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List of symbols
B+  Thermodynamic force related to 

the volume fraction due to positive 
detwinned martensite

B−  Thermodynamic force related to 
the volume fraction due to negative 
detwinned martensite

BA  Thermodynamic force related to the 
volume fraction due to austenite

Eijkl  Elastic tensor
EA
ijkl,E

M
ijkl  Elastic tensor for autenitic and marten-

sitic phases
G  Shear modulus
H  Kinematic hardening modulus
HA,HM  Kinematic hardening modulus of  

austenite and martensite
IΘ  Indicator function associated with  

the convex set Θ
Iπ  Indicator function associated with  

the convex π
Iχ  Indicator function of the convex set χ
If   Indicator function associated with yield 

surface (classical plasticity)
K  Isotropic plastic modulus
L+0 , L

+  Parameters related to the critical stress 
due to positive detwinned martensite 
phase

L−0 , L
−  Parameters related to the critical stress 

due to negative detwinned martensite 
phase

LA0 , L
A  Parameters related to the critical stress 

due to the austenitic phase
qj  Heat flux
rij  Second-order tensor defined from the 

loading history

Abstract This paper introduces a novel three-dimen-
sional constitutive model that describes the thermome-
chanical behavior of shape memory alloys (SMAs). The 
model is developed within the framework of continuum 
mechanics and the standard generalized materials. Four 
macrocospic phases are considered associated with aus-
tenite and three variants of martensite. Phase transfor-
mations can be induced by temperature, volumetric and 
deviatoric strains. The description of plasticity is also 
of concern assuming kinematic and isotropic hardening. 
Numerical simulations are carried out showing that the 
proposed model is able to capture the general thermome-
chanical behavior of SMAs for uniaxial and multiaxial 
tests, even in situations with complex thermomechanical 
loading paths.
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T  Temperature
TA  Temperature above with the austenitic 

phase is stable
TM  Temperature below with the martensitic 

phase is stable
T0  Reference temperature in a stress-free 

state
TF  Reference temperature to determine the 

yield strength at high temperatures
Xij  Thermodynamic force associated with 

the plastic strain tensor
Y  Thermodynamic force associated with 

the isotropic hardening
Zij  Thermodynamic force associated with 

the kinematic hardening tensor
α  Parameter that controls the stress–strain 

hysteresis loop height
αh
ijkl  Fourth-order tensor that controls the 

stress–strain hysteresis loop width
αh
N ,α

h
s   Normal and shear components of the 

tensor αh
ijkl

ΛA,ΛM  Phase transformation temperature func-
tions related to austenite and martensite

Λ,Λℵ  Phase transformation temperature 
functions

β+  Volume fraction related to the positive 
detwinned martensite

β−  Volume fraction related to the negative 
detwinned martensite

βA  Volume fraction referring to austenite
βM  Volume fraction related to the twinned 

martensite
β+
s ,β

−
s   Volume fraction associated with the 

starting of phase transformation process
εij  Total strain tensor
ε̂ij  Deviatoric strain tensor
εeij  Elastic strain tensor
ε
p
ij  Plastic strain tensor
εtij  Phase transformation strain tensor
ϑ  Internal variable associated with iso-

tropic hardening
ςij  Internal variable associated with kin-

ematic hardening
ρ  Density
σij  Stress tensor
σ̂ij  Deviatoric stress tensor
σ Y  Yield stress
σA
Y , σ

M
Y   Yield stress of the austenitic and mar-

tensitic phases
σ Y
A,i, σ

Y
A,f   Yield stress at temperature TA and TF

γ  Plastic multiplier
η+, η−, ηA  Parameter associated with the inter-

nal dissipation (positive detwinned 

martensite, negative detwinned mar-
tensite and austenite)

ηI  Parameter that defines the coupling 
between the phase transformation and 
isotropic hardening

ηkij  Parameter that defines the coupling 
between the phase transformation and 
kinematic hardening

�,µ  Lamé coefficients
�
A, �M  Lamé coefficients referring to austenite 

and martensite
µA,µM  Lamé coefficients related to austenite 

and martensite
Φ  Pseudo-potential of dissipation
ΦM  Mechanical part of the pseudo-potential 

of dissipation
ΦH  Mechanical part of the pseudo-potential 

of dissipation
ψ  Helmholtz free energy density
ψ+,ψ−,ψA,ψM  Helmholtz free energy density of iso-

lated phases (positive detwinned mar-
tensite, negative detwinned martensite, 
austenite and twinned martensite)

Γ  Equivalent strain field
υ  Poisson’s ratio
υA, υM  Poisson’s ratio associated with austen-

ite and martensite
Ωij  Tensor related to the thermal expansion 

coefficients
ΩA

ij ,Ω
M
ij   Tensor related to the thermal expan-

sion coefficients of the austenite and 
martensite

τ  Set related to subdifferential associated 
with the convex set π (tetrahedron)

�  Set related to subdifferential associated 
with the convex set χ

1 Introduction

Smart material systems and structures have considerable 
importance nowadays being related to the design of adap-
tive systems that can mimic some aspects of natural sys-
tems. In general, it is possible to understand smart material 
properties as the coupling between different physical fields 
as mechanical, electrical, magnetic, among others. In this 
regard, several materials have been investigated and it is 
important to highlight shape memory alloys (SMAs), pie-
zoelectric materials, magneto-strictive materials and elec-
tro-magneto rheological fluids.

SMAs have remarkable properties related to solid phase 
transformations, being usually employed in applications 
where large forces and/or displacements are required with 
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low power consumption. In general, SMAs are being used 
in biomedical devices, aerospace and robotics applica-
tions, civil and mechanical engineering. A discussion about 
SMA applications can be found in the following references: 
Lagoudas [23], Paiva and Savi [37], Machado and Savi [27] 
and Kalamkarov and Kolpakov [21]. Dynamical applica-
tions are also employing SMAs exploiting either dissipation 
capacity or property changes due to phase transformations. 
Savi [50] presented a general overview of SMA dynami-
cal applications, highlighting the complex response related 
to these systems. In this regard, it is important to mention 
applications related to rotordynamics [53], impact systems 
[43, 55], vibration absorbers [48], adaptive structures [7, 15, 
45, 46, 49], and the control of such systems [8, 14].

The thermomechanical behavior of SMAs is very com-
plex, presenting typical responses as pseudoelasticity, shape 
memory effect and phase transformation due to temperature 
variations, but also other interesting behaviors as the inter-
nal subloops due to the incomplete phase transformations, 
two-way shape memory effect, plasticity, transformation-
induced plasticity and rate dependence [52]. All these phe-
nomena justify the numerous researches related to the mod-
eling, simulation and experimental analysis of SMAs.

The macroscopic constitutive modeling of SMAs relies 
on the continuum thermodynamics with internal state vari-
ables to take into account the changes in the microstructure 
due to phase transformation [37, 40]. Lagoudas [23] and 
Paiva and Savi [37] presented a general overview of the 
SMA modeling with the emphasis on the phenomenologi-
cal constitutive models.

The three-dimensional description of the SMA thermome-
chanical behavior is even more complex. Besides the large 
number of complex phenomena involved, difficulties related 
to experimental tests introduce more troubles for a proper 
description. Experimental analyses related to multiaxial tests 
are essential for the comprehension of SMA behavior. In this 
regard, it is important to highlight several research efforts 
related to this general objective: Auricchio et al. [5], Wang et al. 
[63], Grabe and Bruhns [19], McNaney et al. [29], Manach and 
Favier [28], Sittner et al. [59, 58]. Recently, an international 
effort was developed in order to evaluate all details about ther-
momechanical behavior of SMAs: Roundrobin SMA Mod-
eling. Sittner et al. [56] reported some activities that compare 
capabilities of different models, establishing a proper relation 
with experimental data. In general, experimental tests consider 
coupled tension–torsion tests to characterize the general three-
dimensional thermomechanical behavior of SMAs.

