transformation (A! M6) is defined in
the interval sfs ł jssmajł sff , where the stress limits are
sfs =CM (T �Ms) and sff =CM (T �Mf ). Therefore,
the martensitic volume fraction is defined by

b=b0 + sign ssmað Þ � b0½ � fM ~sð Þ ð4Þ

where the hardening function is defined by a Bézier
curve

fM ~sð Þ= f ð~s, n
f
1, n

f
2Þ ð5Þ

where ~s=( ssmaj j � sfs)=(sff � sfs) and parameters n
f
1

and n
f
2 are adjusted to fit experimental data. The use of

Bézier curves are based on the proposition of Enemark
et al. (2014) and Enemark et al. (2016), being presented
in its general form as follows (note the use of general
parameters n1 and n2)

f ~s, n1, n2ð Þ=
1
2

s1
2 if 0 ł ~s ł b

1� 1
2

s2
2 if b\~s ł 1

�
ð6Þ

where b, s1, and s2 are given by

b=
1

2
n1 � n2 + 1ð Þ ð7Þ

s1 =
�n1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1

2 + b� 2n1ð Þ~s
p

b� 2n1

ð8Þ

s2 =
n2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

2 � b+ 2n2 � 1ð Þ 1� ~sð Þ
p

b+ 2n2 � 1
ð9Þ

For the reverse transformation (M6 ! A), the inter-
val is srf ł ssmaj jł srs, where srf =CA(T � Af ) and
srs =CA(T � As). Therefore, the volume fraction is
defined by

b=b0 fA ~sð Þ ð10Þ

fA ~sð Þ= f ~s, nr
1, nr

2

� �
ð11Þ

where the hardening function is again based on the
Bézier curves defined in equation (6), but using
~s=( ssmaj j � srf )=(srs � srf ) together with the adjusta-
ble parameters nr

1 and nr
2.

SMA stress–strain curve presents a pseudoelastic
behavior characterized by a hysteresis loop. Figure 3
shows the stress–strain curve of an SMA specimen sub-
jected to tension/compression loads with properties
listed in Table 1, where As and Af are the starting and

Figure 3. Stress–strain curve of the SMA representing the
pseudoelastic behavior.

Table 1. SMA properties (Alves et al., 2018; Enemark et al.,
2014).

eR (%) EA (GPa) EM (GPa) CA (MPa=8C) CM (MPa=8C)

4.08 44.5 25.8 7.70 11.84

As (8C) Af (8C) Ms (8C) Mf (8C)

0.8 17 11.8 26.5

nf
1 nf

2 nr
1 nr

2

0.286 0.001 0.166 0.280

SMA: shape memory alloy.
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finishing temperatures for austenitic formation, respec-
tively. For martensite, this reference temperatures are
Ms and Mf (Savi et al., 2016). The tension-induced
martensite is denoted by M+, while M2 is the com-
pression compression-induced martensite, and A means
the austenitic phase. By observing the stress–strain
curve, it should be noted that initially, the SMA is on
austenitic phase (b= 0). The tensile loading promotes
an elastic response (green line) until the forward phase
transformation is induced, represented by the red line,
finishing the transformation at the blue line that is
associated with an elastic response on the martensitic
phase (b= 1). During the unloading process, an elastic
response is achieved (blue line) until the reverse trans-
formation initiates and the austenite appears again (red
line). An elastic response occurs again in austenitic
phase (green line) until the loading process is finished.
The same process takes place for compressive loads,
but at the end of the forward transformation, b=�1

(cyan), representing a different variant of martensite.
Phase transformations are related to a hysteresis loop,
being associated with a dissipation energy per volume.
Figure 4 shows the stress and martensite time histories
considering a prescribed uniform strain rate. The green
dashed lines indicate the beginning and the end of
phase transformation.

