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Abstract

Shape memory alloys (SMAs) are materials that present, among other characteristics, the capacity to undergo large
permanent strains, and then, after a proper increase on the temperature, recover its original shape. Constitutive models
consider phenomenological aspects of thermomechanical behavior of these alloys. The present contribution proposes a
constitutive model to consider both the tensile–compressive asymmetry and plastic strains that occur in the thermo-
mechanical behavior of SMAs. A numerical procedure is proposed in order to deal with nonlinearities of the formula-
tion. Comparisons between experimental and numerical results predicted by the proposed model show that they are in
close agreement. Moreover, numerical simulations show that the model is capable to capture the general behavior of
SMAs, allowing the description of important characteristics of these alloys as pseudo-elasticity, one-way and
two-way shape memory effect, phase transformation due to temperature variations, internal sub-loops due to incom-
plete phase transformations and tensile–compressive asymmetry.
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1. Introduction

Inspired by nature, researchers are trying to create systems and structures that can repair themselves,
presenting an adaptive behavior according to its environment. Among many options of smart sensors
and actuators employed in this kind of system, one can highlight shape memory alloys (SMAs). These
alloys have the ability to return to a previous shape or dimension, when subjected to an appropriate
thermomechanical procedure.

The remarkable properties of SMAs are attracting much technological interest, motivating different
applications in several fields of sciences and engineering. They are ideally suited for use as fasteners,
seals, connectors and clamps (van Humbeeck, 1999). Self-actuating fasteners, thermally actuator switches
and several bioengineering devices are some examples of these applications (Machado and Savi, 2002,
2003; Duerig et al., 1999; Lagoudas et al., 1999). The use of SMAs can help solving many important
problems in aerospace technology, in particular those concerning with space savings achieved by self-
erectable structures and non-explosive release devices (Denoyer et al., 2000; Pacheco and Savi, 1997).
Micromanipulators and robotics actuators have been built employing SMA properties to mimic the
smooth motions of human muscles (Garner et al., 2001; Webb et al., 2000; Rogers, 1995). Moreover,
SMAs are being used as actuators for vibration and buckling control of flexible structures. In this par-
ticular field, SMA wires embedded in composite materials have been used to modify mechanical charac-
teristics of slender structures (Birman, 1997; Rogers, 1995). The main drawback of SMAs is their slow
rate of change.

Metallurgical studies have revealed the microstructural aspects of the behavior of SMAs (Otsuka and
Ren, 1999; Shaw and Kyriakides, 1995). Basically, there are two possible phases on SMAs: austenite
and martensite. In martensitic phase, there are plates that may be internally twin related. Hence, different
deformation orientations of crystallographic plates constitute what is known by martensitic variants. On
SMAs there are 24 possible martensitic variants that are arranged in six plate groups with four plate vari-
ants per group (Zhang et al., 1991). Schroeder and Wayman (1977) have shown that for a temperature
where martensite is the only stable phase in a stress-free state, when a specimen is deformed with increasing
stress, only one of the four variants in a given plate group will begin to grow. This variant is the one that
has the largest partial shear stress. On the other hand, because the crystal structure of martensite is less
symmetric than the austenite, only a single variant is created on the reverse transformation (Zhang
et al., 1991). For the analysis of one-dimensional media, it is possible to consider only three variants of
martensite together with austenite (A) on SMAs: the twinned martensite (M), which is stable in the absence
of a stress field, and two other martensitic phases (M+ and M�), which are induced by positive and
negative stress fields, respectively.

Experimental results also show that SMAs present an asymmetric behavior when subjected to tensile or
compressive loads. Polycrystalline NiTi, for example, deformed under compression, presents smaller recov-
erable strain levels, higher critical transformation stress levels, and steeper transformation stress–strain
slopes (Gall et al., 1999). Gall and Sehitoglu (1999) argued that the tension–compression asymmetry in
polycrystalline NiTi is caused by asymmetry at the single crystal level. Therefore, single crystal SMAs
are expected to exhibit a considerable tension–compression asymmetry since their martensite habit planes
present a very low symmetry with respect to the parent phase.

Other important phenomenon related to SMAs thermomechanical behavior is the plasticity. Plastic
strains are concerned in different articles in order to evaluate either effects of these strains in phase trans-
formations or the description of the two-way shape memory effect (Miller and Lagoudas, 2000). The loss of
actuation through repeated cycling due to plastic strain development is one of the important aspects related
to the effect of plastic strains in SMAs.

The thermomechanical behavior of shape memory alloys may be modeled either by microscopic or
macroscopic point of view. There are many different works dedicated to the constitutive description of
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the thermomechanical behavior of shape memory alloys and, despite the large number of applications, the
modeling of SMA is still the objective of many researches developed in order to describe all details of its
thermomechanical behavior (James, 2000; Savi et al., 2002).

This article presents a constitutive model for the description of the thermomechanical behavior of
SMAs. The proposed model is based on the Fremond�s theory (Fremond, 1987, 1996), later modified by
Savi et al. (2002) and Baêta-Neves et al. (2004). Here, the tensile–compressive asymmetry is concerned
allowing a correct description of the thermomechanical response of SMAs. The proposed model includes
four macroscopic phases in the formulation: three variants of martensite and an austenitic phase. Plastic
strain is included into the model and hardening effect is represented by a combination of kinematic and
isotropic behaviors. An iterative numerical procedure based on the operator split technique (Ortiz et al.,
1983), the orthogonal projection algorithm (Savi et al., 2002) and the return mapping algorithm (Simo
and Hughes, 1998) is developed. Numerical results are carried out showing good agreements with experi-
mental data.
2. Constitutive model

Fremond (1987, 1996) has proposed a three-dimensional model for the thermomechanical response of
SMA where martensitic transformations are described with the aid of two internal variables. These vari-
ables represent volumetric fractions of two variants of martensite (M+ and M�), and must satisfy con-
straints regarding the coexistence of three distinct phases, the third being the parent austenitic phase
(A). Savi et al. (2002) proposes a constitutive model built upon Fremond�s original model including a fourth
phase related to twinned martensite (M). Moreover, the proposed model introduces the description of plas-
tic strain, considering a thermo-plastic-phase transformation coupling, and also different parameters for
each phase. Recently, Baêta-Neves et al. (2004) proposes the enlargement of the stress–strain hysteresis
loop in order to allow better adjustment to experimental data. This contribution revisits the cited model
including tensile–compressive asymmetry.