The description of three-dimensional behavior of SMAs is 
the nowadays challenge that is involving several researches. 
Lagoudas et al. [24] proposed several improvements to the 
model due to Boyd and Lagoudas [9]. Numerical simulations 
were carried out showing both tension and tension–torsion 
tests. Andani and Elahinia [2] investigated the rate-dependent 

description of tension–torsion behavior of SMAs employing 
a modified version of the model due to Lagoudas et al. [24]. 
Andani et al. [3] described the pseudoelastic behavior of 
SMA bars and tubes subjected to tension–torsion loadings. 
Finite difference method is employed to the numerical simu-
lations. Chapman et al. [11] investigated torsional behavior 
of SMAs considering both one and three-dimensional mod-
els. Finite element method was employed for numerical sim-
ulations. Panico and Brinson [39] proposed a three-dimen-
sional model that is capable to reproduce the main features 
related to SMAs both in one and three-dimensional behavior.

Auricchio et al. [5] proposed a three-dimensional model 
including permanent inelastic effects combined with the 
description of pseudoelastic and shape-memory behaviors. 
Brocca et al. [10] proposed a model that has the ability to rep-
resent SMA behavior subjected to nonproportional loading 
paths. Souza et al. [59] developed a model inspired in elasto-
plastic theory presenting results for tension–torsion behavior. 
Tokuda et al. [61, 62] presented a mechanical model of poly-
crystalline SMA constructed under the assumption of crystal 
plasticity and deformation mechanisms. Multiaxial loadings 
are evaluated with the corresponding mesoscopic constitu-
tive equations. Arghavani et al. [4] used a measure of the 
amount of stress-induced martensite as scalar internal variable 
and the preferred direction of variants as independent tensor. 
Popov and Lagoudas [40] presented a model that addressed 
not only the martensitic transformation between austenite 
and detwinned martensite but simultaneously considers the 
detwinning of self-accommodated martensite in polycrystal-
line SMAs. Zaki and Moumni [64] showed that the introduc-
tion of two state variables (martensitic volume fraction and 
martensitic orientation strain tensor) is an interesting approach 
to account several effects exhibited by SMAs subjected to 
thermomechanical loading. Mehrabi and Kadkhodaei [30] 
and Mehrabi et al. [31] discussed three-dimensional phenom-
enological constitutive modeling based on microplane theory. 
Saleeb et al. [42] is another contribution related to 3D multi-
mechanism based SMA modeling framework.

Plasticity is an important issue related to SMA thermo-
mechanical behavior. In general, it is possible to think in 
two different phenomena: classical plasticity and transfor-
mation-induced plasticity (TRIP). A clear distinction can 
be established between both situations. Classical plasticity 
arises from applied stress or temperature variation, while 
TRIP is caused by phase proportions variation—even for 
low constant stress levels, without reaching the yield sur-
face of the weaker phase involved ([18]; Leblond et al. 
[25]). From now on, the term plasticity is employed to refer 
to the classical plasticity.

Plastic behavior of SMAs has been the objective of 
some research efforts. Khalil et al. [22] presented an 
experimental investigation showing the interdepend-
ent behavior of phase transformation and plasticity on 
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Fe-based SMAs. Zhou [66] proposed a constitutive model 
for SMAs undergoing plastic strains. Hartl et al. [20] 
investigated plastic behavior of SMAs treating the interac-
tion between the phase transformations and the yield sur-
face. Paiva et al. [38] and Baêta-Neves et al. [6] presented 
the one-dimensional description of the plasticity in SMAs, 
considering the coupling between the plasticity and the 
phase transformations.

This article deals with the three-dimensional thermo-
mechanical modeling of shape memory alloys including 
plasticity. The main goal is a numerical investigation to 
show the model capabilities to represent the most impor-
tant features of the macroscopic behavior of SMAs in a 
qualitative point of view. In this regard, numerical simu-
lations are carried out considering single-point situations 
that represents a homogeneous SMA sample. Uniaxial 
and multiaxial tests are of concern involving a variety of 
situations related to the thermomechanical behavior of 
SMAs.

The constitutive model is developed within the frame-
work of the continuum mechanics and of the generalized 
standard materials. On this basis, the second law of ther-
modynamics guides the general formulation. The model 
is inspired by a one-dimensional model that is able to 
describe different thermomechanical behaviors of SMAs 
in a flexible way, presenting numerical simulations that are 
in agreement with experimental uniaxial tests [1, 6, 33, 35, 
38, 44–46]. Originally, this model is inspired by the Fre-
mond’s model [17], implementing several modifications in 
order to match experimental data. The three-dimensional 
description using this model was previously addressed in 
Oliveira et al. [34]. Here, a generalization of the three-
dimensional model is presented, including classical plastic-
ity and tensor quantities to represent phase transformation 
strains. These modifications permit a proper description of 
thermomechanical behavior of SMA in three-dimensional 
media, allowing a better match with experimental data. An 
important difference is the possibility to control the width 
of stress–strain hysteresis loop. A numerical procedure 
based on the operator split technique is proposed to deal 
with nonlinearities of the model. Numerical simulations 
show that the proposed model is able to capture the gen-
eral thermomechanical behavior of SMAs for uniaxial and 
multiaxial tests.

2  Constitutive model

The modeling of the thermomechanical behavior of SMAs 
can be done within the framework of the continuum mechan-
ics and the standard generalized materials, assuming that the 
thermodynamic state of the material is completely defined by 
a finite number of state variables. Under this assumption, the 

thermomechanical behavior can be described by the Helm-
holtz free energy density, Ψ, or alternatively, by the Gibbs 
free energy density. A pseudo-potential of dissipation, Φ, is 
employed to describe irreversible aspects. The main goal of 
this formalism is to obtain constitutive equations that auto-
matically satisfy the second law of thermodynamics [12, 13, 
26]. In this regard, the Clausius–Duhem inequality motivates 
the definition of thermodynamic forces from the Helmholtz 
free energy density, related to each state variable. Dissipa-
tion aspects are contemplated by the thermodynamic fluxes 
defined from the pseudo-potential of dissipation, related to 
each thermodynamic force.

A brief discussion about this procedure is now pre-
sented. Assuming that ρ is the material density, s is the spe-
cific entropy, T is the temperature, σij is the stress tensor, 
εij is the total strain tensor, qj is the heat flux, xi represents 
the spatial coordinate and the dot means time derivative, 
the local form of the Clausius–Duhem inequality is given 
by the following equation where summation convention is 
evoked:

where it is assumed that Dij = ε̇ij =
1
2

(

∂vi
∂xj

+
∂vj
∂xi

)

 and 
gi =

1
T

∂T
∂xi

.
As a first hypothesis concerning the constitutive mod-

eling, it is assumed that the Helmholtz free energy density 
is a function of a finite set of variables:

where β represents a set of internal variables. Since 
Ψ̇ = ∂Ψ

∂εij
ε̇ij +

∂Ψ
∂T

Ṫ + ∂Ψ
∂β

β̇, the Clausius–Duhen inequality 
is rewritten as follows

This form motivates the following definitions of the 
thermodynamical forces, related to reversible part of the 
process.

In order to describe irreversible processes, complemen-
tary laws are defined from a pseudo-potential of dissipation 
that is a function of internal variables:

The thermodynamical formalism establishes that the 
thermodynamics fluxes, related to irreversible part of the 
process, are defined as follows [17, 26]:

(1)σijDij − ρ
(

Ψ̇ + sṪ
)

− qigi ≥ 0

(2)Ψ = Ψ
(

εij, T ,β
)

(3)

(

σij − ρ
∂Ψ

∂εij

)

ε̇ij − ρ

(

s+
∂Ψ

∂T

)

Ṫ − ρ
∂Ψ

∂β
β̇ − qigi ≥ 0

(4)σR
ij = ρ

∂Ψ

∂εij
; B = −ρ

∂Ψ

∂β
; sR = −

∂Ψ

∂T

(5)Φ = Φ
(

ε̇ij, β̇, Ṫ , qi
)

(6)σ I
ij =

∂Φ

∂ε̇ij
; B =

∂Φ

∂β̇
; sI = −

∂Φ

∂Ṫ
; gi = −

∂Φ

∂qi
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Alternatively, thermodynamic fluxes may be 
obtained from the dual of the potential of dissipation 
Φ∗

(

σ I
ij,B, s

I , gi

)

 allowing the definitions:

On this basis, a complete set of constitutive equations is 
defined:

If the pseudo-potential Φ is a positive convex function 
that vanishes at the origin, the Clausius–Duhen inequality 
is automatically satisfied.