A complete pseudoelastic cycle is associated with a
hysteresis loop that dissipates 7285 kJ/m3. Incomplete
phase transformations are related to internal sub-loops
that tend to dissipate an amount of energy that is
directly related to the volume fraction b. In this regard,
an analysis of dissipated energy is now of concern.
During the loading–unloading process, there are two
distinct energies: elastic energy and dissipated energy
due to pseudoelasticity. In order to analyze the energy
due to this process, it is considered three different load-
ing cases, associated with distinct cycles (Figure 5).
Initially, the SMA is subjected to an elastic load, up to
P1 and then completely unloaded. The second case

considers an incomplete phase transformation until
point P2, where b= 0:5. Finally, the third case is asso-
ciated with a complete phase transformation until point
P3 is reached (b= 1). The energy per volume is calcu-
lated from the area under the stress–strain curve, which
is performed by direct integration. The energy is added
during the loading process (tension or compression)
and subtracted during the unloading process. Figure 6
presents the total energy per volume together with
stress time history. Figure 7 presents the total energy
per volume together with the martensitic volume frac-
tion evolution. The dashed horizontal green lines in
Figures 6 and 7 represent the energy dissipated due to
pseudoelasticity. Therefore, the energy dissipated dur-
ing the first elastic cycle (P1) is zero since no phase
transformation occurs, which means that the whole
energy is released during unloading, without dissipa-
tion. However, when phase transformation occurs,
there is a gap between the energy before and after the

Figure 4. Stress (blue circles) and martensite (red squares)
time histories for a prescribed uniform strain rate. Figure 5. Stress–strain curve of the SMA representing the sub-

loops.

Figure 6. Total energy (red circles) and stress (blue squares)
time histories for the prescribed uniform strain rate
represented in Figure 5.

Vignoli et al. 775



cycle. Note that the second cycle (P2) has a dissipation
of 2475 kJ/m3. Finally, the last cycle that is associated
with complete phase transformation (P3) has a dissipa-
tion estimated by the difference between the two levels
of energy represented by the two dashed green lines
(976022475 = 7285), which is exactly the value calcu-
lated from the area of the hysteresis loop.

A simplified way to understand the relation between
phase transformation and energy dissipation is assum-
ing that both are proportional. For instance, if the com-
plete hysteresis loop is able to dissipate 7285 kJ/m3,
during a complete phase transformation cycle, a sub-
loop from associated with an incomplete phase trans-
formation with b= 0:5 dissipates 3642.5 kJ/m3, half of
the energy dissipated due to complete phase transfor-
mation. It should be highlighted that this is an approxi-
mation since the energy dissipated by a sub-loop with
b= 0:5 is 2475 kJ/m3, as presented in Figures 6 and 7.

2.2. Matrix model

The modeling of matrix considers two different possibi-
lities: an epoxy matrix, assumed to present a linear elas-
tic behavior, and an aluminum, assumed to be
elastoplastic. In general, both cases can be described by
the elastoplastic constitutive equation, defined by con-
sidering a plastic strain, ep

m

sm =Em em � ep
m

� �
ð12Þ

Note that elastic case is described assuming ep
m = 0.

Plastic behavior considers that the yield surface has iso-
tropic, a, and kinematic, q, hardenings, being repre-
sented by the following flow laws (Simo and Hughes,
1997; Souza Neto et al., 2008)

_ep
m = g h sign sm � qð Þ ð13Þ

_q= g h sign sm � qð Þ ð14Þ
_a= g ð15Þ

where h is the kinematic hardening modulus and g is
the plastic multiplier.

The yield surface is represented by the following
condition

Fm sm, q,að Þ= sm � qj j � Sy +Ka
� �

ł 0 ð16Þ

where K is the plastic modulus and Sy is the yield
strength.

The Kuhn–Tucker and consistency conditions are
expressed as follows

g ø 0, Fm sm, q,að Þł 0, gFm sm, q,að Þ= 0 ð17Þ

g _Fm sm, q,að Þ= 0 if Fm sm, q,að Þ= 0 ð18Þ

The material properties of matrices, epoxy and alu-
minum, are listed in Table 2.

