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Abstract
Shape memory alloys (SMAs) belong to the class of smart materials and have been used in
numerous applications. Solid phase transformations induced either by stress or temperature are
behind the remarkable properties of SMAs that motivate the concept of innovative smart
actuators for different purposes. The SMA element used in these actuators can assume different
forms and a spring is an element usually employed for this aim. This contribution deals with the
modeling, simulation and experimental analysis of SMA helical springs. Basically, a
one-dimensional constitutive model is assumed to describe the SMA thermomechanical shear
behavior and, afterwards, helical springs are modeled by considering a classical approach for
linear-elastic springs. A numerical method based on the operator split technique is developed.
SMA helical spring thermomechanical behavior is investigated through experimental tests
performed with different thermomechanical loadings. Shape memory and pseudoelastic effects
are treated. Numerical simulations show that the model results are in close agreement with
those obtained by experimental tests, revealing that the proposed model captures the general
thermomechanical behavior of SMA springs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Shape memory alloys (SMAs) belong to the class of smart
materials and, due to their remarkable properties, are being
used in several applications. Aerospace, biomedical and
robotics are some areas where SMAs have been applied
(Lagoudas 2008, Paiva and Savi 2006, Machado and Savi
2002, 2003, Garner et al 2001, Webb et al 2000). The
construction of SMA actuators has different strategies and one-
way and two-way linear actuators are very common. In this
regard, it is possible to imagine antagonist actuators controlled
by temperature variations. Different configurations can be
imagined including SMA–SMA actuators and SMA–elastic
actuators (Sofla et al 2008). In brief, the main idea is to use a
pre-stressed SMA element that, when subjected to temperature
variations, recovers its original shape, generating force.

The literature presents numerous efforts for the modeling,
design, simulation and control of SMA actuator systems
that are related to innovative devices employed for different
purposes. Song (2007) presented the design and control of a
rotary servo actuated by an SMA wire. This rotary actuator

uses SMA wire wound on a threaded non-conductive rotor.
The rotor is connected to a pre-tensioned torsional spring
such that two-way rotation can be achieved. Sharma et al
(2008) discussed the design and characterization of an SMA
wire-based poly phase rotary motor that can be used either in
stepping mode or in servo mode operation. The motor uses
SMA wire with a tension spring in series for each phase of the
motor. Khidir et al (2008) presented a technique of actuating a
parallel platform manipulator using shape memory alloy. The
work investigates a 3-UPU (universal–prismatic–universal)
parallel manipulator using linear SMA actuators. Lanteigne
and Jnifene (2008) discussed the design and fabrication of a
pressurized hyper-redundant manipulator driven by high strain
SMA actuators composed of four identical modules, each
providing three degrees of freedom. Bundhoo et al (2009)
discussed a biomimetic tendon-driven actuation system for
prosthetic and wearable robotic hand applications based on a
combination of compliant tendon cables and one-way SMA
wires that form a set of agonist–antagonist artificial muscle
pairs.
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SMA springs constitute an important kind of actuator
employed in different kinds of applications and have attracted
the attention of several authors. Dong et al (2008) developed
a finite element model and an experimental set-up to study
a changeable airfoil actuated by SMA springs. An optimum
airfoil configuration can be achieved by SMA spring actuation.
Yan et al (2007) presented an experimental analysis to
evaluate the behavior of a gripper actuated by SMA springs
considering several heating and cooling conditions. Dumont
and Kuhl (2005) developed a finite element analysis for design
optimization of SMA spring actuators used to control active
endoscopes. Wang et al (2004) investigated the electrical–
thermal characteristics of SMA springs driven by direct and
alternating electrical current and the degradation of the two-
way shape memory effect promoted by working cycles.

The complex thermomechanical behavior of SMAs makes
their modeling a difficult task. This may introduce difficulties
for the evaluation of SMA applications. There have been some
efforts to model the SMA helical springs’ thermomechanical
behavior (Toi et al 2004, Savi and Braga 1993, Tobushi and
Tanaka 1991). In this contribution, a model is proposed
that may be useful for engineering purposes. Basically, a
constitutive model originally proposed for one-dimensional
tensile–compressive behavior (Savi et al 2002, Baêta-Neves
et al 2004, Paiva et al 2005, Savi and Paiva 2005) is
employed to describe the shear behavior. Afterwards, an SMA
helical spring model is developed by assuming that the spring
wire presents homogeneous phase transformations through the
wire. An experimental apparatus is developed in order to
characterize the thermomechanical behavior of SMA helical
springs through force–displacement and displacement–electric
current tests. Finally, numerical simulations are carried out
showing that the proposed model is in good agreement with
experimental tests.