The consideration of the thermomechanical couplings 
must consider the energy conservation equation given by 
the first law of thermodynamics:

By considering a single point description, spatial varia-
tions are neglected. Besides, a convection boundary condi-
tion is assumed. Therefore, the first law of thermodynamics 
has the following form:

where cp is the specific heat at constant pressure, h is the 
convection coefficient, T∞ is the environmental tempera-
ture. The first term on the right side of the equation is the 
convection term whereas the others are associated with the 
thermomechanical couplings.

Experimental studies show that there are two possible 
phases in SMAs: austenite and martensite. In the marten-
sitic phase, different crystallographic orientations define 
what is known by martensitic variants. Concerning auste-
nitic phase, only one variant exists [51, 65]. The descrip-
tion of three-dimensional thermomechanical behavior 
of SMAs is usually inspired by one-dimensional models 
and therefore, a limited number of martensitic variants is 
employed. The idea is to consider a free energy density 

(7)ε̇ij =
∂Φ∗

∂σ I
ij

; β̇ =
∂Φ∗

∂B
; Ṫ =

∂Φ∗

∂sI
; qi = −

∂Φ∗

∂gi

(8)σij = ρ
∂Ψ

∂εij
+

∂Φ

∂ε̇ij

(9)B = −ρ
∂Ψ

∂β
=

∂Φ

∂β̇

(10)s = −
∂Ψ

∂T
−

∂Φ

∂T

(11)gi = −
∂Φ

∂qi

(12)ρΨ̇ = σij ε̇ij −
∂qi

∂xi
− ρTṡ− ρṪ s

(13)

ρcpṪ = −h(T − T∞)+ σ I
ij ε̇ij + Bβ̇ + T

[

∂σR
ij

∂T
ε̇ij −

∂B

∂T
β̇

]

for each macroscopic phase and, afterward, to define 
a free energy of the mixture. The main goal of the pro-
posed model is to describe a variety of phenomena related 
to elastoplasticity and solid phase transformations in a 
flexible way. Therefore, pseudoelasticity, shape memory 
effect, phase transformation due to temperature variation, 
internal subloops and plasticity with kinematic and iso-
tropic hardening are of concern considering both uniaxial 
and multiaxial tests.

2.1  Free energy density

The definition of the Helmholtz free energy density con-
siders different expressions for each one of the macro-
scopic phases. Classical thermo-elasto-plastic equations 
[16, 26, 54] are adopted together with extra terms that 
describe the phase transformation phenomenon. Moti-
vated by one-dimensional models, the proposed model 
considers four macroscopic phases: austenite (A); the 
twinned martensite (M), which is stable in the absence 
of a stress field; and two other phases associated with 
detwinned martensite, M+ and M−. Basically, it is 
assumed that the free energy densities are functions of 
the elastic strain, εei,j, temperature, T, isotropic hardening 
variable, ϑ, and kinematic hardening tensor, ςi,j. The defi-
nition of these energy densities considers that summation 
convention is evoked [16].

In the previous equations, subscript A and M are related 

to austenitic and martensitic phases, respectively; ρ is the 
material density; λ and μ are the Lamé coefficients; α is a 
parameter that control the height of the stress–strain hys-
teresis loop; ΛM and ΛA are functions of temperature that 
define the phase transformation stress value; Ωi,j is a ten-
sor related to the thermal expansion coefficients; T0 is a 

(14)

M+ : ρΨ+
(

εeij , T ,ϑ , ςij

)

=
1

2

(

�
Mεekkε

e
pp + 2µMεeijε

e
ij

)

− αΓ −ΛM

−ΩM
ij (T − T0)ε

e
ij +

1

2
KMϑ2 +

1

2HM
ςijςij

M− : ρΨ−
(

εeij , T ,ϑ , ςij

)

=
1

2

(

�
Mεekkε

e
pp + 2µMεeijε

e
ij

)

+ αΓ −ΛM

−ΩM
ij (T − T0)ε

e
ij +

1

2
KMϑ2 +

1

2HM
ςijςij

A : ρΨ A
(

εeij , T ,ϑ , ςij

)

=
1

2

(

�
Aεekkε

e
pp + 2µAεeijε

e
ij

)

−ΛA −ΩA
ij (T − T0)ε

e
ij +

1

2
KAϑ2

+
1

2HA
ςijςij

M : ρΨM
(

εeij , T ,ϑ , ςij

)

=
1

2

(

�
Mεekkε

e
pp + 2µMεeijε

e
ij

)

+ΛM −ΩM
ij (T − T0)ε

e
ij +

1

2
KMϑ2

+
1

2HM
ςijςij
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reference temperature in a stress-free state; K is the plastic 
modulus, related to isotropic hardening; H is the kinematic 
hardening modulus.

The use of a limited number of martensitic variants is 
possible due to the definition of an equivalent strain field, 
Γ, which induces phase transformations. Its definition is 
based on the idea that phase transformation may be induced 
either by volumetric or by deviatoric effects, being given 
by:

The deviatoric term is defined as follows:

where ε̂eij = εeij −
1
3
εekkδij; and δij represents the Kronecker 

delta.
The definition of this equivalent strain field Γ is based 

on experimental observations that show that both volumet-
ric and deviatoric effects induce phase transformations with 
the same qualitative behavior. Under this assumption, the 
equivalent field Γ may be interpreted as a phase transfor-
mation inductor responsible for the definition of what kind 
of martensitic variant is induced. For one-dimensional 
case, Γ = εe11, which reduces the model to the original one-
dimensional description.

2.1.1  Free energy density of the mixture

After the definition of the free energy for each macro-
scopic phase, it is necessary to define the free energy den-
sity of the mixture, setting the volume fraction of each 
macroscopic phase: βA, representing austenite; β+ and 
β−, associated with detwinned martensites (M+ and M−, 
respectively); and βM associated with twinned martensite 
(M). Therefore, the free energy density of the mixture is 
given by:

where IΘ
(

β+,β−,βA,βM
)

 is the indicator function associ-
ated with the convex set Θ [41] establishing the conditions 
for phases’ coexistence:

(15)Γ =
1

3
εekk +

2

3

√

3Je2sign
(

εekk
)

(16)

Je2 =
1

6
ε̂eij ε̂

e
ij =

1

6

{

(

εe11 − εe22
)2

+
(

εe22 − εe33
)2

+
(

εe33 − εe11
)2

+6

[

(

εe12
)2

+
(

εe13
)2

+
(

εe23
)2
]}

(17)

ρΨ

(

εeij, T ,ϑ , ςij,β
+
,β−

,βA
,βM

)

= ρ

(

β+Ψ+ + β−Ψ− + βAΨ A + βMΨM
)

+ IΘ

(

β+
,β−

,βA
,βM

)

An indicator function is defined in such a way that it rep-
resents or indicates a specific set. Hence, an indicator func-
tion of a set Θ, IΘ, for a specific state, x, vanishes if the state 
belongs to the set. Otherwise, it assumes an infinite value.

In terms of the energy function, it means that there is an 
energy quantity that vanishes when admissible states are 
considered, being infinity otherwise. Lagrange multipliers 
constitute an equivalent approach and can replace indicator 
functions.

The phases’ coexistence condition allows one to write 
βM = 1− β+ − β− − βA in order to define the free energy 
density in terms of three volume fractions (instead of the 
four considered):

Now, the indicator function Iπ
(

β+,β−,βA
)

 is related 
to the convex set defined as follows, which can be geo-
metrically interpreted by a tetrahedron in β-space, shown 
in Fig. 1.