2.3. Composite homogeneous model

The homogeneous description of the composite mate-
rial is based on the fiber and matrix constitutive equa-
tions presented in the preceding sections. Therefore, the
macroscopic model is represented by the following con-
stitutive equation

s =s0 + Ee� E�0e
0

� �
� eR E�b� E�0b

� �
ð19Þ

where E=VsmaEsma +(1� Vsma)Em, E�=VsmaEsma,
E�0 =VsmaE(0)

sma, and s0 =Vf s0
sma � Emep

m.
In general, the following equation can be written as

s =Ee� eRE�b� f0 ð20Þ

where f0 =(s0 � E�0e
0 + eRE�0bS0

) represents the initial
state.

3. Structure dynamical model

The idea to investigate structures subjected to seismic
loads is performed by considering an archetypal model
that represents a one-story reinforced frame subjected
to earthquake ground acceleration. Figure 8 presents
this structural model highlighting the initial geometry
composed by one floor over two columns of height H

with two SMAC braces along the diagonals of length L.

Table 2. Matrices properties (Auricchio and Petrini, 2004;
Freed and Aboudi, 2009).

Matrix Em (GPa) Sy (MPa) h (GPa) K (GPa)

Epoxy 3.45 2 2 2
Aluminum 72.4 300 5 33.7

Figure 7. Total energy (red circles) and martensite (blue
squares) time histories for the prescribed uniform strain rate
represented in Figure 5.

776 Journal of Intelligent Material Systems and Structures 31(5)



The equivalent reduced order system is also presented.
By assuming a relative displacement �u= u� ug, where
ug is the ground displacement, the equation of motion
is given by

€�u+ 2jvn _�u+v2
n�u+ as cos u= � €ug ð21Þ

where vn =
ffiffiffiffiffiffiffiffiffiffiffi
2k=m

p
, j = c=mvn, a= 2Ab=m, and Ab is

the braces’ cross-sectional area. Besides, b=b(s) and
s=s(Vsma, e) are defined from SMA constitutive equa-
tions presented in the previous section.

From kinematics analysis, the relation between the
SMAC brace strain, e, and the mass relative displace-
ment, �u, is given by

e=
DL

L
=

u� ug

� �
cos u

H= sin uð Þ =
�u

H

� �
sin u cos u ð22Þ

Using the stress and strain of the SMA braces as
defined by equation (19), equation (21) can be written
as follows

€�u+ 2jvn _�u+ v2
n + a

E

H

� �
sin u cos2 u

� 	
�u

� aeRE� cos ubS = � €ug � af0 cos u

ð23Þ

The equation of motion is solved numerically using
the fourth-order Runge–Kutta method following the
procedure indicated by Savi (2015).

A case study is treated considering the ground accel-
eration data of the El Centro earthquake, 18 May
1940, Imperial Valley, USA, with magnitude 7.1 on the
Richter scale, as presented in Figure 9 (Vibrationdata,
2019). Since different kinds of structures are subjected
to the same seismic excitation, a parametric study is
carried out to evaluate the critical case. Assuming that
intrinsic dissipation of real structure is represented by a
damping ratio j = 0:1, a structure without reinforced
braces is considered to select the critical case. The idea
is to define a natural frequency, vn, associated with the
highest amplitude subjected to the El Centro ground
acceleration. Figure 10 indicates the maximum relative
displacement, in absolute value, according to the natu-
ral frequency for j = 0:1. Based on this analysis, the
critical case is defined for vn = 0:78 rad=s, which is
used for all simulations.

Based on the theoretical development presented in
the previous section, four parameters are required for
the analysis: vn, j, a, and Vsma. Natural frequency, vn

and dissipation, j, are assumed to be known, defining a
critical situation. SMA volume fraction, Vsma, and para-
meter a, that establishes the relation between cross-

Figure 8. Dynamical model for the one-story frame under
earthquake load.

Figure 9. Ground acceleration related to El Centro
earthquake with magnitude 7.1, which took place on 18 May
1940, Imperial Valley, USA (Vibrationdata, 2019).

Figure 10. Maximum relative displacement of the elastic
structure without reinforced braces.

Vignoli et al. 777



sectional area and mass, are the design variables of the
reinforced braces.