2. Constitutive model

The thermomechanical behavior of SMAs may be modeled
in different ways (Lagoudas 2008, Paiva and Savi 2006).
Here, a constitutive model that is built upon Fremond’s model
(Fremond 1987, 1996) and previously presented in different
references (Savi et al 2002, Baêta-Neves et al 2004, Paiva
et al 2005, Savi and Paiva 2005, Monteiro Jr et al 2009)
is employed. This model considers four macroscopic phases
with different material properties for the description of the
SMA behavior. Besides strain and temperature, the model
considers four more state variables associated with the volume
fraction of each macroscopic phase (two variants of detwinned
martensites, twinned martensite and austenite).

Although this one-dimensional constitutive model was
originally proposed to describe tension–compression behavior,
it has been noted that experimental torsion test curves
presented in different references (Jackson et al 1972, Manach
and Favier 1997, Savi and Braga 1993) indicate that these
curves are qualitatively similar to those obtained in tension
tests performed in Ni–Ti and other SMAs. Based on this
observation, this constitutive model is employed to describe
the pure shear stress states, replacing the stress, strain and

elastic modulus, respectively, by the shear stress, shear strain
and shear modulus.

In order to obtain the constitutive equations, a free energy
potential is proposed concerning each isolated phase. After
this definition, a free energy of the mixture can be written,
weighting each energy function with its volume fraction.
Therefore, let us consider the shear stress, τ , the shear strain,
γ , and the temperature, T . The volume fraction of each
phase is represented by β1 and β2 associated with detwinned
martensites, β3 related to austenite and β4 that represents
twinned martensite. Under these assumptions, the shear
thermomechanical behavior of SMAs may be described by the
following constitutive equations:

τ = Gγ + (α + Gαh)(β2 − β1) (1)

β̇1 = 1
η1

{αγ + &1 + (2αhα + Gα2)(β2 − β1)

+ αhGγ − ∂1 Jπ } + ∂1 Jχ (2)

β̇2 = 1
η2

{−αγ + &2 − (2αhα + Gα2)(β2 − β1)

− αhGγ − ∂2 Jπ } + ∂2 Jχ (3)

β̇3 = 1
η3

{− 1
2 (GA − GM)[γ + αh(β2 − β1)]2 + &3 − ∂3 Jπ}

+ ∂3 Jχ (4)

where G = GM + β3 (GA − GM) is the shear modulus. Note
that subscript ‘A’ refers to the austenitic phase, while ‘M’ refers
to martensite. The parameters α and αh are associated with the
stress–strain hysteresis loop. The terms ∂n Jπ (n = 1–3) are
sub-differentials of the indicator function Jπ with respect to βn .
The indicator function Jπ (β1,β2,β3) is related to a convex set
π , which provides the internal constraints related to the phases’
coexistence. Concerning the evolution equations of volume
fractions, η1, η2 and η3 represent the internal dissipation related
to phase transformations. Moreover, ∂n Jχ (n = 1–3) are
sub-differentials of the indicator function Jχ with respect to
β̇n. This indicator function is associated with the convex set
χ , which establishes conditions for the correct description
of internal subloops due to incomplete phase transformations
and also to avoid improper transformations among martensitic
variants (M+ → M or M− → M, for instance) (Savi and
Paiva 2005).

Concerning the parameters’ definition, linear temperature-
dependent relations are adopted for &1, &2 and &3 as follows:

&1 = &2 = −LM
0 + LM

TM
(T − TM)

&3 = −LA
0 + LA

TM
(T − TM)

(5)

where TM is the temperature below which the martensitic phase
becomes stable, LM

0 , LM, LA
0 and LA are parameters related to

critical stress for phase transformation. In order to contemplate
different characteristics of the kinetics of phase transformation
for loading and unloading processes, it is possible to consider
different values to the parameters ηn (n = 1–3), which are
related to internal dissipation: ηL

n and ηU
n during the loading

and unloading process, respectively. For more details about
the constitutive model, see Paiva et al (2005).
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Figure 1. Helical spring.