Under these assumptions, the free energy density of the 
mixture has the following form:

(18)

Θ =
{

βm ∈ ℜ
∣

∣

∣
0 ≤ βm ≤ 1(m = +,−,A,M);β+ + β− + βA + βM = 1

}

(19)

ρΨ

(

εeij , T ,ϑ , ςij ,β
+
,β−,βA

)

= ρ

{

β+
(

Ψ+ − ΨM
)

+β−
(

Ψ− − ΨM
)

+ βA
(

Ψ A − ΨM
)

+ΨM
}

+ Iπ

(20)

π =
{

βm ∈ ℜ
∣

∣

∣
0 ≤ βm ≤ 1(m = +,−,A);β+ + β− + βA ≤ 1

}

Fig. 1  Geometrical representation of the phase’s coexistence restric-
tion
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where Λ = 2ΛM and Λℵ = ΛM +ΛA.

An additive decomposition is now assumed by con-
sidering that the total strain, εij, is the sum of the elastic 
strain, εeij, the plastic strain, εpij, and the phase transforma-
tion strain, εtij:

The phase transformation strain is defined as follows:

where αh
ijkl is a fourth-order tensor related to phase trans-

formation and its form is similar to the classical elastic ten-
sor; rkl is a second-order tensor defined from the loading 
history.

2.1.2  Thermodynamic forces

The generalized standard materials approach follows the 
second law of thermodynamics in order to define thermo-
dynamic forces associated with each internal variable [12, 
13, 26]:

(21)

ρΨ

(

εeij, T ,ϑ , ςij,β
+
,β−

,βA
)

= αΓ
(

β− − β+
)

−Λ
(

β+ + β−
)

+

{

1

2

(

�
A − �

M
)

εekkε
e
pp +

(

µA − µM
)

εeijε
e
ij −

(

ΩA
ij −ΩM

ij

)

(T − T0)ε
e
ij −Λℵ

+
1

2

(

KA − KM
)

ϑ2 +

(

1

2HA
−

1

2HM

)

ςijςij

}

βA +

{

1

2
�
Mεekkε

e
pp + µMεeijε

e
ij

}

−ΩM
ij (T − T0)ε

e
ij +ΛM +

1

2
KMϑ2 +

1

2HM
ςijςij + Iπ

(

β+
,β−

,βA
)

(22)εeij = εij − ε
p
ij − εtij

(23)εtij = αh
ijklrkl

(

β+ − β−
)

sign
(

εekk
)

(24)

σij = ρ
∂Ψ

∂εeij
= �εekkδij + 2µεeij + αωij

(

β− − β+
)

−Ωij(T − T0)

(25)

B+ ∈ −ρ∂β+(Ψ ) = αΓ +Λ+ P − αhijklrklΩij(T − T0)− τ+

(26)

B− ∈ −ρ∂β−(Ψ ) = −αΓ +Λ+ P + αhijklrklΩij(T − T0)− τ−

(27)

BA ∈ −ρ∂
βA

(Ψ ) = Λℵ + PA + εeij

(

ΩA
ij −ΩM

ij

)

(T − T0)

−
1

2

(

KA − KM
)

ϑ2 −

(

1

2HA
−

1

2HM

)

ςijςij − τA

(28)

Xij = −ρ
∂Ψ

∂ε
p
ij

= �εekkδij + 2µεeij

+ αωij

(

β− − β+
)

−Ωij(T − T0) = σij

(29)
Y ∈ −ρ

∂Ψ

∂ϑ
= −Kϑ

where B+,B−,BA,Rij,Xij, Y  and Zij are thermodynamic 
forces associated with state variables; σij is the stress ten-
sor; τ is related to the sub-differential with respect to vol-
ume fractions being associated with projections in the 
β-space (Fig. 1).

Moreover, auxiliary quantities are defined as follows:

Based on the presented equations, the material param-
eters are defined by a rule of mixtures of each one of the 
phase properties:

(30)Zij ∈ −ρ
∂Ψ

∂ςij
= −

1

H
ςij

(31)τ =
(

τ+, τ−, τA
)

∈ ∂Iπ

(

β+,β−,βA
)

(32)ωij =
1

3
δij +

[

3εeij − εekkδij

3
√

3Je2

]

sign
(

εekk
)

(33)

P =
(

�εemmα
h
ijklrklδij + 2µεeijα

h
ijklrkl

)

+ α
(

β− − β+
)

{

1

3
αh
ijklrklδij +

2Pα

√

3Je2
sign

(

εekk
)

}

(34)

PA = −
1

2

(

�
Aεekkε

e
pp + 2µAεeijε

e
ij

)

+
1

2

(

�
Mεekkε

e
pp + 2µMεeijε

e
ij

)

(35)

Pα =
αhS

6

{

(r11 − r22)
(

εe11 − εe22

)

+ (r22 − r33)
(

εe22 − εe33

)

+(r33 − r11)
(

εe33 − εe11

)

+ 6
(

r12ε
e
12 + r13ε

e
13 + r23ε

e
23

)}

(36)� = �
M + βA

(

�
A − �

M
)

(37)µ = µM + βA
(

µA − µM
)

(38)Ωij = ΩM
ij + βA

(

ΩA
ij −ΩM

ij

)
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and, since �εemmδij + 2µεeij = Eijklε
e
kl, it is possible to 

rewrite the stress equation as follows:

where Eijkl = EM
ijkl + βA

(

EA
ijkl − EM

ijkl

)

 refers to the elas-
tic tensor. Note that Lamé coefficients, λ and μ, can be 
expressed in terms of the engineering constants as follows:

where E is the elastic modulus, G is the shear modulus and 
υ is the Poisson’s ratio.

2.2  Pseudo‑potential of dissipation

The thermomechanical behavior of SMAs is intrinsically 
dissipative and therefore, it is important to establish the 
pseudo-potential of dissipation that allows the description 
of dissipation processes. It is assumed that this potential 
may be split into mechanical, ΦM, and thermal, ΦH, parts:

Since the description of the thermomechanical couplings 
is beyond the scope of this paper, only the mechanical part 
is of concern. Using the dual of the pseudo-potential of dis-
sipation, its mechanical part can be expressed as a function 
of thermodynamic forces by the following equation:

The generalized standard materials approach is adopted 
to define the thermodynamic fluxes as follows [12, 13, 26]:

(39)K = KM + βA
(

KA − KM
)

(40)
1

H
=

1

HM
+ βA

(

1

HA
−

1

HM

)

(41)σij = Eijklε
e
kl + αωij

(

β− − β+
)

−Ωij(T − T0)

(42)� =
υE

(1+ υ)(1− 2υ)
and G = µ =

E

2(1+ υ)

(43)

Φ

(

β̇+
, β̇−

, β̇A
, ε̇

p

ij, ϑ̇ , ς̇ij, q

)

= ΦM
(

β̇+
, β̇−

, β̇A
, ε̇

p

ij, ϑ̇ , ς̇ij

)

+ΦH(q)

(44)

Φ̄M
(

B+
,B−

,BA
,Xij , Y , Zij

)

=
1

2η

(

B+ + ηIY + ηKij Zij

)2

+
1

2η

(

B− + ηIY + ηKij Zij

)2

+
1

2ηA

(

BA − ηIY − ηKij Zij

)2

+ Iχ

(

B+
,B−

,BA
)

+ If
(

Xij , Y , Zij
)

(45)

β̇+ ∈ ∂B+
(

Φ̄M
)

=
B+

η
+

ηI

η
Y +

ηKij

η
Zij + �

+

=
B+

η
−

ηI

η
Kϑ −

ηKij

η

ςij

H
+ �

+

where σ̂ij = σij −
1
3
σkkδij is the deviatoric tensor and 

∥

∥σ̂ij − ςij
∥

∥ is the euclidean norm of σ̂ij − ςij, defined as 
follows,

It should be pointed out that η and ηA are associated with 
the internal dissipation of each material phase. Besides, ηI 
defines the coupling between phase transformations and the 
isotropic hardening. The coupling between phase transfor-
mations and the kinematic hardening is defined by the sec-
ond-order tensor ηKij .� is related to the sub-differential with 
respect to β̇+, β̇− and β̇A.