Initially, a SMAC with epoxy matrix is treated, con-
sidering two limit cases of SMA volume fraction:
Vsma ! 0:0 and Vsma ! 1:0. Note that Vsma ! 0:0
means a brace without SMA while Vsma ! 1:0 repre-
sents an SMA bar. It should be pointed out that as a
matter of fact, there is a limitation of fiber volume frac-
tion due to fiber packing arrangement, which means
that these limit cases are usually not feasible (Barbero,
2018).

Different values of parameter a are analyzed for an
epoxy matrix composite: a= 10�10, 10�9, and 10�8.
Figure 11 presents relative displacements for all these
parameters considering the limit cases: pure matrix,
Vsma ! 0:0, and pure SMA, Vsma ! 1:0. Regarding the
limit case Vsma ! 1:0, Figure 12 presents the martensitic
evolution with respect to the time, Figure 13 indicates
the stress–strain curves, and Figure 14 shows the total
energy and the energy per volume, both represented by
the elastic energy and the dissipated due to pseudoelas-
ticity (phase transformation). Note that oscillatory part
represents the elastic strain energy and the level change

represents the dissipated energy due to phase transfor-
mation. The difference between total energy and energy
per volume in Figure 14 indicates the importance of the
parameter a.

Since the braces are symmetrical, stress–strain, and
martensitic phase, transformation energy time histories
presented for one brace are the opposite of the other
one. Energy time histories are similar. It is noticeable
that the decrease of stiffness increases the amplitudes
and increases the phase transformation and therefore,
the dissipated energy. The increase of SMA volume
fraction tends to increase the stiffness and therefore,
reduce the dissipated energy per volume. Nevertheless,
it increases the volume and, as a consequence, the total
dissipated energy. Based on these arguments, it is clear
that there are some mechanisms involved that need to
be properly defined for design purposes. Based on this
preliminary analysis, the focus is to consider parameter
values of 10�8 ł a ł 10�9, assumed from now on.

The comparison between SMA composites with
epoxy and aluminum matrices is now in focus. Figure
15 presents the variation of the maximum relative dis-
placement according to a and Vsma for composites with

Figure 11. Time history of relative displacement for limit cases (pure matrix, Vsma ! 0:0, and pure SMA, Vsma ! 1:0) for different
values of parameter a: a= 10�10, a= 10�9, and a= 10�8.
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epoxy (left) and aluminum (right) matrices. Results
allow one to conclude the following:

1. Composite with epoxy matrix is more sensitive
according to these parameters than the alumi-
num matrix composite.

2. The minimum amplitude, related to the opti-
mum design condition, is similar for both cases,
but with different combinations of a and Vsma.

3. Epoxy matrix results tend to have a better per-
formance for higher volume fractions of SMA,
while aluminum matrix does not have an evident
trend depending on the value of a.

For a more comprehensive analysis, Figure 16 shows
the maximum relative displacement according to Vsma

for epoxy matrix and different values of a. Three
main behaviors should be highlighted: the amplitude
does not have a significant variation for 1 3 10�9 ł

a ł 2 3 10�9; a complex behavior appears for
3 3 10�9 ł a ł 6 3 10�9; there is a plateau from a given
value of Vsma for 7 3 10�9 ł a ł 10 3 10�9.

A proper design of the earthquake structure with
SMA elements needs to observe the elastic and dissi-
pated energies per volume, related to phase transforma-
tions, and the total amount of energy stored and
dissipated, associated with the volume of the element.
Two different structures are considered to illustrate
these scenarios. The first one has a composite brace
with small area, which means that its influence is not
significant. Figure 17 presents results of this first kind
of structure for a= 2 3 10�9 and different values of

Figure 12. Martensite time history for Vsma ! 1:0. Figure 13. Stress–strain curves for Vsma ! 1:0.