Modeling of SMA behavior can be done within the scope of standard generalized materials (Lemaitre
and Chaboche, 1990). With this assumption, the thermomechanical behavior can be described by the
Helmholtz free energy, w, and the pseudo-potential of dissipation, U. Therefore, the thermodynamic state
is completely defined by a finite number of state variables: total strain, e, temperature, T, the volumetric
fractions of martensitic variants, b1 and b2, which are associated with detwinned martensites (M+ and
M�, respectively) and austenite (A), b3. The fourth phase is associated with twinned martensite (M)
and its volumetric fraction is b4. It should be pointed out that, macroscopically speaking, A, M, M+
and M� are considered as different phases. The plastic phenomenon is described with the aid of plastic
strain, ep, and the hardening effect is represented by a combination of kinematic and isotropic behaviors,
described by variables l and c, respectively. With these assumptions, each phase have a free energy func-
tion as follows:
Mþ : qw1ðee; T ; c; lÞ ¼
1

2
EMe2e � aT ee � KT

M � XMðT � T 0Þee þ
1

2
KMc2 þ 1

2HM

l2 ð1Þ

M� : qw2ðee; T ; c; lÞ ¼
1

2
EMe2e þ aCee � KC

M � XMðT � T 0Þee þ
1

2
KMc2 þ 1

2HM

l2 ð2Þ

A : qw3ðee; T ; c; lÞ ¼
1
EAe2e � KA � XAðT � T 0Þee þ

1
KAc2 þ 1

l2 ð3Þ

2 2 2HA
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M : qw4ðee; T ; c; lÞ ¼
1

2
EMe2e þ KM � XMðT � T 0Þee þ

1

2
KMc2 þ 1

2HM

l2 ð4Þ
In the previous equations, subscript M is related to martensitic phase while A is associated with austenite.
Moreover, superscript T is related to tensile parameters while C is associated with compressive parameters.
Observing these indexes, notice that a is a material parameter related to the stress–strain hysteresis loop
height observed during the martensitic transformation, while K = K(T) are functions of temperature also
related to the phase transformation; E represents the elastic modulus, X is related to the thermal expansion
coefficient, K is the plastic modulus while H is the kinematic hardening modulus; T0 is a reference tempera-
ture and q is the density. A free energy for the mixture can be written as follows:
qbwðee; T ; c; l; b1; b2; b3; b4Þ ¼ q
X4

i¼1

biwiðee; T ; c; lÞ þ bJ ðb1; b2; b3; b4Þ ð5Þ
where bJ ðb1; b2; b3; b4Þ represents an indicator function related to the coexistence of four distinct phases,
which is represented by constraints regarding:
0 6 bi 6 1 ði ¼ 1; 2; 3; 4Þ; b1 þ b2 þ b3 þ b4 ¼ 1 ð6Þ
Using this constraint, b4 can be eliminated and the free energy can be rewritten as:
qwðee; T ; c; l; b1; b2; b3Þ ¼ qewðee; T ; c; l; b1; b2; b3Þ þ Jpðb1; b2; b3Þ ð7Þ
where,
qewðee; T ; c; l; b1; b2; b3Þ

¼ b1½�aT ee � ðKM þ KT
MÞ� þ b2½aCee � ðKM þ KC

MÞ�

þ b3

1

2
ðEA � EMÞe2e � ðKM þ KAÞ � ðXA � XMÞðT � T 0Þee þ

1

2
ðKA � KMÞc2þ

�
1

2HA

� 1

2HM

� �
l2

�
þ 1

2
EMe2e þ KM � XMðT � T 0Þee þ

1

2
KMc2 þ 1

2HM

l2 ð8Þ
and Jp represents the indicator function given by the following convex set p, which can be geometrically
represented by the tetrahedron presented in Fig. 1.
p ¼ fbi 2 R j 0 6 bi 6 1 ði ¼ 1; 2; 3Þ; b1 þ b2 þ b3 6 1g ð9Þ
β

β

3

M

A

M–

M+

1

1

1 1

2

β

Fig. 1. Tetrahedron of the constraints p.
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At this point, additive decomposition is assumed:
ee ¼ e � ep þ aC
hb2 � aT

hb1 ð10Þ
where aT
h and aC

h are parameters associated with the stress–strain hysteresis loop width for tension and com-
pression states, respectively. Under this assumption, the differential part of the free energy is rewritten as
follows:
qewðe; ep; T ; c;l;b1;b2;b3Þ

¼ b1½�aT ðe� ep þ aC
hb2 � aT

hb1Þ � ðKM þKT
MÞ� þ b2½aCðe� ep þ aC

hb2 � aT
hb1Þ � ðKM þKC

MÞ�

þ b3

1

2
ðEA � EMÞðe� ep þ aC

hb2 � aT
hb1Þ

2 � ðKA þKMÞ�
�

ðXA �XMÞðT � T 0Þðe� ep þ aC
hb2 � aT

hb1Þ

þ 1

2
ðKA � KMÞc2 þ

1

2HA

� 1

2HM

� �
l2

�
þ 1

2
EMðe� ep þ aC

hb2 � aT
hb1Þ

2 þKM �XMðT � T 0Þðe� ep

þ aC
hb2 � aT

hb1Þ þ
1

2
KMc2 þ 1

2HM

l2 ð11Þ
State equations can be obtained from the Helmholtz free energy as follows:
r ¼ q
ow
oe

