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The dynamic behaviour of an impact oscillator with a shape memory alloy (SMA) restraint is modelled
and analyzed. This impact oscillator has the secondary support made from an SMA and the thermo-
mechanical description of the SMA element follows the formulation proposed by Bernardini et al. [1,2].
The thermo-mechanical coupling terms included in the energy balance equation allow to undertake the
non-isothermal analysis. Due to the mechanical characteristics of the SMA element and the non-smooth
nature of the impacts, five different modes of operation can be distinguished. The undertaken numerical
investigations suggest that the system can exhibit complex dynamic responses, which if appropriately
controlled can be used for vibration reduction. A comparison with an equivalent elastic oscillator is
made. It is found out that the low amplitude regimes are not affected by the SMA element. On contrary,
for the large amplitude responses, a significant vibration reduction may be achieved due to the phase
transformation hysteresis loop. Various bifurcation scenarios are constructed and the influence of the
SMA element is discussed. In particular, the analysis of the frequency and amplitude variations
of the external excitation is given and the parameter ranges where the vibration reduction is possible

are identified.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Shape memory alloys (SMAs) are a class of metallic alloys
which possesses attractive mechanical properties when subjected
to stress and/or temperature changes. Basically, an SMA has two
different solid phases: austenite, which is stable in stress-free
state at high temperatures, and martenstite, which is a low-
temperature stress-free state phase. The pseudoelastic behaviour
in SMAs is observed above the critical temperature when in the
equilibrium stress-free configuration austenite is stable. The
schematic representation of the SMA pseudoelastic behaviour
for the case of the uniaxial loading is depicted in Fig. 1a. Due to
the applied load, the forward transformation from austenite to the
martensite takes place; this corresponds to the upper plateau of
the stress—strain curve. Similarly, when the unloading reverse
transformation occurs, the material returns to the initial austenite
state by a different path (the lower plateau of the stress—strain
curve), forming a hysteresis. The values of the threshold forces of
the phase transformations depend on the temperature; these
temperature dependencies are depicted in Fig. 1b. This means that
if a material is loaded at a temperature 0 > Ay, the transformation
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forces increase linearly with temperature as fy, (0)=b(0—-0.),
where 0y = My, Ms, As or Ay.

The other type of hysteretic behaviour is shown in Fig. 1c. It
occurs as a result of temperature variation, when with heating
martensite (or cooling austenite) the phase transformations begin
once the temperature reaches the critical value A;(Ms) and ends at
the temperature Af(My). These temperatures are the material
constants and can be determined from standard tests.

Shape memory alloys are being used in various applications. It
is fair to say that dynamical applications of SMAs are associated
with both the adaptive dissipation of energy related to their
hysteretic behaviour and large changes in their mechanical
properties caused by phase transformations. These aspects can
be explored both in the adaptive passive and the active control
[3]. The dynamical responses of SMA systems have been
previously studied treating the main aspects of smart systems
with SMA devices. Adaptive-passive vibration control has been
applied on bridges [4] and other civil structures subjected to
earthquakes [5]. Systems with SMA elements or structures can
exhibit complex dynamical responses including chaos and
hyperchaos [2,6-8].

Martensitic transformation can be considered as a non-
diffusive process for many practical situations where the heat
transfer process is longer than the martensitic transformation, as
it occurs at rates close to the speed of the material shear wave [9].
On the other hand, the phase transformation critical stresses are
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Fig. 1. Schematic representations of the basic properties of the SMA: (a) mechanical hysteresis (effect of pseudoelasticity), (b) temperature-stress diagram and (c¢) thermal

hysteresis (temperature induced phase transformations).

temperature dependent and, as a consequence, the thermome-
chanical behaviour of SMA is affected by the loading rate. In this
regard, the SMA behaviour is associated with the balance between
the loading rate aspect and the thermomechanical coupling
effect related to the latent heat of the phase transformation.
Therefore, SMA devices have a rate-dependence characteristic
that means that the thermomechanical response depends on
loading rate [10,11]. This situation may be even more important
to the SMA devices subjected to dynamical loadings. Bernardini
and Rega [2] analyze different aspects concerning SMA dynamical
systems and, among them, the influence of the environmental
heat exchange in the dynamical response. Lagoudas et al. [12]
presents experimental studies where temperature variations due
to phase transformations are clearly identified. At the same time,
the analysis of the SMA dynamical systems under isothermal
conditions is also important as it allows to distinguish system
behaviour caused by temperature variation [2], or even to prevent
underestimation of damping properties [13].