where Iχ is an indicator function of the convex set χ that 
defines restrictions associated with the phase transforma-
tions. Physically, these restrictions establish conditions for 
internal sub-loops due to incomplete phase transformations 
and also avoid improper phase transformations [47]. The 
definition of this convex set needs to consider an equivalent 
stress field, similar to the strain field, given by:

(46)

β̇− ∈ ∂B−
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Φ̄M
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+
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η
Y +
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η
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−
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η
−
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η
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η
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H
+ �

−

(47)
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ηA
+

ηI

ηA
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H
+ �

A
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∥

∥
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∣
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∣
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∥ =
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Besides, it is important to define the quantities at the ini-
tial state:

The convex set χ is now defined by considering two 
different situations associated with mechanical and ther-
mal loadings. Basically, when mechanical loadings govern 
phase transformations, Γ̇ σ �= 0, the convex set is given by:

On the other hand, when thermal loadings govern phase 
transformation, Γ̇ σ = 0, the convex set χ is defined as fol-
lows, by considering three subsets (χ1, χ2, χ3):

(53)Γ σ =
1

3
σkk +

2

3

√

3Jσ2 sign(σkk)

(54)εeij(0) = εeij −
Ωij

Eijkl

(55)Γ0 =
1

3
εekk(0)+

2

3

√

3Je2(0)sign
(

εekk(0)
)

(56)χ =

{

β̇n ∈ ℜ

∣

∣

∣

∣

Γ̇ β̇+ ≥ 0; Γ̇ β̇A ≤ 0 if Γ0 > 0

Γ̇ β̇− ≤ 0; Γ̇ β̇A ≥ 0 if Γ0 < 0

}

(57a)χ1 =
{

β̇n ∈ ℜ
∣

∣

∣
Ṫ β̇A ≥ 0

}

(57b)

χ2 =



















β̇n ∈ ℜ

�

�

�

�

�

�

�

�

�

Ṫ β̇+ = 0











if Ṫ > 0, β̇+ > 0 and β+
s �= 0

if Ṫ > 0, β+ �= β+
s and β+

s = 0

if Ṫ > 0, β̇A = 0

if Ṫ < 0, Γ σ = 0 and β+ �= β+
s



















(57c)

χ3 =



















β̇n ∈ ℜ

�

�

�

�

�

�

�

�

�

Ṫ β̇− = 0











if Ṫ > 0, β̇− > 0 and β−
s �= 0

if Ṫ > 0, β− �= β−
s and β−

s = 0

if Ṫ > 0, β̇A = 0

if Ṫ < 0,Γ σ = 0 and β− �= β−
s



















where β+
s  and β−

s  are the values of β+ and β−, respectively, 
when the phase transformation begins to take place.

Plastic behavior is described using the classical approach 
considering that γ is the plastic multiplier and If is the indi-
cator function related to the classical plasticity; f is defined 
from the characteristics of the yield surface as follows [54].

where σY is the yield stress. Plastic behavior is subjected to 
the Kuhn–Tucker conditions,

and the consistency condition, when f = 0,

2.3  Constitutive equations

The standard generalized material approach establishes a 
set of constitutive equations that describes the SMA ther-
momechanical behavior satisfying the second law of ther-
modynamics [12, 13, 26]. This set is summarized in Box 1.

It should be highlighted some aspects of the phase trans-
formation process. On the one hand, if Γ ≥ 0 the variant 
M+ is induced, increasing the value of β+. On the other 
hand, the variant M− is induced when Γ < 0, increasing 
the value of β−. Moreover, it should be pointed out that 
shear behavior has a neutral influence on the martensitc 
phase induction since the sign of shear strains does not 
appear in the inductor Γ . Therefore, this induction tends to 
follow the volumetric expansion sign.

The model parameters are related to different aspects, 
including thermo-elasto- plasticity and phase transformation 
parameters. Classical thermo-elastic parameters are: EA

ijkl , 
EM
ijkl, Ω

A
ij , Ω

M
ij . Plastic parameters are basically related to 

(58)f =
∥

∥σ̂ij − ςij
∥

∥−

√

2

3
(σY − Kϑ)

(59)γ ≥ 0, f ≤ 0 and γ f = 0

(60)γ ḟ = 0.

Box 1  Constitutive equations

σij = Eijklε
e
kl + αωij

(

β− − β+
)

−Ωij(T − T0)

β̇+ = 1
η

{

αΓ +Λ+ P − αh
ijklrklΩij(T − T0)− ηIKϑ − ηKij

ςij
H

− τ+
}

+ �+

β̇− = 1
η

{

−αΓ +Λ− P + αh
ijklrklΩij(T − T0)− ηIKϑ − ηKij

ςij
H

− τ−
}

+ �−

β̇A = 1
ηA

{

PA +Λℵ + εeij
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ΩA
ij −ΩM

ij
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(T − T0)−
1
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(

KA − KM
)

ϑ2 −
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1
2HA − 1

2HM

)

ςijςij + ηIKϑ + ηKij
ςij
H

− τA
}

+ �A

ε̇
p
ij = γ

σ̂ij−ςij
σ̂ij−ςij

ϑ̇ =

√

2
3
γ + ηI

(

β̇+ + β̇− + β̇A
)

ς̇ij =
2
3
H ε̇

p
ij + ηKij

(

β̇+ + β̇− + β̇A
)

Yield surface and its conditions

f = σ̂ij − ςij −

√

2
3
(σY − Kϑ)

γ ≥ 0, f ≤ 0 and γ f = 0

γ ḟ = 0 if f = 0



1460 J Braz. Soc. Mech. Sci. Eng. (2016) 38:1451–1472

1 3

yield surface definition considering yield stress, kinematic 
and isotropic hardening: σA

Y , σM
Y , KA, KM, HA, HM. Besides, 

phase transformation parameters consider the horizontal and 
vertical size of the hysteresis loop, critical phase transfor-
mation stress values and dissipation aspects of the hyster-
esis: α, αh

ijkl, Λ, Λℵ, η, ηA. Moreover, there are parameters 
related to plastic-phase transformation coupling: ηI and ηKij .

The coupling of the phase transformations with the kin-
ematic hardening is represented by the second-order tensor 
ηKij  defined as follows:

It is important to highlight that some constants are split 
due to temperature or loading dependence. In this regard, 
some changes can be used to facilitate adjustments with 
experimental data. Tensor quantities consider the same 
form of the classical isotropic elastic tensor. Hence, normal 
and shear behaviors are characterized in different ways. 
In this regard, it is necessary to show the details of some 
parameters, which is done in the forthcoming definitions.

The parameter αh
ijkl is a fourth-order tensor related to 

phase transformations that considers different parameters 
for normal, αh

N, and shear, αh
S, behaviors. Its form is similar 

to the classical isotropic elastic tensor given by,

The definition of transformation strain, εtij, needs the 
definition of parameter rkl that is a symmetric second-order 
tensor related to the loading history as follows:

For situations where mechanical loadings are provided 
by multiaxial, non-simultaneous load history, tensor rkl is 
evaluated as follows for the subsequent loadings:

Temperature-dependent functions Λ = Λ(T) and 
Λℵ = Λℵ(T) define the phase transformation stress level as 
follows:

(61)ηKij = ηK





1 1 1

1 1 1

1 1 1





(62)

αh
ijkl ≡





















αh
N αh

N − αh
S αh

N − αh
S 0 0 0

αh
N − αh

S αh
N αh

N − αh
S 0 0 0

αh
N − αh

S αh
N − αh

S αh
N 0 0 0

0 0 0 αh
S 0 0

0 0 0 0 αh
S 0

0 0 0 0 0 αh
S





















(63)rkl =







+1, if σkl > 0

0, if σkl = 0

−1, if σkl < 0

(64)rkl =
σkl

∣

∣Smax
kl

∣

∣

, if β+ �= 0 or β− �= 0

(65)
Λ = 2ΛM =

{

−L̄ + L
TM

(

T − TM
)

, if T > TM

−L̄, if T ≤ TM

where TM is the temperature below which the martensitic 
phase becomes stable. Note that the phase transformation 
stress level is constant for T < TM.