Figure 14. Total energy and energy per volume time history for each brace for Vsma ! 1:0.
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SMA volume fraction, Vsma = 0:4, 0:6, 0:8. Despite the
stress–strain curves are different, the area is still too
small to decrease significantly the amplitude. The
increase of parameter a changes this behavior. Figure
18 presents results for a= 5 3 10�9 while Figure 19
shows results for a= 9 3 10�9. The stress level required
for phase transformation initiation decreases if Vsma

also decreases, but the size of the hysteresis loop, as
well as internal sub-loops, is smaller for high values of
Vsma. Hence, the composites with smaller values of Vsma

tend to dissipate less energy. By comparing Vsma = 0:6
and Vsma = 0:8 for a= 9 3 10�9, the amplitudes are
very close. Despite the complete hysteresis loop for

Vsma = 0:8 is larger than for Vsma = 0:6, the phase
transformation is not complete for these cases studied.
This complex behavior is due to these three concurrent
mechanisms: stress level to initiate phase transforma-
tion, hysteresis loop, and the percent of phase trans-
formation carried out, which influences the size of
sub-loops.

The SMAC with aluminum matrix is now of con-
cern. Figure 20 considers a parametric analysis showing
maximum relative displacement with respect to SMA
volume fraction and different values of parameter a.
Note that for smaller braces’ area, the dissipated energy
due to matrix plastification is more significant than the

Figure 16. Maximum relative displacement according to Vsma for epoxy matrix.

Figure 15. Influence of a and Vsma on the maximum relative displacement for composite braces with epoxy (left) and aluminum
(right) matrices.
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dissipation due to SMA phase transformation. Plastic
behavior should be highlighted in order to identify the
main reason for the dramatic different responses.
Figures 21 to 23 show the displacement and martensitic
volume fraction time histories together with stress–
strain curves. At the end of the process, a residual
strain is observed on the relative displacement as well
as a major influence of b induced by compression due
to the asymmetric trend induced by matrix plasticity.

The residual displacement associated with the alumi-
num matrix yield is presented in Figure 24 for all the
combinations of a and Vsma studied. Figure 25 shows a
situation highlighting the residual displacement for
a= 1 3 10�9. This result illustrates the complexity
related to the design of composite materials: according
to Vsma, keeping all the other parameters constant, the

residual displacement may be positive, negative, or
null.

The advantage of the use of composite materials can
be illustrated by evaluating the performance change
with respect to the SMA volume fraction, Vsma. Figure
26 indicates that for a= 4 3 10�9, a composite with
Vsma = 0:5 dissipates more energy than a case with pure
aluminum or SMA braces. A similar conclusion may be
pointed out for a= 10 3 10�9 according to Figure 27,
but for this one the optimum condition is Vsma = 0:2.
Note that this conclusion can be obtained by analyzing
Figure 20, but these additional figures allow one to
improve the compression with stress–strain curve along
the whole period of time evaluated.

The developed analysis until now considers compo-
site braces built by a homogeneous matrix (epoxy or

Figure 18. Relative displacement history for braces of epoxy matrix with a= 5310�9 and Vsma = 0:4, 0:6, 0:8.

Figure 17. Relative displacement and stress–strain histories for braces of epoxy matrix with a= 2310�9 and Vsma = 0:4, 0:6, 0:8.
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aluminum) and SMA fibers. It should be pointed out
that this implies a considerable difference between elas-
tic moduli of both matrices (aluminum is around 20
times stiffener than the epoxy). Besides, it is assumed
the yield capability of the aluminum, which is neglected
for the epoxy. The matrix plasticity increases the energy
dissipation, even though the residual strain is an una-
voidable issue.

Based on this, it is important to evaluate the influ-
ence of the brace stiffness, without any additional
effect, as plasticity. In order to deal with it, a hybrid
composite is of concern considering the SMA with
other elastic fibers (e.g. carbon or glass) in an epoxy
matrix, increasing the elastic modulus. A simple modi-
fication must be done in order to describe this new
hybrid composite: Vm +Vf +Vsma = 1, where Vf is the
volume fraction of the additional elastic fiber.

Figure 19. Relative displacement history for braces of epoxy matrix with a= 9310�9 and Vsma = 0:4, 0:6, 0:8.

Figure 20. Maximum relative displacement according to Vsma for aluminum matrix.