¼ Eðe � ep þ aC
hb2 � aT

hb1Þ þ aCb2 � aTb1 � XðT � T 0Þ ð12Þ

B1 2 �qo1w ¼ aT ðe � epÞ þ K1 þ b2ðaC
h aT þ aT

ha
C þ EaT

ha
C
h Þ � b1ð2aT

ha
T þ EaT 2

h Þ

þ aT
h ½Eðe � epÞ � XðT � T 0Þ� � o1Jp ð13Þ

B2 2 �qo2w ¼ �aCðe � epÞ þ K2 þ b1ðaT
ha

C þ aC
h aT þ EaC

h aT
hÞ � b2ð2aC

h aC þ EaC2

h Þ

� aC
h ½Eðe � epÞ � XðT � T 0Þ� � o2Jp ð14Þ

B3 2 �qo3w ¼ � 1

2
ðEA � EMÞðe� ep þ aC

hb2 � aT
hb1Þ

2 þK3 þ ðXA �XMÞðT � T 0Þðe� ep þ aC
hb2 � aT

hb1Þ

� 1

2
ðKA � KMÞc2 �

1

2HA

� 1

2HM

� �
l2 � o3Jp ð15Þ

X ¼ �q
ow
oep

¼ Eðe � ep þ aC
hb2 � aT

hb1Þ þ aCb2 � aTb1 � XðT � T 0Þ ¼ r ð16Þ

Y ¼ �q
ow
oc

¼ �Kc ð17Þ

Z ¼ �q
ow
ol

¼ � 1

H
l ð18Þ
where Bi, X, Y and Z are thermodynamic forces, r represents the uniaxial stress and oiJp are the sub-dif-
ferentials with respect to bi (Rockafellar, 1970). Lagrange multipliers offer a good alternative to represent
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sub-differentials of the indicator function (Savi and Braga, 1993). Furthermore, the parameters E, X, K and
H are defined from their correspondent values for austenitic and martensitic phases, as follows:
E ¼ EM � b3ðEM � EAÞ ð19Þ

X ¼ XM � b3ðXM � XAÞ ð20Þ

K ¼ KM � b3ðKM � KAÞ ð21Þ

1

H
¼ 1

HM

� b3

1

HM

� 1

HA

� �
ð22Þ
and functions K1, K2 and K3 are defined as:
K1 ¼ K1ðT Þ ¼ KM þ KT
M ð23Þ

K2 ¼ K2ðT Þ ¼ KM þ KC
M ð24Þ

K3 ¼ K3ðT Þ ¼ KM þ KA ð25Þ
In order to describe the dissipation processes, it is necessary to introduce a pseudo-potential of dissipa-
tion U. In general, it is possible to make a decomposition of the form:
U ¼ Uð_e; _ep; _l; _c; _bi; qÞ ¼ /ð_e; _ep; _l; _c; _biÞ þ /qðqÞ ð26Þ
Here, the interest is focused on the mechanical part of the potential and, for convenience, is expressed in
terms of its dual /* = /*(Bi,X,Y,Z):
/� ¼ 1

2g1

ðB1 þ gciY þ gckZÞ
2 þ 1

2g2

ðB2 þ gciY þ gckZÞ
2 þ 1

2g3

ðB3 � gciY � gckZÞ
2 þ J vðB1;B2;B3Þ

þ J fðX ; Y ; ZÞ ð27Þ
where Jf is the indicator function related to the yield surface defined as follows:
f ¼j X þ HZ j �ðrY � Y Þ or f ðr;l; cÞ ¼j r � l j �ðrY þ KcÞ ð28Þ
while Jv is the indicator function related to the convex set v, which provide constraints associated with
phase transformations evolution. Physically, this indicator function establishes constraints related to inter-
nal sub-loops due to incomplete phase transformations and also to the formation of detwinned martensite
(M). Hence, defining
e0 ¼ e � X
E
ðT � T 0Þ ð29Þ
the convex set v may be written as follows for a mechanical loading history with _r 6¼ 0:
v ¼ _bn 2 R
_e _b1 P 0; _e _b3 6 0 if e0 > 0

_e _b2 6 0; _e _b3 P 0 if e0 < 0

�����
( )

ð30Þ
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On the other hand, when _r ¼ 0, the convex set v is expressed by
v ¼ _bn 2 R

_T _b1

< 0 if _T > 0; r < rcrit
M and bs

1 6¼ 0

¼ 0 otherwise

(

_T _b2

< 0 if _T > 0; r < rcrit
M and bs

2 6¼ 0

¼ 0 otherwise

(
_T _b3 P 0

� _b
2

1 � _b1
_b3 ¼ 0 or � _b

2

2 � _b2
_b3 ¼ 0

����������������

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;
ð31Þ
where bs
1 and bs

2 are the values of b1 and b2 respectively, when the phase transformation begins to take
place. Moreover, rcrit

M , which actually has different values for tensile or compressive behaviors (rT crit
M and

rCcrit
M ), are the critical stress values for M ! M+ and M ! M� phase transformations.
Together with constraints related to internal sub-loops, the set (31) also expresses a constraint to elim-

inate both M+ ! M and M� ! M phase transformations. In mathematical terms, this is expressed by
_b1
_b4 ¼ _b1ð� _b1 � _b2 � _b3Þ ¼ � _b

2

1 � _b1
_b3 ¼ 0 or _b2

_b4 ¼ _b2ð� _b1 � _b2 � _b3Þ ¼ � _b
2

2 � _b2
_b3 ¼ 0, respectively,

which means that when one kind of transformation occurs the other needs to vanish. Moreover, the dis-
carded terms in both equations (� _b1

_b2) represent impossible transformations to occur and, thus, are not
considered.