Parameters L̄, L, L̄A and LA are related to phase transfor-
mation critical stresses. In order to consider different levels 
of phase transformation stress for normal and shear behav-
iors, each one of them may be expressed by a fourth-order 
tensor that defines normal and shear properties, following 
the same structure of the parameter αh

ijkl. In this regard, L 
represents the general form of each one of these parame-
ters. The others are defined in analogous way.

where

where LN and LS respectively represents the normal and the 
shear components.

The phase transformation dissipation can be defined 
contemplating different characteristics of the phase trans-
formation kinetics during loading and unloading processes. 
Therefore, different values can be employed for the param-
eters η and ηA, in the following form

where parameters ηL, ηU, ηAL and ηAU are calculated consider-
ing fourth-order tensors, in the same way of the Eqs. (67) 
and (68).

Concerning plastic effects, the yield surface is defined 
by the yield stress, σY, that has different values for the aus-
tenitic and martensitic phases. Their values are also tem-
perature dependent tending to decrease for high tempera-
tures. Different expressions can be employed for the proper 
description of these conditions. Here, for the sake of sim-
plicity, temperature variation is assumed to be:

(66)

Λℵ = ΛM +ΛA =

{

−L̄A + LA

TM

(

T − TM
)

, if T > TM

−L̄A, if T ≤ TM

(67)

{

L = rijL̃ijklrkl, if Γ σ �= 0

L = LN , otherwise

(68)

L̃ijkl =





















LN LN − LS LN − LS 0 0 0

LN − LS LN LN − LS 0 0 0

LN − LS LN − LS LN 0 0 0

0 0 0 2LS 0 0

0 0 0 0 2LS 0

0 0 0 0 0 2LS





















(69)

{

η = ηL , if Γ̇ > 0

η = ηU , if Γ̇ < 0
;

{

ηA = ηAL , if Γ̇ > 0

ηA = ηAU , if Γ̇ < 0

(70)



















σY = σM
Y , if T ≤ TM

σY =
σM
Y

�

TA−T
�

+σAi
Y

�

T−TM
�

TA−TM , if TM < T ≤ TA

σY =
σAi
Y

�

TF−T
�

+σ
Af

Y

�

T−TA
�

TF−TA , if TM < T ≤ TF
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where TA is the temperature above with the austenitic phase 
is stable and TF is a reference temperature for the determi-
nation of the yield stress for high temperatures; σAi

Y  and σAf
Y  

define the thermal variation of the yield stress of the auste-
nitic phase.

Under these assumptions, the following parameters are 
employed to defined the yield surface, instead of σY: σM

Y  , 
σAi
Y , σAf

Y , TF, TA. Besides, a single parameter, ηK is used 
instead of the tensor quantity ηKij . Phase transformation ten-
sor αh

ijkl considers different parameters for normal and shear 
behaviors: αh

N and αh
S. The definition of phase transforma-

tion stress levels, Λ and Λℵ, employs the following param-
eters: L̄N, L̄S, LN, LS,L̄AN, L̄AS , LAN,LAS , and TM. The same 
approach is adopted for the dissipation aspects of the phase 
transformation η and ηA.

The model parameters can be adjusted from tensile tests 
at different temperatures. DSC (differential scanning calo-
rimetry) tests can employed to define phase transforma-
tion temperatures. An important point related to the model 
is its flexibility that allows the description of several ther-
momechanical behaviors of SMAs, using the same set of 
parameters.

3  Numerical procedure

In order to deal with the nonlinearities of the formula-
tion, the solution of the constitutive equations employs the 
operator split technique [36] associated with an iterative 
procedure. Under this assumption, the coupled equations 
are solved as sets of uncoupled problems. In this section, 
first, the numerical procedure for the phase transformation 
is presented and afterwards, the procedure associated with 
plastic behavior is of concern.

Basically, it is assumed that there are mechanical and 
thermal driving variables for simulations. Mechanical load-
ings may be stress or strain driving cases; thermal loadings 
are related to temperature driving case. Therefore, a numer-
ical simulation implies the knowledge of the stress or strain 
history and also the temperature history.

3.1  Phase transformation procedure

Phase transformation problem is treated by assuming the 
operator split technique, defining a predictor–corrector 
approach. The predictor step assumes that phase transfor-
mation does not occur, defining a trial state where volume 
fractions are identical to the previous state. Mathematically 
speaking, this procedure implies to neglect the sub-differ-
entials. Therefore, the Euler implicit method is employed 
to calculate the volume fractions 

(

β+,β−,βA
)

. If the trial 
state obeys the constraints represented by the convex sets π 
and χ, then it is the actual state. Otherwise, the sub-differ-
entials need to be calculated by orthogonal projections to 
the boundary of the domain represented by both sets. Under 
this assumption, sub-differentials of the convex sets can 
be understood as projections. Another interpretation is to 
replace sub-differentials by Lagrange multipliers. The pro-
jection related to the convex set π is based on the nearest 
point of the surface of the tetrahedron of Fig. 2, being cal-
culated step by step, according to the constraints imposed 
by the indicator function Iπ. The projection assures that the 
calculated volume fractions obey the internal restrictions 
imposed by the model [44]. An iterative numerical proce-
dure assures that this approach converges.

3.2  Plasticity procedure

The elasto-plastic numerical approach considers the clas-
sical return-mapping algorithm [54]. The general idea 

Fig. 2  Projection algorithm for phase transformation

Fig. 3  Return-mapping algorithm [54]
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is similar to the one employed for phase transforma-
tion problem. Initially, it is assumed a trial state where 
plastic strains do not occur. Then, constraints related to 
yield surface are analyzed. Return mapping algorithm 
is employed to perform the projection from the trial to 
actual state, using a orthogonal projection to the yield 
surface.

The plastic flow is governed by the following equations:

where ϕij is the normal unit vector of the Von Mises yield 
surface, defined as follows

where ζij = σ̂ij − ςij.

(71)ε̇
p
ij = γ ϕij

(72)ς̇ij = γ
2

3
Hϕij

(73)ϑ̇ = γ

√

2

3

(74)ϕij =
ζij

∥

∥ζij
∥

∥

=
∂f
(

σij, ςij
)

∂σij

The implicit Euler method is employed to discretize the 
equations. The trial state is defined by assuming that no 
plastic strain occur:

If the trial state is admissible, then f trialn+1 ≤ 0, and the trial 
state is the actual one. Otherwise, the trial state is not admis-
sible, f trialn+1 > 0, and the Kuhn–Tucker conditions are vio-
lated. Therefore, it is necessary to calculate the actual state 
using the return mapping algorithm. This is the correction 
step, performed using the plastic multiplier, �γ , that estab-
lishes the projection in the yield surface where fn+1 = 0. 
Figure 3 presents the projection from the trial to the actual 
state, which calculation is presented in the sequence.