3. Shape memory alloy helical spring

The modeling of the restoring force produced by a shape
memory alloy spring is done by considering a helical spring
with diameter D, built with N coils with a wire diameter d .
It is assumed that the longitudinal force, F , is resisted by the
torsional shear stress developed on the circular cross section of
the helical shaped wire (figure 1) (Shigley and Mischke 2001).
Therefore, the equilibrium can be written as follows:

F = 4π

D

∫ d/2

0
τr 2 dr (6)

where r is the radial coordinate along the wire cross section.
The shear strain, γ , is assumed to be linearly distributed along
the wire cross section, from which follows the kinematics
relation:

γ (r) = r
d/2

γmax. (7)

Note that strain varies from zero, at the center, to a
maximum value, γmax, at the surface of the wire, given by

γmax = d
π D2 N

u (8)

where u is the longitudinal spring displacement.
Classical helical springs applied in regular applications,

such as the ones made of steel, operate in the linear-elastic
material regime and present a linear shear stress distribution
across the wire section. SMA helical springs are designed to
experience phase transformation during operation and present
a nonlinear shear stress distribution across the wire section
due to phase transformation. Under this assumption, three
different regions can be observed: a linear-elastic region where
phase transformation does not take place; a region where
phase transformation occurs; and a transition region between
the two previous regions. For the sake of simplicity, we
can neglect the transition region considering just two regions,
defined by a radius rT measured from the center. Figure 2(a)
presents the volume fraction and stress distribution through the
wire section considering a nonlinear distribution of volume
fraction for r > rT. Under this assumption, there is a
region where stress-induced martensitic phases (β1 and β2)
vanish (0 ! r ! rT) and a region where stress-induced
martensitic phase distributions are present (rT < r ! d/2).
As a consequence, the first region presents shear stress that
follows the linear-elastic shear stress–strain relation (τ = Gγ ).
In the second region, the shear stress follows a nonlinear
distribution defined by the constitutive equation presented in
the preceding section. Despite the nonlinear shear stress

Figure 2. SMA spring thermomechanical behavior based on
different hypotheses. (a) Nonlinear shear stress and phase
transformation distributions. (b) Bi-linear shear stress and constant
phase transformation distributions. (c) Homogeneous shear stress
and phase transformation distributions.

distribution through the wire section, simpler models can be
proposed to deal with the nonlinearities. A first approach
can be proposed by considering that phase transformation
has a constant distribution for r > rT. Figure 2(b) shows
a schematic picture of this hypothesis indicating a bi-linear
stress distribution. The simplest possibility to model this
phenomenon is by assuming that both phase transformation
and shear stress distributions are homogeneous through the
wire cross section (figure 2(c)). Although this hypothesis
is not completely realistic, its simplicity can be useful for
engineering purposes. Figure 2 summarizes these assumptions
and the resulting governing equations are treated in the
sequence.

The critical radius rT can be obtained from a critical shear
stress, τcrit, above which phase transformation takes place.
Therefore

rT = (d/2)

G[ d
π D2 N u]τcrit. (9)

Under this assumption, it is possible to perform the
integration of equation (6), obtaining a force–displacement
relation. The general case, represented in figure 2(a), has the

3
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Figure 3. Tensile test device for thermomechanical characterization
of SMA helical springs (a) and schematic view (b).

following relation:

F(u, T,βi ) = πd3

8D

(
d

π D2 N
G

)
u

+ 4π

D

∫ d/2

rT

(α + Gαh)(β2 − β1)r 2 dr. (10)

By assuming that volume fraction is constant for rT <
r ! d/2 (represented in figure 2(b)), the force–displacement
relation is given by

F(u, T,βi ) = πd3

8D

[(
d

π D2 N
G

)
u + 4

3
(α + Gαh)

× (β2 − β1)

[
1 −

(
rT

(d/2)

)3]]
. (11)

Finally, the simplest alternative is to assume that both
volume fraction and shear stress distributions are homogeneous
through the wire cross section (the situation represented in
figure 2(c)). Performing the integration of equation (6), we
obtain

F(u, T,βi ) = πd3

6D

[(
d

π D2 N
G

)
u + (α + Gαh)(β2 − β1)

]
.

(12)

The force–displacement relation (equations (10)–(12))
together with those that describe the volume fraction evolution

establishes a proper description of the thermomechanical
behavior of SMA helical springs. Of course, the non-
homogeneous hypotheses are more realistic. A comparison
between approaches presented in equations (11) and (12)
shows that the force–displacement equation for the non-
homogeneous case has a radius dependence represented by a
variable rT. It should be noted, however, that if this variable
is small (rT → 0), which happens for large stress levels,
both approaches have similar equations and the homogeneous
hypothesis can properly describe the SMA helical spring
behavior. This paper uses this homogeneous hypothesis
represented in figure 2(c) (equation (12)) in order to model the
thermomechanical behavior of the SMA spring.

Section 4 treats experimental tests that are used to
establish a verification of the SMA helical spring model.