The parameter gi (i = 1,2,3) is associated with the internal dissipation of the material while gci and gck
are related to plastic-phase transformation coupling. The parameter gci is associated with isotropic harden-
ing coupling while gck is associated with kinematic hardening coupling. At this point, it is possible to write
the following complementary equations:
_b1 2 oB1
/ ¼ B1

g1

þ gci

g1

Y þ gck

g1

Z þ o1J v ¼
B1

g1

� gci

g1

Kc � gck

g1

l
H

þ o1J v ð32Þ

_b2 2 oB2
/ ¼ B2

g2

þ gci

g2

Y þ gck

g2

Z þ o2J v ¼
B2

g2

� gci

g2

Kc � gck

g2

l
H

þ o2J v ð33Þ

_b3 2 oB3
/ ¼ B3

g3

� gci

g3

Y � gck

g3

Z þ o3J v ¼
B3

g3

þ gci

g3

Kc þ gck

g3

l
H

þ o3J v ð34Þ

_ep 2 oX/ ¼ k sign ðX þ HZÞ ¼ k sign ðr � lÞ ð35Þ

_c 2 oY/ ¼ k þ gcið _b1 þ _b2 � _b3Þ ¼j _ep j þgcið _b1 þ _b2 � _b3Þ ð36Þ

_l 2 oZ/ ¼ kH sign ðX þ HZÞ þ gckð _b1 þ _b2 � _b3Þ ¼ H _ep þ gckð _b1 þ _b2 � _b3Þ ð37Þ
where k is the plastic multiplier and oiJv are the sub-differentials with respect to variables _bi. The irreversible
nature of plastic flow is represented by means of the Kuhn–Tucker conditions. Another constraint must be
satisfied when f(r,c,l) = 0, referred as the consistency condition. These conditions are presented as follows
(Simo and Hughes, 1998):
k P 0; f ðr; c; lÞ 6 0; kf ðr; c; lÞ ¼ 0; k _f ðr; c; lÞ ¼ 0 if f ðr; c; lÞ ¼ 0 ð38Þ

These equations form a complete set of constitutive equations. Since the pseudo-potential of dissipation is
convex, positive and vanishes at the origin, the Clausius–Duhen inequality is automatically satisfied if the
entropy is defined as s = �ow/oT. The following box summarizes the set of constitutive equations:
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Box 1: Constitutive equations
r ¼ Eðe � ep þ aC
hb2 � aT

hb1Þ þ aCb2 � aTb1 � XðT � T 0Þ

_b1 ¼
1

g1

aT ðe � epÞ þ K1 þ b2ðaC
h aT þ aT

ha
C þ EaT

ha
C
h Þ � b1ð2aT

ha
T þ EaT 2

h Þ�
n

aT
h ½Eðe � epÞ

�XðT � T 0Þ� � gciKc � gck

l
H

� o1Jp

o
þ o1J v

_b2 ¼
1

g2

�aCðe � epÞ þ K2 þ b1ðaT
ha

C þ aC
h aT þ EaC

haT
h Þ � b2ð2aC

h aC þ EaC2

h Þ�
n

aC
h ½Eðe � epÞ

�XðT � T 0Þ� � gciKc � gck

l
H

� o2Jp

o
þ o2J v

_b3 ¼
1

g3

� 1

2
ðEA � EMÞðe � ep þ aC

hb2 � aT
hb1Þ

2 þ K3þ
�

ðXA � XMÞðT � T 0Þðe � ep þ aC
hb2 � aT

hb1Þ

� 1

2
ðKA � KMÞc2 �

1

2HA

� 1

2HM

� �
l2 þ gciKc þ gck

l
H

� o3Jp

�
þ o3J v

_ep ¼ k sign ðr � lÞ

_c ¼j _ep j þgcið _b1 þ _b2 � _b3Þ

_l ¼ H _ep þ gckð _b1 þ _b2 � _b3Þ
2.1. Material parameters

This section presents a brief description about some material parameters related to the proposed model.
A detailed description of these model parameters and also their sensitivity analysis may be found in Paiva
(2004).

At first, it is important to consider the definition of the functions K1, K2 and K3 which are temperature
dependent as follows:
K1 ¼ �LT
0 þ

LT

TM

ðT � TMÞ ð39Þ

K2 ¼ �LC
0 þ LC

TM

ðT � TMÞ ð40Þ

K3 ¼ �LA
0 þ

LA

TM

ðT � TMÞ ð41Þ
Here, TM is the temperature below which the martensitic phase becomes stable. Besides, LT
0 , L

T, LC
0 , L

C, LA
0

and LA are parameters related to critical stress for phase transformation, remembering that the indexes T
refers to tensile, C to compression and A to austenite.



A. Paiva et al. / International Journal of Solids and Structures 42 (2005) 3439–3457 3447
The definition of these functions establishes the phase transformation critical stress for each phase. Actu-
ally, the definition of critical stress is essential to evaluate the convex set v when _r ¼ 0. It may be obtained
from the two first equations presented in Box 1 considering _b1 ¼ b1 ¼ b2 ¼ b3 ¼ 0. Therefore, the following
expression is obtained for tensile behavior
rT crit
M ¼ EM

aT þ EMaT
h

LT
0 �

LT ðT � TMÞ
TM

þ aT
hXMðT � T 0Þ þ gciKMc þ gck

l
HM

� �
� XMðT � T 0Þ ð42Þ
Another important characteristic of the model is that there is a critical temperature, TC, below which there
is no change in stress–strain hysteresis loop position. This temperature limits the variation of the transfor-
mation critical stress and can be determined by evaluating again the two first constitutive equations in Box
1, assuming _b1 ¼ b2 ¼ b3 ¼ 0; b1 ¼ 1; e ¼ eTR; ep ¼ 0; T ¼ T T

C. Therefore, the following parameters are
defined for tensile behavior,
aT
h ¼ eTR � aT

EM

� XM

EM

ðT T
C � T 0Þ; T T

C ¼ TM

ðLT
0 þ LT ÞEM þ aT ðXMT 0 � aT Þ

LTEM þ aTXMTM

� �
ð43Þ
As pointed before, the first parameter is related to the horizontal size of the stress–strain hysteresis loop
for tensile behavior, which is function of the maximum residual strain eTR that is a usual parameter obtained
during SMAs� experimental characterization.