4  Numerical simulations: uniaxial tests

The objective of this section is to evaluate the capability 
of the proposed model to describe the thermomechanical 
behavior of one-dimensional SMA media. Typical behav-
iors are treated, including pseudoelasticity and shape 

(75)
f trialn+1 =

∥

∥

∥

∥

(

ζ trialij

)

n+1

∥

∥

∥

∥

−

√

2

3
(σY − Kϑn)

(76)�γ =
f trialn+1

2µ+ 2
3
(H + K)

Table 1  Model parameters 
based on experimental tests due 
to Tobushi et al. [60]

EA (GPa) EM (GPa) ΩA (MPa/K) ΩM (MPa/K) αh
N (MPa) αh

S (MPa)

54 42 0.74 0.17 0.0473 0.02

α (MPa) L̄N (MPa) LN (MPa) L̄AN (MPa) LAN (MPa) L̄S (MPa)

330 0.15 41.5 0.63 185 0.15

LS (MPa) L̄AS  (MPa) LAS  (MPa) TM (K) TF (K) σM
Y  (GPa)

41.5 0.63 185 291.4 423 0.5

σAi
Y  (GPa) σ

Af
Y  (GPa) KA (GPa) KM (GPa) HA (GPa) HM (GPa)

1.5 1 1.4 0.4 4 1.1

ηI ηK (ηL)N (MPa s) (ηU )N (MPa s)
(

ηAL

)

N
 (MPa s)

(

ηAU

)

N
 (MPa s)

−0.01 −0.01 1 2.7 1 2.7

(ηL)S (MPa s) (ηU )S (MPa s)
(

ηAU

)

S
 (MPa s)

(

ηAU

)

S
 (MPa s) υA υM

1 2.7 1 2.7 0 0

Fig. 4  Pseudoelastic behav-
ior based on testes from 
Tobushi et al. [60]. Numerical-
experimental comparison for 
T = 373 K and T = 353 K
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memory effect. Stress driving simulations are carried out. 
Table 1 presents the parameters employed for the numeri-
cal simulations. These parameters are adjusted based on 
experimental results due to Tobushi et al. [60] that consider 
pseudoelastic tests of SMA wires at different temperatures. 
This adjustment considers classical parameter values for 
the thermo-elasto-plastic behavior. Besides, phase transfor-
mation temperatures are defined from DSC tests and it is 
assumed T0 = 307 K. Poisson ratio vanishes for the uni-
axial tests. It should be highlighted that all tests are carried 
out with the same set of parameters, showing the flexibility 
of the model to represent distinct thermomechanical phe-
nomena of SMAs.

Numerical simulations are now performed for pseu-
doelastic tests. Figure 4 presents a comparison between 
numerical and experimental data performed at two different 
temperatures [60]: T = 373 K and T = 353 K. Note that 
numerical results capture the general behavior of SMAs, 
showing a good agreement with experimental data, that 
includes the hysteresis loop and its change due to tempera-
ture variation.

The forthcoming analyses consider qualitative verifica-
tions related to the proposed model. The idea is to use the 
same set of parameters to evaluate the model capability to 
describe typical thermomechanical behaviors of SMAs. 

Internal sub-loops due to incomplete phase transforma-
tions; shape memory effect; temperature-induced phase 
transformations; and plasticity are carried out for uniaxial 
tests. In general, these results are previously addressed 
using one-dimensional model showing the agreement with 
experimental data. Here, results are obtained from the 
three-dimensional model, showing that it is able to repro-
duce the general behaviors of SMAs.

4.1  Internal sub‑loops due to incomplete phase 
transformations

A pseudoelastic behavior is now in focus by imposing a 
cyclic stress loading process shown in Fig. 5a together 
with a constant temperature. Under this loading process, 
a complete phase transformation cycle is performed fol-
lowed by incomplete phase transformation cycles, as 
can be observed in Fig. 5b, c, presented as stress–strain 
curve and volume fraction time evolution, respectively. 
It should be pointed out the general aspect of the minor 
loops that occur inside major loops. Each minor loop 
is an internal subloop that has an elastic response dur-
ing loading process and another one during unloading, 
meaning that volume fractions remain constant. Initially, 
the SMA sample is in austenitic phase, being subjected 

Fig. 5  Pseudoelastic behavior 
with internal subloops. a Cyclic 
stress loading; b stress–strain 
curve; c volume fraction evolu-
tion
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Fig. 6  Shape memory effect. 
a Stress loading history; b 
thermal loading history; c 
stress–strain–temperature curve; 
d volume fraction evolution

Fig. 7  Temperature-induced 
phase transformation for differ-
ent, constant stress loading. a 
Stress loading; b thermal load-
ing; c strain–temperature curve
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to a loading process that first, forms the major loop fol-
lowing the path ABC. This process causes austenite–
martensite phase transformation, path AB, followed by 
the reverse transformation, path BC. Afterward, load-
ing path CD promotes incomplete phase transformation, 
around 50 %. After that, the unloading path DE pro-
motes an elastic response followed by a reverse transfor-
mation. Hence, a new increase on stress values, path EF, 
promotes an elastic response followed by a phase trans-
formation. The same behavior occurs during unloading 
path FG. During loading path GH, phase transformation 
is completed and the major loop is reached. Finally, the 
unloading path HI promotes the complete reverse trans-
formation and the SMA sample returns to the austenitic 
phase. It is important to observe that the model captures 
the tendency that a diagonal of the major loop defines 
critical phase transformation stress values of the minor 
loops [33].

4.2  Shape memory effect

Shape memory effect is now focused on. The SMA sam-
ple starts at T = 260 K, temperature in which the mar-
tensitic phase is stable in a stress-free state. Figure 6a, b 
presents the thermomechanical loading–unloading pro-
cess. Figure 6c presents the stress–strain–temperature 
curve showing the whole process while Fig. 6d presents 
the volume fractions evolution. Initially, the sample is sub-
jected to a stress loading that causes martensitic reorienta-
tion represented by the transformation from the twinned 
martensite (M) to detwinned martensite (M+), path AB. 
When the phase transformation finishes, a linear response 
is observed. Afterward, the sample is subjected to a stress 
unloading process, path BC. During this path, phase trans-
formation does not take place and, as a consequence, the 
sample presents a residual strain, point C. Note that tem-
perature is constant during this stress loading–unloading 

Fig. 8  Pseudoelastic and 
plastic behaviors considering 
a cyclic stress loading with 
constant maximum stress of 1.3 
GPa imposed to the sample. a 
Loading history; b stress–strain 
curve; c volume fraction evolu-
tion; d plastic strains
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process, path ABC. The sample is then subjected to a ther-
mal loading where temperature increase promotes phase 
transformation from martensite to austenite, path CDE. 
Once again, it should be noticed that the proposed model 
captures the general thermomechanical behavior for SMAs.

4.3  Temperature‑induced phase transformation

The temperature-induced phase transformation is now 
focused on. Basically, tests are performed varying tem-
perature, under a constant stress loading. Figure 7 shows 

SMA response for this test. Figure 7a shows the stress 
loading process while Fig. 7b presents the thermal loading. 
Figure 7c presents the strain–temperature curve. Initially, 
the sample is at low temperature, below TM. It is subjected 
to a constant stress load that induces the detwinned mar-
tensite formation. Afterward, the thermal loading pro-
motes phase transformation from detwinned martensite to 
austenite. During unloading, the reverse transformation is 
induced. Note that the model is able to capture the typical 
experimental behavior where the SMA sample presents dif-
ferent hysteretic behaviors for each stress level.

Fig. 9  Pseudoelastic and plastic 
behaviors considering a stress 
loading history with maximum 
stress values that vary progres-
sively from 1.0 to 1.3 GPa. a 
Loading history; b stress–strain 
curve; c volume fractions; d 
plastic strains
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4.4  Plasticity

The plastic behavior of an SMA sample is now of concern 
by assuming different loading processes. Initially, a cyclic 
stress loading with constant maximum stress of 1.3GPa is 
imposed to the sample. Figure 8a shows the stress load-
ing history while Fig. 8b presents the stress–strain curve. 
Figure 8c shows the volume fraction evolution and Fig. 8d 
presents the plastic strain evolution. Note that plastic 
strains tend to stabilize due to the interaction of the kin-
ematic and isotropic hardening. This promotes a stabili-
zation of the stress–strain diagram in a specific hysteresis 
loop where volume fractions change from β+ to βA and 
vice versa.

A different behavior is observed in Fig. 9 where loading 
history has maximum stress values that vary progressively 
from 1.0GPa to 1.3GPa. This change alters the interaction 
of the kinematic and isotropic hardening presenting a dif-
ferent behavior. Figure 9a shows the stress loading history 
while Fig. 9b presents stress–strain curve. Figure 9c shows 
the volume fraction evolution and Fig. 9d presents the 

plastic strain evolution. Under this new condition, a differ-
ent evolution occurs and the plastic strains do not stabilize 
during the process.