Figure 21. Relative displacement history for braces of
aluminum matrix with a= 1310�9 and Vsma = 0:4, 0:5, 0:8.
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Additionally, an equivalent elastic modulus needs to
be considered: Eeq =EmVm +Ef Vf , where Ef is the
fiber longitudinal elastic modulus (Vignoli et al.,
2019).

Under these assumptions, the influence of the para-
meters a and Vsma on the maximum relative displace-
ment for a reinforced structure with hybrid braces with
Eeq = 72:4GPa is presented in Figure 28. Note that the
equivalent elastic modulus is equal to the aluminum
elastic modulus for a direct comparison with Figure 15.
Figure 29 presents a comparative analysis for
a= 5 3 10�9 and a= 10 3 10�9 considering the ampli-
tude variation according to Vsma for epoxy and alumi-
num matrices and for the hybrid composites with
Eeq = 72:4GPa. Both figures highlight the capability of

Figure 22. Martensitic volume fraction time history for braces of aluminum matrix with a= 1310�9 and Vsma = 0:4, 0:5, 0:8.

Figure 23. Stress–strain curves for braces of aluminum matrix with a= 1310�9 and Vsma = 0:4, 0:5, 0:8.

Figure 24. Residual displacement for reinforces with aluminum
matrix.
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Figure 25. Residual displacement for a SMAC with aluminum matrix and a= 1310�9.

Figure 26. Stress–strain history for braces of aluminum matrix with a= 4310�9 and Vsma = 0:0, 0:5, 1:0.

Figure 27. Stress–strain history for braces of aluminum matrix with a= 10310�9 and Vsma = 0:0, 0:2, 1:0.
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SMA hybrid composites to either decrease the ampli-
tude of the movement or eliminate the residual strain.

4. Conclusion

Earthquake-resistant structures are investigated consid-
ering the dynamical behavior of one-frame structure
reinforced with SMAC braces. The composite structure
has a rich response with great influence of SMA volume
fraction and matrix type. Numerical simulations show
the design capability with SMAC to decrease vibration
amplitude and increase dissipated energy. The impor-
tance of theoretical parametric studies is highlighted
due to a large number of variables involved and the
possibility to predict the optimal conditions for design

purposes. The influence of constituents’ volume frac-
tions, braces’ area, and matrix type is discussed, includ-
ing matrix nonlinearity induced by plasticity. This large
variety of possibilities is prohibitive to be reached with
experimental procedures. In general, the following con-
clusions should be pointed out. SMA is an interesting
material to be associated with earthquake-resistant
structures due to its high dissipation capacity due to
hysteretic behavior. The use of SMA composite is prob-
ably the best strategy to exploit the dissipation capacity
of SMAs. Different appropriate designs can be devel-
oped considering the SMA volume fraction becomes
one design variable. In this regard, there is a competi-
tion among different phenomena in order to define the
best configuration. Results indicate that the increase of
the SMA volume fraction increases the dissipated
energy per volume due to complete hysteresis loop
associated with complete phase transformation.
Nevertheless, the increase of the SMA volume fraction
also alters the stiffness and the new configuration may
be related to incomplete phase transformations, with
different sub-loops. Another important point to be ana-
lyzed is the total energy, which is proportional to the
parameter a. This also influences results altering the
system stiffness. Based on that, the maximum value of
SMA volume fraction does not coincide with the opti-
mal condition for almost the whole range of a consid-
ered in this study. Considering different matrices, linear
elastic matrix requires a higher volume fraction of
SMA than elastoplastic matrix since plasticity also con-
tributes to energy dissipation. Nevertheless, it is impor-
tant to note that it is associated with undesirable
residual strains. Alternatively, to increase the stiffness
without residual strains due to aluminum matrix yield,
the hybrid composites are discussed. Results indicate
that join SMA and other elastic fibers, such as glass

Figure 28. Influence of a and Vsma on the maximum relative
displacement for hybrid composite braces with Eeq = 72:4 GPa.

Figure 29. Comparison of the maximum relative displacement for composites with epoxy and aluminum matrix and hybrid
composites.
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and carbon, may increase the braces’ stiffness and elim-
inate residual strain.
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