An analogous procedure considering the evolution of b2 defines similar parameters for compressive
behavior:
rCcrit
M ¼ EM

aC þ EMaC
h

�LC
0 þ LCðT � TMÞ

TM

þ aC
hXMðT � T 0Þ � gciKMc � gck

l
HM

� �
� XMðT � T 0Þ ð44Þ
And also,
aC
h ¼ �eCR � aC

EM

þ XM

EM

T C
C � T 0

� �
; T C

C ¼ TM

ðLC
0 þ LCÞEM � aCðXMT 0 þ aT Þ

LCEM � aCXMTM

� �
ð45Þ
Now, it should be pointed out that functions K1, K2 and K3 do not vary for temperatures below these
critical values.

In order to contemplate different characteristics to the kinetics of phase transformation for loading and
unloading processes, it is possible to consider different values to the parameter gi, which is related to inter-
nal dissipation. Therefore,
gi ¼ gL
i if _e > 0

gi ¼ gU
i if _e < 0

�
ð46Þ
where gL
i and gU

i are internal dissipation parameters related to variable bi during loading or unloading pro-
cess, respectively.

The yield limit rY has different values for austenitic and martensitic phases. Moreover, for very high tem-
peratures, this value tends to decrease. Therefore, it is assumed that the yield limit has a linear variation
with T, evaluated with the following expression:
rY ¼ rM
Y if T 6 TM

rY ¼ rM
Y ðTA � T Þ þ rA;i

Y ðT � TMÞ
TA � TM

if TM < T 6 TA

rY ¼ rA;i
Y ðT F � T Þ þ rA;f

Y ðT � TAÞ
T F � TA

if TA < T 6 T F

8>>>>><>>>>>:
ð47Þ
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where TF is a reference temperature related to high values of temperature and TA is the temperature above
which austenite is the only stable phase.

2.2. Numerical procedure

The operator split technique (Ortiz et al., 1983) associated with an iterative numerical procedure is devel-
oped in order to deal with the nonlinearities of the formulation. The procedure isolates the sub-differentials
and uses the implicit Euler method combined with an orthogonal projection algorithm (Savi et al., 2002) to
evaluate evolution equations. Orthogonal projections assure that volumetric fractions of the martensitic
variants will obey the imposed constraints. In order to satisfy constraints expressed in (9), values of
volumetric fractions must stay inside or on the boundary of p, the tetrahedron shown in Fig. 1. The
elasto-plastic behavior is simulated with the aid of the classical return mapping algorithm proposed by
Simo and Hughes (1998).
3. General thermomechanical behavior

This section presents a discussion about thermomechanical behavior of SMAs predicted by the proposed
model. A SMA specimen subjected to tensile behavior is considered in this analysis. At first, the model
parameters are adjusted, by comparing numerical results obtained with the proposed model with experi-
mental results presented by Tobushi et al. (1991). After that, numerical simulations considering other
thermomechanical loading processes are addressed in order to show the potentiality of the model to
describe several complex thermomechanical behaviors.

3.1. Model calibration

The calibration of the proposed model is done comparing numerical simulation with experimental data
presented by Tobushi et al. (1991), which describes tensile tests on Ni–Ti wires at different temperatures.
Basically, three different temperatures are considered here: 333 K, 353 K and 373 K (Fig. 2). Notice that,
even though this is a pseudo-elastic test, experimental data for T = 373 K and 353 K presents a residual
Fig. 2. Experimental stress–strain curves for a Ni–Ti SMA (Tobushi et al., 1991).



Table 1
Model parameters for a Ni–Ti SMA (Tobushi et al., 1991)

EA

(GPa)
EM

(GPa)
XA

(MPa/K)
XM

(MPa/K)
aT

(MPa)
LT0
(MPa)

LT

(MPa)
LA0
(MPa)

LA

(MPa)
eTR gL1

(MPa s)
gU1
(MPa s)

gL3
(MPa s)

gU3
(MPa s)

TM

(K)
TA

(K)
T0

(K)

54 42 0.74 0.17 330 0.15 41.5 0.63 185 0.0555 1 2.7 1 2.7 291.4 307.5 307
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strain at the end of the loading–unloading process, which is probably related to transformation induced
plasticity (Lagoudas et al., 2003).

Temperature T = 373 K is used to calibrate model parameters, in order to reproduce the experimental
data. Table 1 presents the adjusted parameters. Since there is neither compression nor plasticity related
to the cited test, the associated parameters are not presented. Fig. 3 shows both numerical and experimental
data for the three temperatures, showing good agreements. The model does not predict residual strain after
the loading–unloading process since yield surface is not reached (in spite of the residual strain observed in
experimental data for T = 373 K and 353 K). Although the proposed model has a plastic-phase transfor-
mation coupling, this coupling only considers that plastic strains affect phase transformation and not vice
versa. For T = 333 K, the experimental curve does not present an elastic response related to martensitic
Fig. 3. Comparison between numerical and experimental results.
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phase. Probably, this is associated with an incomplete phase transformation, which explains the little dis-
crepancy between results. In general, it is possible to say that the proposed model captures the general
behavior of SMAs, presenting good agreement with experimental data.