5  Numerical simulations: multiaxial tests

This section deals with numerical simulations of multiax-
ial tests. Initially, pure shear test is of concern, comparing 
shear stress loading with the equivalent tension–compres-
sion loading. Afterward, a coupled tension–torsion test is 
performed.

5.1  Pure shear test

The analysis of a pure shear stress test allows one to ver-
ify the coordinate invariance by establishing a comparison 
between this test and the equivalent tension–compression 
test (T–C). Therefore, two different situations are com-
pared, expressed by the maximum values of the stress ten-
sors employed in the loading history:

Fig. 10  Comparison between 
pure shear and equivalent 
tension–compression tests. a 
Stress–strain curve; b volume 
fraction evolution

Table 2  Model parameters 
based on numerical tests

EA (GPa) EM (GPa) ΩA (MPa/K) ΩM (MPa/K) αh
N (MPa) αh

S (MPa)

65 29 0.74 0.17 0.016 0.015

α (MPa) L̄N (MPa) LN (MPa) L̄AN (MPa) LAN (MPa) L̄S (MPa)

1 0.01 7.05 2 21 0.005

LS (MPa) L̄AS  (MPa) LAS  (MPa) TM (K) TF (K) σM
Y  (GPa)

3.525 1 13 223 423 1

σAi
Y  (GPa) σ

Af
Y  (GPa) KA (GPa) KM (GPa) HA (GPa) HM (GPa)

0.8 0.3 1.4 0.4 4 1.1

ηI ηK
(

ηL

)

N
 (MPa s)

(

ηU

)

N
 (MPa s)

(

ηAL

)

N
 (MPa s)

(

ηAU

)

N
 (MPa s)

−0.01 −0.01 2.4 2.4 2.4 0.8

(ηL)S (MPa s) (ηU )S (MPa s)
(

ηAU

)

S
 (MPa s)

(

ηAU

)

S
 (MPa s) υA υM

1.9 1.9 1.9 0.65 0.36 0.36
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Both tests are carried out at temperature T = 328 K. 
Figure 10 shows the SMA response presenting the stress–
strain curves and the volume fractions evolution, comparing 
stress–strain curves obtained from both tests: σ11 × ε11 and 
σ12 × ε12. The response is a typical pseudoelastic behav-
ior and it is important to note that curves related to both 
tests are identical, confirming invariance of the coordinate 
system.

σ Shear
ij =





0 1.1 0

1.1 0 0

0 0 0



GPa

σ T−C
ij =





1.1 0 0

0 −1.1 0

0 0 0



GPa

Fig. 11  Uncoupled tests: a ten-
sion; b torsion

Fig. 12  Loading process of the 
coupled tension–torsion test

Fig. 13  Tension–torsion cou-
pled test: stress–strain curves. a 
σ11 × ε11; b σ12 × 2ε12

Fig. 14  Tension–torsion coupled test: strain curve
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5.2  Coupled tension–torsion test

A coupled tension–torsion test based on numerical data is 
now in focus. Initially, model parameters are adjusted by 
considering uniaxial tension and torsion tests, separately. 
Classical thermo-elasto-plastic parameters are employed 
as reference to adjust model parameters. Afterward, the 
coupled test is carried out using the adjusted parameters 
defined from the uncoupled tests. Table 2 presents model 
parameters employed to match uncoupled experimental 
tests. Besides, T0 = 285 K.

Results of the uncoupled tests are presented in Fig. 11 
for both tension and torsion tests. Stress driving simulation 
is performed assuming a loading rate of 200 MPa/s.

Afterward, a tension–torsion coupled test is simulated 
using the same set of parameters. This test considers that an 
SMA austenitic sample is subjected to a loading process pre-
sented in Fig. 12 at a constant temperature (T = 285 K). The 
path ABCDE represents a coupled tension–torsion loading. 
Initially, path AB represents a normal stress loading; path 
BC is a shear stress loading, without removing the normal 
stress; path CD represents the normal stress unloading; and 
finally, path DE represents the shear stress unloading. SMA 

Fig. 15  Tension–torsion coupled test: volume fraction evolution

Fig. 16  Loading process of the 
coupled tension–torsion test 
with plasticity

Fig. 17  Tension–torsion 
coupled test with plasticity: 
stress–strain curves. a σ11 × ε11; 
b σ12 × 2ε12

Fig. 18  Tension–torsion coupled test with plasticity: strain curve
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response is presented in different ways. Stress–strain curves 
(σ11 × ε11 and σ12 × 2ε12) are presented in Fig. 13 while 
Fig. 14 presents the strain curve ε11 × 2ε12. Figure 15 pre-
sents volume fraction evolution that indicates phase transfor-
mations during the whole process. Initially, SMA sample is 
in austenitic phase (A). The normal stress loading promotes 
an incomplete phase transformation to detwinned martensite 
(M+). Afterward, loading path BC promotes more phase 
transformation. During the unloading path CD, the SMA 
sample starts a reverse transformation that finishes during the 
unloading path DE. It is possible to observe that the model 
captures the general qualitative behavior of the SMA in 
three-dimensional media with coupled loadings.

Plastic behavior of the tension–torsion coupled test is now 
of concern by assuming a situation similar to the previous test 
but increasing the stress values in order to reach the yield sur-
face, showed in Fig. 16. Figures 17, 18 and 19 show the SMA 
three-dimensional behavior considering both phase trans-
formation and plasticity. Figure 17 shows the stress–strain 
curves. Figure 18 shows the strain curve. Figure 19 presents 
the volume fraction and plastic strains evolution. Note that 
normal stress loading, path AB, promotes a complete phase 
transformation from austenite to detwinned martensite. After 
that, the shear stress loading, path BC, induces plastic strains, 
either normal or shear components. During normal stress 
unloading, reverse phase transformation does not take place. 
Nevertheless, this situation induces a decrease of normal plas-
tic strain. The shear stress unloading causes the reverse phase 
transformation and the stabilization of plastic strains. Note that 
plastic effect changes the SMA behavior and the sample pre-
sents residual irreversible strains after the loading–unloading 
process.

6  Conclusions

This article presents a three-dimensional constitu-
tive model for SMAs. Four macroscopic phases are 

considered assuming different properties for austenitic 
and martensitic phases. Plastic phenomenon is consid-
ered by assuming both kinematic and isotropic harden-
ing effects. An iterative numerical procedure based on 
the operator split technique is employed. Projection 
algorithm is employed for the phase transformation 
simulation while return mapping algorithm is employed 
for the plastic simulation. Numerical simulations are 
treated considering uniaxial and multiaxial tests. The 
uniaxial tests show the model capability to describe 
classical phenomena as pseudoelasticity, shape memory 
effect, internal subloops due to incomplete phase trans-
formation and temperature-induced phase transforma-
tions. Moreover, some plastic phenomena are treated 
considering different loading histories that are respon-
sible for distinct stabilization responses related to the 
interaction of the kinematic and isotropic hardenings. 
Concerning multiaxial tests, the coordinate invariance 
is confirmed by establishing a comparison between the 
pure shear test with the equivalent tension–compres-
sion test. Afterward, a coupled tension–torsion test is of 
concern. Model parameters are adjusted by considering 
tension and torsion tests separately and then the model 
is employed to simulate a tension–torsion coupled test. 
Plastic phenomenon is also investigated in this tension–
torsion test showing that SMA sample presents residual 
irreversible strains after the loading–unloading process. 
In general, the model is able to capture the general ther-
momechanical behavior of uniaxial and multiaxial tests. 
Besides, the model flexibility should be highlighted 
since it describes all phenomena using the same set of 
parameters.
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Fig. 19  Tension–torsion 
coupled test with plasticity: a 
volume fraction evolution; b 
plastic strains evolution
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