An interesting SMAs application in dynamical systems is the an
impact oscillator with SMA elements. A prototype of this kind of
system capturing the most important features is an impact
oscillator with the secondary support made from SMA. It is
expected that the high dissipation capacity of SMA due to
hysteresis loop will result in less complex behaviour, dramatically
changing the system response when compared to those obtained
with a linear elastic secondary support [14]. In terms of
engineering applications, the use of SMA can potentially avoid
dangerous transients. Besides, using an SMA support may avoid
certain bifurcations, simplifying dynamical responses and allow-
ing for an effective energy use. On the other hand, the study of the
co-existence of attractors [15] reveals more complex behaviour
for the impact oscillator with the pseudoelastic secondary
constraint at the certain frequency ranges. It was shown that
the presence of the SMA in the discontinuous support can
eliminate some of the undesirable responses as well as it can
generate the new high amplitude responses.

This paper deals with the non-linear dynamics of an impact
oscillator having the secondary support made from an SMA. The
thermomechanical behaviour of SMA is described by the constitu-
tive model due to Bernardini and Rega [2]. Thermomechanical
coupling terms are considered in the energy equation allowing the
analysis of temperature evolution. A comparison with an equivalent
impact oscillator having an elastic support is made establishing the
influence of constitutive non-linearity on the system dynamics. The
influence of the external excitation is studied by investigating
situations where vibration reduction is achieved due to the phase
transformation hysteresis. Various bifurcation scenarios are dis-
cussed to explore complex responses of both systems. Results show
some cases where SMA support is useful for vibration reduction and
others where this reduction is not possible.

The paper is organized as follows. The description of the
physical model is presented in the Section 2 together with the
equations of motion and the modes of motion in which the con-
sidered system may operate. Numerical results demonstrating
some typical examples of the system behaviour are presented in
the Section 3. Here the ranges of parameters where the vibration
reduction can be achieved are discussed and dangerous scenarios
of appearance of large amplitude pseudoelastic responses are
shown. Finally, some conclusions are given.

2. Physical model, equations of motion and modes of motion

The dynamical system under consideration is the one degree-of-
freedom piecewise smooth oscillator shown in Fig. 2a. The system
consists of a mass m supported by a primary spring of stiffness K;
and a damper u. The oscillating mass collides with a motion
restraint made of SMA having pseudoelastic behaviour. The gap
between the mass and the SMA constraint in the equilibrium
position is g. The external force in the form of harmonic excitation
F =Acos(Qt) is applied to the base of the oscillator.

The considered system has two types of non-linearities. The
first one is associated with the discontinuous characteristics
caused by intermittent contacts, whereas of the second type of
non-linearity is related to the pseudoelastic nature of SMA
element. In order to examine the influence of the SMA on the
dynamic response of such system, a comparison with equivalent
oscillator shown in Fig. 2b with a plain elastic secondary support
has been made. Such comparison is important because an impact
oscillator alone has a very rich dynamical behaviour, and it will be
shown that the use of the SMA can modify it quite drastically. For
the sake of simplicity, the oscillators with SMA and elastic
secondary support will be referred to in the future as “pseudoe-
lastic” and “elastic” oscillators.

The equations of motion for the pseudoelastic and elastic
oscillator are as follows:

mié+uX+K1x+fpeH(fxfg)=Achos(Qt), 1)

m& + ux + K x+ K(x+g)H(—x—g) = AQ*cos(Qt), 2)

where fp. is a restoring force in the pseudoelastic element, and H(:)
is a Heaviside step function which is used to describe a piecewise
smooth nature of the system. It takes the value of 1 during the
contact of mass with the constraint, and the value of 0 otherwise.

The modelling of the behaviour of such system is completed by
introducing the explicit expression for the pseudoelastic element
restoring force f,.. Consequently, the variations of temperature
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Fig. 2. Physical models of impact oscillators: (a) oscillator with SMA secondary support; (b) oscillator with elastic secondary support.

during phase transformation process in the SMA element have to
be taken into account, and in this study the thermomechanical
model developed for pseudoelastic SMA by Bernardini and Rega
[2] is used.

The model proposed in [2] considers both the mechanical and
thermal responses of the SMA element, which implies that along
with the displacement x and velocity v, the temperature 6 is
considered as a state variable. The description of the phase
transformation evolution is done by introducing the volume
fraction of martensite ¢ as an internal variable, with & € [0, 1]. Zero
value of ¢ corresponds to SMA material being fully in the
austenite phase and the one value corresponds to material being
fully in martensite state. Then the set of equations of motion for
the discontinuous pseudoelastic oscillator can be written as
follows [15]:

X=v,
K, op K . AQ?
V=X Ve X+g—0&sign(x+g)H(—x—g)+ o cos(Qt),
= (e &) [ Kv signer+ - 20D Hox-g),
. A . o—
0— [ (&, é()(’_)+b59:|éH(7X*g)+ h(ec 9), 3)
where

G
H(E, &) = OeGLE: o) 4

Cc+0G(E, E)KIC+b(A(E, Eg)+bo0))”

Here h is the coefficient of the heat exchange with the
environment which is prescribed via Newton’s law of cooling, 6,
is the temperature of the environment which is assumed to be
constant, ¢ is the heat capacity coefficient of the SMA, and &,
represents the value of ¢ at the end of the previous phase
transformation. It should be noted that the model [2] allows one
to describe the temperature changes as the result of two
competing processes, the heat generation resulting from the
phase transformations represented by the first term, and the heat
exchange with the environment (second term). The explicit
expressions and explanations of the functions A(¢, &p) and
G(¢&, &) are given in Appendix A.