3.2. Numerical simulations of the general thermomechanical behavior of SMAs

This section presents some numerical simulations developed in order to illustrate the capacity of the
model to capture the general thermomechanical behavior of SMAs. Basically, numerical results related
to pseudo-elasticity, shape memory effect (one-way and two-way), phase transformation induced by tem-
perature variation and internal sub-loops due to incomplete phase transformation are addressed. More-
over, it should be pointed out that loading process may cause plastic strains, which are also
contemplated in the model. Some of these results may be described by previous version of the model (Savi
et al., 2002; Baêta-Neves et al., 2004), but are reproduced here again. For all simulations, stress-driving
loadings are adopted.

Material properties related to plasticity, presented in Table 2, must be considered together with adjusted
parameters presented in Table 1. These values are representatives of a typical Ni–Ti alloy (Baêta-Neves
et al., 2004). Notice that all simulations consider only tensile response and, therefore, parameters related
to compressive are not addressed here.

At first, pseudo-elastic effect is concerned regarding a SMA specimen subjected to an isothermal
mechanical loading performed at T = 373 K (T > TA). Fig. 4 presents the mechanical load and also the
stress–strain curve. When the specimen is free of stress, the austenitic phase is stable. After this, positive
stresses induce the formation of theM+ variant of martensite. The loading process continues until the yield
surface is reached, developing plastic strains. The unloading process induces austenite formation again and,
at the end of the loading–unloading process, the specimen presents an irreversible residual strain that can-
not be eliminated by the reverse transformation.
Table 2
Model parameters related to plasticity for a Ni–Ti alloy (Baêta-Neves et al., 2004)

rA;i
Y

(GPa)
rA;f
Y

(GPa)
rM
Y

(GPa)
gci gck KA

(GPa)
KM

(GPa)
HA

(GPa)
HM

(GPa)
TF (K)

1.5 1.0 0.5 �0.01 �0.01 1.4 0.4 4 1.1 423

Fig. 4. Pseudoelasticity.



Fig. 5. One-way shape memory effect.
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Shape memory effect is now focused regarding a thermomechanical load depicted in Fig. 5. Firstly, a
constant temperature T = 270 K (T < TM) is considered, where twinned martensite is a stable phase. After
a mechanical loading is applied, the specimen experiences the phase transformation from twinned martens-
ite, M to detwinned martensite, M+. In this stage, loading process continues to be applied and the yield
surface is reached. After that, unloading process promotes the elastic unloading which reveals the presence
of residual strain. A subsequent heating process induces the transformation from detwinned martensite,
M+, to the austenitic phase, A. Notice, however, that the plastic strain portion, induced by the plastifica-
tion process, cannot be eliminated by the reverse phase transformation promoted by the thermal load. The
detail in Fig. 5 reveals a region free of stress where phase transformation due temperature variation pro-
motes a perturbation in the strain–temperature evolution. This behavior is associated with a tempera-
ture–strain hysteresis loop and is explored in more detail in the next example which involves a situation
free of stress.

The phase transformation due to temperature variation is now considered regarding a thermal loading,
free of stress. Fig. 6 presents the strain–temperature curve, showing thermal expansion and phase transfor-
mations related to a thermal loading. Notice the hysteretic characteristics of phase transformation.
Fig. 6. Phase transformation due to temperature variation: (a) TM = 291.4 K (positive two-way strain); (b) TM = 307.5 K (negative
two-way strain).



3452 A. Paiva et al. / International Journal of Solids and Structures 42 (2005) 3439–3457
Experimental data presented by Jackson et al. (1972) show a similar curve, indicating that the model is
capable to describe the coupling between shape memory effects and thermal expansion. Miller and
Lagoudas (2000) use the term two-way strain to describe the strain developed during the austenitic to
martensitic phase transformation under zero load. This strain is the result of dislocation arrangements
and, typically, SMAs present positive two-way strains. In the cited reference, the authors show experimen-
tal tests that present negative values for these strains. Miller and Lagoudas present an argument that this
apparent discrepancy with theory may be explained by a previous heat treatment of the specimen. Fig. 6
presents the difference between two curves obtained for different temperatures values of TM. Since this
temperature may be altered by heat treatments (Tang and Sandström, 1995), it is possible to see how this
alteration modifies the phase transformation curves, changing the sign of two-way strain. Fig. 6a considers
TM = 291.4 K while Fig. 6b uses TM = 307.5 K. Each curve has a different sign for two-way strain, showing
that is possible to alter this sign by altering the phase transformation temperature.

Two-way shape memory effect is now considered (Bo and Lagoudas, 1999; Zhang et al., 1991). With this
aim, stress-induced martensite training (SIM training), represented in Fig. 7, is simulated. Initially, twenty
cycles of an isothermal mechanical process (T = 373 K), with increasing maximum values, is considered,
causing plastic strains. After this mechanical process, thermal load is applied maintaining a constant value
Fig. 7. Stress-induced martensite training (SIM training).

Fig. 8. Two-way shape memory effect.



Fig. 9. Internal sub-loops due to incomplete phase transformations.
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of mechanical load (r = 100 MPa). Fig. 8 shows the stress–strain curve during SIM training. Notice the
growth of plastic strains during each load cycle. Finished this process, SMA presents phase transformation
A! M+ during cooling and M+ !A during heating. This behavior is related to the two-way shape mem-
ory effect that allows one to associate each phase to a different form. Fig. 8 also shows a strain–temperature
curve, representing this effect. It should be pointed out that the description of this phenomenon is related to
the plastic-phase transformation coupling introduced in the proposed model (Savi et al., 2002).

Finally, internal sub-loops due to incomplete phase transformations is focused on considering a pseudo-
elastic problem, similar to the one presented in Fig. 4. Imposing a loading process shown in Fig. 9, it in-
duces incomplete phase transformations. This is an important characteristics related to SMA response,
which is captured by the proposed model. Fig. 9 also shown the volumetric fractions of the phases.
4. Tensile–compressive asymmetry

At this point, tensile–compressive asymmetry is focused on. With this aim, a SMA specimen is sub-
jected to different thermomechanical loadings. Basically, stress-driving simulations are carried out consi-
dering tensile and compressive behaviors at a constant temperature. Moreover, it is assumed that all
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simulations are performed without reaching the yield surface and, therefore, plastic parameters are not con-
sidered here.