4. Experimental procedure

The characterization of the SMA helical spring is obtained
through force–displacement and displacement–current tests.
The tensile test device shown in figure 3 is employed in both
situations. Basically, this device is composed by a rigid frame
that has a load cell (Alfa SV-20 with 196 N capacity) fixed
at the top. The SMA spring is connected to the load cell and
the other end is attached to the rod of a resistive displacement
transducer (Gefran PY-1-F-100 with 100 mm span). Both
transducers are connected to a data acquisition system (HBM
Spider 8). A fluid reservoir is attached to the other end of the
transducer rod in order to produce mechanical loadings. The
SMA spring is subjected to mechanical loading controlled by
the fluid level of the reservoir which is done by changing the
vertical position of a second fluid reservoir that is connected
to the first by a tube. This procedure allows one to apply
smooth loading–unloading conditions to the spring element.
Temperature variations are induced through the Joule effect by
the application of an electrical current using a stabilized current
source (Minipa MPL-1303). The SMA spring is subjected
to different thermomechanical loading–unloading processes in
order to reproduce shape memory and pseudoelastic effects.

The shape memory effect is imposed by considering a
two-stage thermomechanical test: (1) a mechanical loading–
unloading followed by (2) a thermal heating–cooling. The
first stage promotes a residual strain that is eliminated during
the second stage. Three different maximum load levels are
considered: 3, 3.5 and 4 N. The heating of the SMA helical
spring to a temperature above AF is performed by applying
an electrical current of 1.2 A. All tests are performed at
room temperature (22 ◦C). The pseudoelastic test is performed
by assuming a constant temperature loading together with a
mechanical loading–unloading test. Two different mechanical
loading–unloading procedures are performed, being related to
maximum load levels (7 and 8 N) together with a constant
temperature induced by applying an electrical current of 0.8 A.

The SMA helical spring is built with NiTi that is in
martensitic phase at room temperature. The spring has an
external diameter of 6 mm, a wire diameter of 0.75 mm, 20
active coils, an activation temperature in the range of 45–55 ◦C
and has been purchased from Jameco’s Robot Store.

4
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Figure 4. Experimental data related to displacement–electric current
curves.

The SMA spring is characterized by different thermome-
chanical tests. Initially, a temperature variation is performed
with a constant stress level. This test has the objective
to establish a relation between electric current and phase
transformation. Figure 4 presents the displacement–electric
current curve showing the hysteresis loop that allows one
to identify the phase transformation current related to phase
transformation temperatures.

SMA spring force–displacement curves are now in focus
trying to represent the shape memory effect (SME) and
pseudoelasticity. Figure 5 presents experimental curves for
both situations. At the beginning of each test, the SMA helical
spring is at room temperature (22 ◦C), a situation where the
martensitic phase is stable. In order to ensure that each test is
done with a spring where its wire section has a homogeneous
twinned martensitic phase distribution, the following process
is applied. Initially, all mechanical loads are removed and then
an electric current of 1.2 A is applied to the spring. Finally,
the spring is subjected to cooling prescribed in order to allow a
thermal equilibrium with the medium.

The SME test is performed after this initial stage by
imposing a mechanical loading that promotes the formation
of detwinned martensite. This phase remains present after the
mechanical loading removal, causing a residual displacement.
At this point, an electric current of 1.2 A is applied and the
SMA helical spring recovers part of the residual displacement
developed during the loading stage. A residual load with a
magnitude of approximately 1 N is still present at the end
of the unloading as a consequence of the devices attached
to the spring (for example, resistive displacement transducer
and fluid reservoir). A loading rate of approximately 2.7 ×
10−2 N s−1 is used in the developed tests.

The pseudoelastic test is performed by considering
an applied electric current of 0.8 A that increases the
SMA temperature promoting a phase transformation from
twinned martensite to austenite. Afterward, mechanical
loading–unloading process is imposed on the spring by
considering two different maximum values: 7 and 8 N. As
expected, the pseudoelastic test shows a complete reverse
phase transformation after the loading is removed and, as a
consequence, there is no residual displacement. Figure 5
presents force–displacement curves related to shape memory
and pseudoelastic experimental tests.

5. Numerical simulations

The operator split technique (Ortiz et al 1983) associated with
an iterative numerical procedure is developed in order to deal
with the nonlinearities of the formulation. The procedure
isolates the sub-differentials and uses the implicit Euler method
combined with an orthogonal projection algorithm (Savi et al
2002) to evaluate evolution equations. Orthogonal projections
ensure that volume fractions of the macroscopic phases obey
the imposed constraints. In order to satisfy constraints, values
of volume fractions must stay inside or on the boundary of
the tetrahedron shown in figure 6 that establishes the phase
coexistence conditions.