In order to carry out effective numerical calculations, the
system (3) was non-dimensionalized, using the non-dimensional
variables and parameters as follows:

T=ot oc—\/K co—g =X - 5 =t
- “Vm Ta’ X’ g_xMS’ "= Som’

>

K A .~ 0 Ko
k=Sl p=L 0=, a=72
“=x P XM, 0 T,

b0, b6 -, h
J=%0 =07 h=g

Here fy, and xy, are the pseudoelastic force and the displacement
at the onset of the upper pseudoelastic plateau in Fig. 1a. For the
convenience, the hats will be omitted for the system non-
dimensional variables and they will be referred to as x, 0 and
parameters h, g. Then the non-dimensional system of equations
for the pseudoelastic oscillator can be written in the following
form:

X=V,

V = —ky x—2nv—(x+g— & sign(x+g))H(—x—g)) + pw? cos(wr),

¢ =H(, Eo)(v sign(x + g)—Jh(1-0)H(—x~-g)),

. A& 0 . . .

0 =LA Loy signor-+ g-Jh1-0DH—x-g)+h(1-0),
5

The functions H(&, &), A(&, &) and G(&, &) are non-dimensional
versions of functions H(&, &g), A(E, &p) and G(&, &y), and they can be
found in Appendix B.

The oscillating mass can impact the SMA constrain; depending
on the impact strength and duration, five different modes of
operation can be distinguished:

e Mode I. Light contact without phase transformations (austenite
elastic behaviour).

e Mode II. Contact with forward phase transformation.

e Mode IIl. Contact when material is completely in martensite
phase (martensite elastic behaviour).

e Mode IV. Contact with reverse transformation.

e Mode V. No contact.

An example of such sequence for one period of motion is
presented in Fig. 3, where displacement, martensite volume
fraction, temperature and force f,. are monitored for all five
different modes.

The detailed description of all modes, containing equations of
motion for each of them can be found in [15]. Here we give just a
brief summary of the processes taking place throughout the
modes. From Mode [ to Mode IV the motion occurs when the mass
and the SMA restraint are in contact. At a certain strength of the
impact, phase transformations take place. That leads to the
changes of temperature and of internal variable &. The evolution
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Fig. 3. Time histories and hysteresis loop of the oscillator impacting the SMA constraint. (a) and (c) show the mass displacement and the SMA temperature over one
excitation period, T. (b) and (d) depict the corresponding changes of volume fraction of martensite, &, and dependence of the pseudoelastic force, f,. on the displacement

(hysteresis loop).

Table 1
Contact modes of motion.

Mode fpe boundaries fre explicit expression Internal variable & Temperature variations
I [fpel < fu, Jre=x+g f:O,é:O 9:h(]—9)
1 Fut, < fpel < Sy fpe=x+g+1¢ E>0 0 =d(E, &, HE+h(1-0)
)| fpel > fir, when v <0 fre=X+g+2 E=1,6=0 0 =h(1-0)

[fpel > fa, when v >0
Y% fay < fvel <fa, Jpe=x+g+4< £<0 0 = (&, &g, HE+h(1-0)

of these variables along with the explicit expression of the
pseudoelastic element restoring force fpe = (x+g—sign(x+g)4¢)
for each mode are given in Table 1. The function &(¢&, &y, 9) in the
temperature equation represents the temperature variations
associated with the phase transformations, that is

0. o, 9= LA ®

No-contact Mode V is the simplest case for which the dynamic
responses of the oscillator are governed by the linear primary
spring and damper. As a result, f,e =0 and because of that there
are no phase transformations and the condition & =0 holds true
for Mode V. The temperature change in the SMA is defined by the
heat exchange with the environment.

The other modes (Modes I to IV) describe the SMA response for
the two complete phase transformations, from austenite to
martensite during loading and the reverse transformation for
unloading. However, if the force acting on the discontinuous
support is not high enough to induce the complete transforma-
tion, a partial phase transformation can occur. This behaviour is
called an internal sublooping. In this case, the internal variable
reaches an intermediate value of &;, when loading of the SMA
element. On a subsequent unloading, a reverse transformation is
initiated when the pseudoelastic force reaches the limit, which is
the function of ¥Yg(1, &y) and the current temperature of the SMA.