Experimental results presented by Gall et al. (1999) are used as reference to calibrate numerical results
obtained from the proposed model. In the experimental tests developed in the cited reference, single and
polycrystal specimens with different orientation and subjected to different aging treatments are analyzed.
The aging treatment causes Ti3Ni4 precipitation, being related to the tension–compression asymmetry.
Basically, these precipitates act as nucleation sites for martensite and obstacles for dislocation motion. This
mechanism effectively increases the critical stress for dislocation motions and decreases the critical stress for
phase transformation.

Here, numerical simulations related to some of these tests are carried out, showing the potentiality of the
proposed model. Figures are plotted considering absolute values of stress and strain for compressive tests.
At first, a single crystal aged 1.5 h at 673 K (peak-aged) is considered. The parameters presented in Table 3
are used for the numerical simulations. Under this condition, compressive behavior presents small values of
critical stress, where phase transformation begins to take place, and also smaller residual strain. The model
response captures this behavior as shown in Fig. 10a. On the other hand, tensile behavior is quite different.
Numerical and experimental results are in agreement except for the response during unloading in tensile
behavior. Gall et al. (1999) say that this behavior indicates that transformation product is unstable under
tensile unloading.

Fig. 10b shows the same test related to a different aging treatment, namely aged 15 h at 773 K (over-
aged), which the specimen is subjected before the test. Table 4 presents the employed parameters. Notice
that different set of parameters are considered in order to describe the response of the SMA after aging
Table 3
Thermomechanical properties: peak-aged single crystal [111] orientation, aged 1.5 h at 673 K

EA

(GPa)
EM

(GPa)
aT

(MPa)
aC

(MPa)
eTR eCR LT0

(MPa)
LT

(MPa)
LC0
(MPa)

LC

(MPa)
LA0
(MPa)

LA

(MPa)

36.5 107 4044 1520 0.0663 �0.0227 18.95 273.06 12.85 402.96 11.95 456

XA

(MPa/K)
XM

(MPa/K)
TM

(K)
TA

(K)
T0

(K)
gL1
(MPa s)

gU1
(MPa s)

gL2
(MPa s)

gU2
(MPa s)

gL3
(MPa s)

gU3
(MPa s)

0.74 0.17 273.5 317.5 295 6.02 6.02 4.09 4.09 3.8 3.8

Fig. 10. Stress–strain curves for a single crystal with [111] orientation: (a) aged 1.5 h at 673 K; (b) aged 15 h at 773 K.



Table 4
Thermomechanical properties: over-aged single crystal [111] orientation, aged 15 h at 773 K

EA

(GPa)
EM

(GPa)
aT

(MPa)
aC

(MPa)
eTR eCR LT0

(MPa)
LT

(MPa)
LC0
(MPa)

LC

(MPa)
LA0
(MPa)

LA

(MPa)

94 161 2250 1670 0.0723 �0.0311 12.51 209.55 9.5 300.25 13.34 456

XA

(MPa/K)
XM

(MPa/K)
TM

(K)
TA

(K)
T0

(K)
gL1
(MPa s)

gU1
(MPa s)

gL2
(MPa s)

gU2
(MPa s)

gL3
(MPa s)

gU3
(MPa s)

0.74 0.17 271.2 301.7 295 1.91 1.91 2.063 2.063 2 2
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treatment. Again, experimental and numerical results are in agreements. The aging treatment alters the
response of the specimen changing the slope of the phase transformation region. Gall et al. (1999) say that
either tension–compression asymmetry or orientation dependence of the stress–strain response are strongly
related to heat treatments (precipitate sizes).

The forthcoming analysis considers a polycrystal SMA with h111i{110} texture (Fig. 11). Results are
qualitatively similar to the previous one related to single crystals. Since the proposed model is related to
phenomenological features, the results demonstrate the model ability in describing both single and poly-
crystals behavior. It should be pointed out, however, that a different set of parameters is being considered
for the description of polycrystals. The use of the same set of parameters needs a proper formulation
(Thamburaja and Anand, 2001). Table 5 presents parameters used for the peak-aged polycrystal specimen
Fig. 11. Stress–strain curves for a polycrystal with h111i{110} texture: (a) aged 1.5 h at 673 K; (b) aged 15 h at 773 K.

Table 5
Thermomechanical properties: peak-aged polycrystal h111i{110} texture, aged 1.5 h at 673 K

EA

(GPa)
EM

(GPa)
aT

(MPa)
aC

(MPa)
eTR eCR LT0

(MPa)
LT

(MPa)
LC0
(MPa)

LC

(MPa)
LA0
(MPa)

LA

(MPa)

58 96.5 1817 910 0.0527 �0.0268 12.16 148.2 14.42 311.27 15 360

XA

(MPa/K)
XM

(MPa/K)
TM

(K)
TA

(K)
T0

(K)
gL1
(MPa s)

gU1
(MPa s)

gL2
(MPa s)

gU2
(MPa s)

gL3
(MPa s)

gU3
(MPa s)

0.74 0.17 262.2 314 295 5.7 5.7 6.75 6.75 7 7



Table 6
Thermomechanical properties: over-aged polycrystal h111i{110} texture, aged 15h at 773 K

EA

(GPa)
EM

(GPa)
aT

(MPa)
aC

(MPa)
eTR eCR LT0

(MPa)
LT

(MPa)
LC0
(MPa)

LC

(MPa)
LA0
(MPa)

LA

(MPa)

78 148 1880 1443 0.0538 �0.0262 12.1 196.27 13.4 300.06 12.39 360

XA

(MPa/K)
XM

(MPa/K)
TM

(K)
TA

(K)
T0

(K)
gL1
(MPa s)

gU1
(MPa s)

gL2
(MPa s)

gU2
(MPa s)

gL3
(MPa s)

gU3
(MPa s)

0.74 0.17 273.8 305.8 295 3.24 3.24 3.58 3.58 3.3 3.3
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(aged 1.5 h at 673 K). Fig. 11a shows the numerical simulation together with experimental data. Notice that
numerical and experimental results are in good agreement as well as in the single crystals simulations.