Numerical simulations are now focused on establishing
a comparison with experimental tests. A helical spring with

(a) (b)

Figure 5. Experimental data related to the spring force–displacement. (a) Shape memory effect; (b) pseudoelasticity.
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Figure 6. Tetrahedron of the constraints related to phase coexistence.

Table 1. SMA parameters.

GA (GPa) GM (GPa) α (MPa) γR TM (K)
14.5 11.5 40 0.028 303

LM
0 (kPa) LM (MPa) LA

0 (kPa) LA (MPa)
0.6 29.5 0.03 48.5

ηL
1,2 (MPa s) ηU

1,2 (MPa s) ηL
3 (MPa s) ηU

3 (MPa s)
220 20 220 23

the same characteristics described in the previous section is
considered. Experimental data is used to match parameters
of the proposed model. In the beginning of the test, phase
transformations do not take place and the initial slope of
the force–displacement curve can be used to obtain shear
modulus, GM = 11.5 GPa. The residual displacement
is also employed to match parameters related to phase
transformations. Parameters experimentally matched from
experimental tests are presented in table 1.

The thermomechanical loading–unloading process that
represents experimental tests related to the shape memory
effect is presented in figure 7. Basically it consists of three
different mechanical loading–unloadings followed by thermal

heating. Note three different process that try to reproduce
experimental tests. Basically, three different load levels are
considered: F = 3, 3.5 and 4 N.

Numerical simulations of the shape memory effect are
performed and compared with experimental data, shown in
figure 8. The force–displacement curves have the same
behavior observed in experimental tests, presenting a residual
displacement and a constant load when the mechanical
loading–unloading process is finished. Results show that
model results are in close agreement with experimental tests
showing that the hypothesis that phase transformation occurs
in a homogeneous way at the SMA wire is adequate to
describe the spring behavior. Phase transformations are also
shown in figure 8 presenting volume fraction evolution. It
should be noted that the initial condition is related to a
twinned martensite and a mechanical loading process induces
the formation of detwinned martensite. Afterward, thermal
loading promotes a martensite–austenite phase transformation.
Moreover, it is important to observe that this process is related
to internal subloops since complete phase transformation does
not occur and the increase of mechanical loading level changes
the amount of volume fraction formation. This observation
confirms that the homogeneous hypothesis is a good alternative
for the SMA spring description because this situation is related
to low level forces.

The pseudoelastic effect is now in focus. The
thermomechanical loading–unloading process is presented in
figure 9. Basically it consists of a mechanical loading–
unloading process with constant temperature. Two different
maximum load levels are concerned: 7 and 8 N.

Numerical simulations are carried out and compared with
experimental data, shown in figure 10. Force–displacement
curves have the same behavior observed in experimental
tests, showing that reverse transformation is complete after
the unloading process. It is noticeable that model results
are in close agreement with experimental tests. Volume
fraction analysis shows that, initially, the SMA has an
austenitic phase and the mechanical loading promotes the
martensitic formation. During the unloading process, the

Figure 7. Thermomechanical loading–unloading process for shape memory effect tests. (a) Mechanical and (b) thermal loadings.
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Figure 8. Shape memory effect. (a) 3 N; (b) 3.5 N; (c) 4 N.

reverse transformation (martensite–austenite) is complete and
the spring does not present residual displacement. It should
also be noted that these tests are related to incomplete phase
transformation and, therefore, are associated with internal
subloops. Once again, it should be highlighted that the
homogeneous hypothesis is adequate for the thermomechanical
description of SMA springs.

6. Conclusions

This contribution analyzes the quasi-static response of shape
memory alloy helical springs. The primary hypothesis

assumes that phase transformation occurs in a homogeneous
way at the SMA wire. Besides, a constitutive model that
includes four macroscopic phases in the formulation (three
variants of martensite and an austenitic phase) is used to
describe the thermomechanical shear behavior of SMA. A
numerical method based on the operator split technique
is employed. An experimental apparatus is developed in
order to characterize the thermomechanical behavior of SMA
helical springs. Force–displacement and displacement–electric
current tests are used to characterize the spring. Numerical
results investigate shape memory and pseudoelastic tests. In
general, numerical simulations are in close agreement with
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Figure 9. Thermomechanical loading–unloading process for pseudoelastic test. (a) Mechanical and (b) thermal loadings.

Figure 10. Pseudoelastic effect. (a) 7 N; (b) 8 N.

experimental data. It is important to highlight that the
hypotheses that phase transformation occurs in a homogeneous
way through the SMA wire is realistic, providing good results,
and can be used for the design of an actuator using SMA helical
springs.
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