3. Numerical results

The interest in use of SMAs in vibrational systems is stimulated
by their ability to dissipate energy and consequently their
potential to control the dynamic behaviour of the system. The
present study aims to assess the applicability of SMA for vibration
reduction and this will be accomplished by comparing of the
dynamic responses computed for the elastic and pseudoelastic
impact oscillators.

The values of the material parameters used in the current
numerical investigations were taken from [2] and they are as
follows: h=0.08, L=0.124, ] =3.1742, 2 =8.125, a=0.03. Such a
choice corresponds to a pseudoelastic loop with a “medium” level
of hysteresis and slope of the pseudoelastic plateaus. Along with
the system parameters k; =0.03448, #=0.01 and g =1.26 they
are kept constant, which allows us concentrate on the effects
caused by the variation of the external loading parameters
(excitation frequency and amplitude).

3.1. Damping effect of the SMA impact constraint

It is widely accepted that the pseudoelastic SMAs possess
significant damping properties due to the presence of hysteresis.
Our numerical study of the impact oscillator shows that the
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damping effect of the SMA can be very significant. Fig. 4 depicts
bifurcation diagrams for the considered oscillators with elastic (in
black) and pseudoelastic (in red) constraints under varying
excitation frequency w. As can be seen, a large variety of
periodic and chaotic responses are observed in both cases, and
there are several regions where the bifurcation diagrams coincide.
This means that in these regions the intensity of the impact force
acting on the SMA constraint is not high enough to initiate the
phase transformations, and therefore the SMA element acts as a
linear spring. The differences in the responses in the other ranges
of frequencies are caused by phase transformations.

It can be seen from Fig. 4 that for both elastic and
pseudoelastic oscillators as the frequency increases, a number of
“resonance” peaks are observed. For the considered range,
w e (0, 1.8), five clear regions with large amplitude of the vibration
are obtained for the elastic oscillator. It should be noted that the
system response is periodic in these frequency ranges and the

60

periodicity of the response is increasing for each consecutive
region varying from period-1 for w e (0.145, 0.394) to period-5 for
w e(1.242,1.551). However, for the pseudoelastic oscillator the
amplitude of the response in these regions is significantly
smaller than that for the elastic oscillator. It was found that in
those regions, i.e. for we(0.786,0.932), we(1.097,1.121) and
w e (1.198,1.55), the co-existence of the periodic responses was
observed for the pseudoelastic oscillator, whereas elastic oscilla-
tor exhibited single periodic response. The characteristic beha-
viour of the system is described below for the second and forth
peak regions which were chosen as representative examples.
First we consider the frequency range, w € (0.511,0.623), where
the second “resonance” peak is observed. Here the period-2
response is seen which is very similar at € (0.511,0.533) for both
system. However, at w € (0.533,0.623) the behaviour of the elastic
and pseudoelastic oscillators are different. Figs. 5a—e show an
evolution of the period-2 attractors for both systems using Poincaré

45 -
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Fig. 4. Bifurcation diagrams for the increasing frequency « computed for the elastic (black) and pseudoelastic (red) oscillators calculated at p =1.2 (colour online).
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frequency values. In (a)-(e) red and black curves show the responses of the pseudoelastic and elastic oscillator, respectively (colour online).
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sections and trajectories plotted at the increasing frequency values
in black for the elastic oscillator and in red for the pseudoelastic one.
In this frequency range there are three types of typical behaviours.
Initially, the occurrence of phase transformations in the SMA leads
to the increase in the amplitude of the response for the
pseudoelastic oscillator as compared to the elastic oscillator (see
Figs. 5a and b calculated for w = 0.542 and 0.544, respectively). This
can be explained by the initiation of phase transformations in the
pseudoelastic constraint, which causes change in the stiffness of
the SMA, making it “softer”, and leads to the larger displacement of
the secondary support and the mass accordingly. It consequently
prolongs the time of the contact, causing “sticking” of the mass to
the discontinuous constraint. For this range the area of the
hysteresis loop also increases with the frequency, as can be seen
in Fig. 5f. With further increase of frequency, the response amplitude
for the elastic oscillator starts to grow rapidly, whereas the pseudo-
elastic oscillator response amplitude decreases. After w = 0.557 (see
Fig. 5¢ for w =0.56) the positive displacements for the elastic
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Fig. 6. Bifurcation diagrams showing displacement as function of the excitation
frequency at w e (0.932,1.242) and p = 1.2 (colour online).
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oscillator are larger than the ones of the pseudoelastic oscillator;
however, the displacement in the impact area remains larger for
the pseudoelastic oscillator up to w = 0.578 (see Fig. 5d) for which
the two are similar. Finally, at even higher values of frequency the
response amplitude for the elastic oscillator becomes larger than
that of the pseudoelastic oscillator as it is demonstrated in Fig. 5e
where phase space for the frequency value w = 0.615 is shown. At
the same time the decrease in the size of hysteresis loop is observed
as demonstrated in the Fig. 5f. Our analysis shows that for the
pseudoelastic oscillator, the impact strength decreases as the
frequency increases, and starting from w = 0.578, the deformation
of the constraint becomes smaller than the one for the elastic
oscillator. Thus, for the considered frequency range and other
specified parameters, the vibration reduction can be achieved for
w e (0.578,0.623).
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Fig. 8. Bifurcation diagrams showing displacement as function of the excitation
amplitude for p € (0.6,4.0) and @ = 0.805 (colour online).
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(f) the green attractor for different frequency values. In (a), (b), (d), (e) red and green curves show the responses of the pseudoelastic oscillator and the black curve shows