Finally, Fig. 11b shows results related to an over-aged polycrystal (aged 15 h at 773 K). Parameters are
presented in Table 6. Again, results present qualitatively the same behavior compared to those related to
single crystal response, showing quantitative agreements between numerical and experimental data.
5. Conclusions

The description of the thermomechanical behavior of shape memory alloys involves different and com-
plex phenomena. Among others, plastic strain and thermo-plastic-phase transformation coupling are some
of these behaviors. This article proposes a constitutive model that is capable to describe different aspects of
SMA behavior. This constitutive model is based on previous contribution of Savi et al. (2002) and Baêta-
Neves et al. (2004) that is built upon the contribution of Fremond (1987, 1996). The model includes four
macroscopic phases in the formulation and different material parameters for each phase, which allows one
to represent tensile–compressive asymmetry. Thermal expansion and plastic strains are also included into
the formulation. Hardening effect is represented by a combination of kinematic and isotropic behaviors and
a plastic-phase transformation coupling is considered. The horizontal enlargement of the stress–strain hys-
teresis loop is considered in order to allow better adjustments with experimental data. Comparisons be-
tween numerical and experimental results show that they are in close agreement. Numerical results also
show that the proposed model is capable to capture the general behavior of experimental data, presenting
a proper description of different phenomena as pseudo-elasticity, one-way and two-way shape memory ef-
fects, phase transformation due to temperature variation, internal sub-loops due to incomplete phase trans-
formations and tensile–compressive asymmetry effects.
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Duerig, T., Pelton, A., Stöckel, D., 1999. An overview of nitinol medical applications. Materials Science and Engineering A 273–275,
149–160.

Fremond, M., 1987. Matériaux à Mémoire de Forme, C.R. Acadamic Science, Paris, Tome 34, s.II, n.7, pp. 239–244.
Fremond, M., 1996. Shape Memory Alloy: A Thermomechanical Macroscopic Theory, CISM courses and lectures. Springer Verlag.
Gall, K., Sehitoglu, H., Chumlyakov, Y.I., Kireeva, I.V., 1999. Tension–compression asymmetry of the stress–strain response in aged

single crystal and polycrystalline NiTi. Acta Materialia 47 (4), 1203–1217.
Gall, K., Sehitoglu, H., 1999. The role of texture in tension–compression asymmetry in polycrystalline NiTi. International Journal of

Plasticity 15, 69–92.
Garner, L.J., Wilson, L.N., Lagoudas, D.C., Rediniotis, O.K., 2001. Development of a shape memory alloy actuated biomimetic

vehicle. Smart Materials and Structures 9 (5), 673–683.
Jackson, C.M., Wagner, H.J., Wasilewski, R.J., 1972. 55-Nitinol––The Alloy with a Memory: Its Physical Metallurgy, Properties, and

Applications. NASA-SP-5110.
James, R.D., 2000. New materials from theory: trends in the development of active materials. International Journal of Solids and

Structures 37, 239–250.
Lagoudas, D.C., Entchev, P.B., Kumar, P.K., 2003. Thermomechanical characterization SMA actuators under cyclic loading.

Proceedings of IMECE�03, 2003 ASME International Mechanical Engineering Congress, Washington, DC, November 15–21.
Lagoudas, D.C., Rediniotis, O.K., Khan, M.M., 1999. Applications of shape memory alloys to bioengineering and biomedical

technology, Proceedings of 4th International Workshop on Mathematical Methods in Scattering Theory and Biomedical
Technology, October 1999, Perdika, Greece.

Lemaitre, J., Chaboche, J.-L., 1990. Mechanics of Solid Materials. Cambridge University Press.
Machado, L.G., Savi, M.A., 2002. Odontological applications of shape memory alloys. Revista Brasileira de Odontologia 59 (5), 302–

306, in portuguese.
Machado, L.G., Savi, M.A., 2003. Medical applications of shape memory alloys. Brazilian Journal of Medical and Biological Research

36 (6), 683–691.
Miller, D.A., Lagoudas, D.C., 2000. Thermo-mechanical Characterization of NiTiCu and NiTi SMA actuators: influence of plastic

strains, smart. Materials and Structures 5, 640–652.
Ortiz, M., Pinsky, P.M., Taylor, R.L., 1983. Operator split methods for the numerical solution of the elastoplastic dynamic problem.

Computer Methods of Applied Mechanics and Engineering 39, 137–157.
Otsuka, K., Ren, X., 1999. Recent developments in the research of shape memory alloys. Intermetallics 7, 511–528.
Pacheco, P.M.C.L., Savi, M.A., 1997. A non-explosive release device for aerospace applications using shape memory alloys,

Proceedings of XIV the Brazilian Congress of Mechanical Engineering (COBEM 97––ABCM), Bauru, Brazil.
Paiva, A., 2004. Modeling of Thermomechanical Behavior of Shape Memory Alloys, Ph.D. Thesis, PUC-Rio, Department of

Mechanical Engineering (in portuguese).
Rockafellar, R.T., 1970. Convex Analysis. Princeton Press.
Rogers, C.A., 1995. Intelligent Materials. Scientific American (September), 122–127.
Savi, M.A., Braga, A.M.B., 1993. Chaotic vibrations of an oscillator with shape memory. Journal of the Brazilian Society for

Mechanical Sciences XV (1), 1–20.
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