the response of the elastic oscillator (colour online).
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As can be seen from Fig. 4, for the higher frequency values at
the “resonance” peaks there is a number of characteristic jumps in
the bifurcation diagram for the pseudoelastic oscillator, which
indicates presence of the co-existing attractors in the system. This
typical behaviour is presented in Fig. 6, where the bifurcation
diagrams of two co-existing regimes for the pseudoelastic
oscillator (in red and green) and the response of the elastic
oscillator (in black) are shown. It can be seen that two different
period-4 responses coexist in the narrow range of frequency
w e (1.097,1.121). Poincaré sections and trajectories of these
coexisting responses are shown in Figs. 7a and b for the
frequency values w=1.097 and 1.121, respectively, along with
the elastic oscillator response shown in black. It should be noted
here that the red attractor of the pseudoelastic oscillator is very
similar to the attractor of the elastic oscillator, and its hysteresis
loop grows in size with the increase of frequency as shown in
Fig. 7c. In general, the strength of impacts for this attractor is just
slightly larger than for purely elastic impacts. The second (green)
attractor, however, differs significantly from the one
corresponding to the elastic oscillator, and the strength of the
impact is significantly larger at w e (1.097,1.163). At w=1.097
(see Fig. 7a), for which this regime comes into existence, the span
of the oscillations is larger in comparison with the elastic one, but
soon after that the amplitude of oscillations in positive direction
for the elastic oscillator prevails. At w=1.163 (see Fig. 7d) the
impacts strength for both cases is the same and with further
increase of frequency, the response amplitude for the elastic
oscillator becomes clearly larger than that of the pseudoelastic
oscillator, as it is shown in Fig. 7e. The hysteresis loop
corresponding to this response shrinks for the increasing
frequency; its evolution is shown in Fig. 7f. Therefore, in the
frequency range considered, the vibration reduction cannot be
achieved everywhere but only for w € (1.163,1.241).

In both frequency ranges described above, it was observed that
the vibration reduction is possible above a certain critical
frequency value. Our numerical analysis confirmed that this is a

common scenario, and the influence of the excitation amplitude p
on the system responses was studied next. In general, the value of
this critical frequency will vary as the amplitude increases. It is
interesting to understand how the responses below and above
this value will be modified under changing amplitude and this
question is addressed below. Here the third “resonance” region
w €(0.786,0.932) is considered as an example. In this range, the
vibration reduction is possible at frequencies higher than
w=0.871. To demonstrate the system behaviour a frequency
below the critical value, i.e. w=0.805, was selected, and the
bifurcation diagram was constructed under varying amplitude as
shown in Fig. 8. As before, the responses of the pseudoelastic
oscillator are shown in green and red; the elastic oscillator
response is shown in black. It can be seen that pseudoelastic
responses co-exist in only limited range of amplitudes, namely for
p €(1.705,2.895). For higher amplitudes just one pseudoelastic
response remains and its impact displacement is larger than that
for the elastic oscillator. The evolution of these attractors is shown
in Fig. 9, where the phase portraits for the elastic (black) and
pseudoelastic (red) responses are similar, however, the SMA
deformation is slightly larger. The amplitude of the green
pseudoelastic attractor is larger than the elastic one for smaller
amplitude values as shown in Fig. 9b, but as the forcing amplitude
increases, the span of the oscillations is reduced and becomes
smaller than its elastic counterpart. However, even in this case,
the displacement of the constraint remains larger than that for the
elastic oscillator due to the softening of the pseudoelastic element
resulting from phase transformations. Consequently, for the
frequency ranges where the pseudoelastic oscillator does not
show the vibration reduction, this behaviour was retained for
higher amplitudes of the external excitation.

For the frequencies above the critical value w =0.871, it was
obtained that a single period-3 response persists as the amplitude
increases, and the response amplitude for the elastic oscillator
remained larger than that for the pseudoelastic oscillator. There-
fore, we conclude that vibration reduction behaviour observed in
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the “resonance” regions is not affected by the variations in the
excitation amplitude.

3.2. Influence of the phase transformations on the co-existing
responses

Though a significant decrease in the span of periodic attractor
makes pseudoelastic SMAs very promising for passive vibration
control applications, it appears that such behaviour is not
persistent and is observed in certain frequency ranges corre-
sponding to “resonance” peaks. It is important to know that the
presence of SMA in the impact systems can also modify existing
regimes and can even cause new responses to be initiated as was
demonstrated in the previous subsection. Careful monitoring of
these new and modified regimes is especially important in those
frequency regions where chaotic behaviour is observed. In order
to emphasize the complexity of the dynamic regimes caused by
the presence of the pseudoelastic non-linearity, and to point out
the advantageous and potentially dangerous responses, the
second chaotic region in Fig. 4 was examined.
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Given the significant number of co-existing attractors for both
systems, Fig. 10a presents bifurcation diagrams for the co-existing
regimes of the elastic oscillator (in black, magenta and blue);
Fig. 10b shows the co-existing regimes for the pseudoelastic
oscillators (in red, purple and green). As it is seen for the
pseudoelastic oscillator, the chaotic behaviour appears in the
frequency range w e(0.7114,0.7847), whereas for the elastic
oscillator the chaotic response occurs in a narrower frequency
range w €(0.7377,0.785). Also, in the case of pseudoelastic
oscillator, the chaotic region has several periodic windows in
contrast to a single narrow periodic window for the elastic
system. For w e(0.67,0.7113) the blue attractor for the elastic
oscillator coincides with the red attractor for pseudoelastic
oscillator, which means that there no phase transformations
occur at least for some sets of the initial conditions. However in
the overlapping frequency range, w e (0.6671,0.6985), another
large amplitude attractor (shown in green) exists having
significant phase transformations. This attractor can be periodic
or chaotic depending on the frequency value. In addition, there is
a different period-5 attractor with phase transformation at
w €(0.6974,0.7074). Thus the study of the co-existing regimes

(a)
9 .
£ %
o
E
o
8
£ 37
%
Z
04
-3 T T \ T T T -3 T T \ \ T T
0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.66 0.68 0.70 0.72 0.74 0.76 0.78
frequency frequency

Fig. 10. Co-existence of the dynamic responses at @ € (0.667,0.7894) in form of bifurcation diagrams for (a) elastic oscillator and (b) pseudoelastic oscillators (colour

online).
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Fig. 11. Poincaré maps and hysteresis loops for o = 0.725 (plots (a),(d)); @ = 0.744 (plots (b),(e)), w =0.777 (plots (c),(f)) (colour online).
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Fig. 14. Poincaré maps and trajectories calculated for p = 0.775, @ = 0.875 (colour online).

for the pseudoelastic oscillator reveals that new attractors with
stronger impacts are present in this frequency range, and it is not
feasible to use SMA support for vibration reduction if the system
is to operate in this range. Fig. 11 presents three different types of
the response modification scenario, which were observed in this
frequency range, where Poincaré sections are depicted in
Figs. 11a-c and the corresponding pseudoelastic hysteresis
loops are shown in Figs. 11d-f. In the first case calculated at
w =0.725 (Figs. 11a and d), the elastic oscillator has period-5
response, whereas pseudoelastic oscillator attractor is chaotic. At
w = 0.744 the situation is opposite: the chaotic regime for the

elastic oscillator is replaced by the period-8 response in the case
of pseudoelastic oscillator (Figs. 11b,e). Finally, at & = 0.777 both
systems have chaotic attractors (Figs. 11c, f), however the
attractor shrinks for the pseudoelastic oscillator.

The evolution of the chaotic responses under varying excita-
tion amplitude p was also considered. The bifurcation diagrams
shown in Figs. 12a,b were calculated at the value of frequency
®=0.775 for the amplitude range p €(1.028,2.2). As it can be
seen, initially chaotic behaviour is observed for both elastic and
pseudoelastic oscillators, though the span of the chaotic attractor
for the pseudoelastic oscillator is smaller than that of the elastic
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counterpart. However, with further increase of the excitation
amplitude, the pseudoelastic oscillator shows a stable period-3
response, whereas for the elastic oscillator a variety of the
complex co-existing responses, both periodic and chaotic, is
observed. For low values of the excitation amplitude,
p €(0.482,1.027), the picture is more complex as it is evident
from Figs. 13a and b. Initially the impact strength is insufficient to
initiate phase transformations and both the elastic and
pseudoelastic oscillators demonstrate the same response (shown
in black). At p = 0.852 phase transformations are initiated in the
pseudoelastic element and this leads to the difference in the
responses for two oscillators (see Fig. 13b). The chaotic attractors
for p=0.875 are shown in Fig. 14c in red and black for the
pseudoelastic and elastic oscillator, respectively. The period-3
response marked in magenta colour, as shown in Fig. 13a, is the
same for both oscillators and its trajectory and attractor for
p =0.875 are shown in Fig. 14b. The response shown in blue for
p €(0.819,0.991) was observed only for the elastic oscillator, and
the trajectory and attractor for this response for p =0.875 are
shown in Fig. 14d. Also, in the low amplitude range the no-contact
period-1 response exists for both oscillators. It is shown in

velocity

displacement

- basin for period-1 attractor

l:l basin for period-9 attractor
(elastic oscillator only)

Fig. 13a in grey, and its trajectory and Poincaré map for p =0.875
are presented in Fig. 14a.

The basins of attractions plotted for p =0.875 and w =0.775
are presented in Fig. 15 for the elastic (Fig. 15a) and the
pseudoelastic (Fig. 15b) oscillators. The basins for the period-1,
period-3 and chaotic attractors are shown in brown, orange and
black, respectively. The basin for the period-9 response
corresponding to the elastic oscillator is shown in light yellow.
As it can be seen, the presence of the SMA decreases the
fractality of the basin and eliminates one elastic response
without replacing it by a new pseudoelastic regimes. An
expansion of the chaotic region for the pseudoelastic oscillator
is also noticeable.

It should be noted that the basins of attractions presented in
Fig. 15 and other figures were calculated using Dynamics software
[16] which allows to calculate a projection of the full basins on the
two dimensional plane (in this case displacement/velocity plane).
Due to software limitations variation of initial conditions for other
system variables was not possible when calculating basins of
attractions, hence we kept initial values £=0, &, =0 and 0=1
constant (0 was non-dimensionalized with respect to the ambient
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Fig. 15. Basins of attraction computed for p =0.875 and « = 0.775: (a) elastic oscillator; (b) pseudoelastic oscillator (colour online).
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Fig. 16. Basins of attraction computed for p = 1.2 and @ = 0.698: (a) elastic oscillator; (b) pseudoelastic oscillator (colour online).
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Fig. 18. Basins of attraction computed for p = 1.2 and w = 0.7074: (a) elastic oscillator; (b) pseudoelastic oscillator (colour online).

temperature). However, this approximation of the initial condi-
tions for temperature and volume fraction of martensite does not
influence the final results of the calculation, because during the
iterations the system settles down quickly on the correct attractor,
and its projection is then presented on the given basins plot.

Our numerical study shows that the presence of the SMA can
introduce co-existing high amplitude responses, which do not
exist for the equivalent elastic oscillator. To illustrate this effect
and to demonstrate the overall complexity of the system
behaviour, the basins of attractions are presented in Fig. 16 for
the elastic (Fig. 16a) and the pseudoelastic (Fig. 16b) oscillators.
Their trajectories are shown in Fig. 17. The low amplitude period-

1 and period-3 responses shown in Figs. 17a and d in black, are
the same for both oscillators; their basins of attraction are shown
in brown and yellow in Fig. 16, respectively. Two period-5 orbits
shown in Figs. 17b and c appear only for pseudoelastic oscillator
as a result of phase transformations. The basin of attraction
corresponding to the attractor depicted in Fig. 17c is marked in
dark yellow. It is clearly dominant over the basin of other period-5
attractor, which trajectory and Poincaré map are shown in
Fig. 17b. It should be noted that the transient motion for these
responses is relatively short and the system settles on the relevant
attractor after 50-100 cycles depending on the initial conditions.
The presence of high amplitude responses can be dangerous and
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therefore the existence of such regimes due to the phase
transformation in the SMA must be taken into account.

Different scenario is shown in Fig. 18 where basins of
attraction are presented for the elastic (Fig. 18a) and the
pseudoelastic (Fig. 18b) oscillators for p=1.2 and w=0.7074.
Their trajectories are shown in Fig. 19. As it can be seen, for these
values of the parameters, four different regimes exist for the
elastic oscillator, whereas pseudoelastic oscillator has only three
different responses. Two low amplitude periodic responses shown
in Figs. 19a and b are the same for pseudoelastic and elastic
oscillators. However, high amplitude chaotic and period-5
responses for the elastic oscillator (Figs. 19c and d) are replaced
and by a single period-5 lower amplitude response for the
pseudoelastic oscilator (Fig. 19e).

4. Conclusions

The influence of the external excitation parameters on the
dynamic behaviour of an impact oscillator with SMA motion
constraint was studied. The thermo-mechanical model proposed in
[1,2] was adopted to account the phase transformations in the SMA
element including the thermo-mechanical coupling terms in the
energy equation. The oscillator can operate in five different modes of
motion, and the most essential details of the processes taking place
throughout each mode were discussed. In order to assess potentials
of the system to be used for vibration reduction, a comparison with
the equivalent elastic impact oscillator was carried out.

The evolution of the dynamic responses under varying
frequency was investigated first. The analysis has shown that a
significant vibration reduction can be achieved for the frequency
ranges corresponding to the “resonance” peaks which are
inherent to the considered elastic impact oscillator. For each peak
a certain critical frequency was identified, where the impact
displacements of the elastic and pseudoelastic oscillators coin-
cide, and the vibration reduction was obtained for the frequencies
above this value. At the frequencies below this value, the response
amplitudes for the pseudoelastic oscillator were larger than that
for the elastic counterpart. This can be explained by softening of

the SMA constraint during the phase transformation, which
causes larger impact displacements. Also, for the third, forth and
fifths peaks a single periodic response for the elastic oscillator was
replaced by two co-existing responses for the pseudoelastic
oscillator. The study of the excitation amplitude influence on
the system responses revealed that vibration reduction behaviour
observed in the “resonance” regions is not affected by the
variations in the excitation amplitude. This means that for the
frequencies below critical value the vibration reduction cannot be
achieved by increasing the excitation amplitude.

At ranges of frequencies in between of those corresponding to
the “resonance” peak regions an unexpected dynamic behaviour
was observed. The presence of the SMA constraint alters the
dynamics responses when compared to the ones from the elastic
oscillator. Some of them are beneficial, such as the transformation
of chaotic responses to periodic ones and the shrinkage of chaotic
attractors. Also, some of the dangerous responses observed for the
elastic oscillator were eliminated in case of the pseudoelastic
oscillator. On the other hand, the existence of additional modes in
the pseudoelastic oscillator can cause new large amplitude
responses (both periodic and chaotic) to be generated. The effects
of the external amplitude variations were also studied for the
chaotic regions. In appeared that at high amplitude values the
chaotic response transforms to the periodic one, and its
periodicity is the same as of the following resonance peak
response. Therefore, the increase of the amplitude at the
considered frequency ranges leads to the elimination of the
chaotic responses thus expanding “resonance” peak regions.
Overall, the complexity and the unpredictability of the dynamic
responses in the considered “chaotic” regions make the use of the
SMA in the restraint generally disadvantageous for the vibration
reduction purposes in these regions.

Appendix A

The function A(¢, &g) is a piecewise smooth function which
defines the shape and the size of the hysteresis loop, and
according to the common assumption, the rate of energy
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dissipation I' during the transformation is proportional to this
function, i.e. the size of the hysteresis loop, as defined in [1]

where
Ay { Ap = bO[(As—Ms) /2—(Ms—Mp) Pr(&, &o)/In(a/2—a))]  if €>0,
=T Ag = bO[—(As—My) /2—(Ar—A) Pr(E, o) /In(a/2—a))] if & <0,
®)
and
o1 [2-a)(¢—&o)+a(1-¢) (2—a)
TF@’QO)_iln{a(é—éoH(Z—a)(l—é) a ]
_ 1, Ja€-$p)-2-a)l a
r(e. Lo = 51n {(2—0)(6—50)—05 <2—a)}' ®

The functions ¥r and ¥ define the shape of the upper and lower
plateaus of the hysteresis loop. The smoothness of the transition
between elastic and pseudoelastic part of the hysteresis loop is
governed by the coefficient a.

The function G(¢&, &p) in Eq. (4) is an auxiliary function which is
defined as follows:

Gr = (dAp/d&)~" if E>0.
G(&, &)= Gr=(dAg/dé) ! if E<O. (10)

0 if ¢=0.
Appendix B

The auxiliary functions A(E, &), Gr(&,&p) in Egs. (3) have
dimensions of energy, and they were normalized with respect to
product fy,Xy;,. This leads to the explicit expressions of their non-
dimensional counterparts as follows:

AR Eg) = (—1)) QZ2—1 _a —41)'1";(55 <o) )
In——
2—a
A&,y = (1o 121 A= ol an
2—-a
1
el _ 2—a
H& o) = =00 PiE B
LA
Gr(&, &) = 2-a (12)

AJ-Dq2(qs—DPR(E, &)

where
Mg As Ar
QI—Ms QZ—M, Q3—A—s~ (13)

The function H(¢, £g) was non-dimensionalized with respect to
force fy, and its non-dimensional expression is as follows:

2G(&, o)

H(E &o) = T G(& o)
(& &o) 14+ 22 +LA(E, E) +JANG(E, &)

(14
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