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Abstract
This paper investigates the nonlinear geometric effect on the mechanical behavior of shape
memory alloy (SMA) helical springs. First, the SMA wires are characterized, and then the design
and fabrication of SMA helical springs are discussed. Experimental tensile tests are carried out to
show the nonlinear geometric influence. Results show a coupling between constitutive and
geometric nonlinearities that defines the spring stiffness. Two springs with different geometries
are built from SMA wires to define springs with both weak and strong nonlinear geometric
influence. Numerical analyses are developed, using the finite element method to confirm the
general conclusions shown in our experimental observations.
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1. Introduction

Shape memory alloys (SMAs) have been studied since the
1930s, but technological interest in these materials came to
the forefront in 1962, when research at the US Naval Ordi-
nance Laboratory discovered the shape memory effect in NiTi
alloys. Since then, several industrial applications have been
established in areas such as aeronautics, medicine, and
robotics. SMA actuators are currently being used as an
alternative to electric, hydraulic, and pneumatic actuators, and
they also fill a growing need to develop smaller and lighter
systems. In this regard, the use of SMAs is increasing in
different fields of human knowledge due to their good power-
to-weight ratios.

SMAs present complex thermomechanical behaviors
related to different physical processes. The most common

phenomena presented by these materials are pseudoelasticity,
the shape memory effect—which may be one-way or two-
way—and phase transformation due to temperature variation.
In addition to these phenomena, there are more complicated
effects that significantly influence their overall thermo-
mechanical behavior, including plastic behavior, tension-
compression asymmetry, plastic-phase transformation cou-
pling, transformation induced plasticity, and thermo-
mechanical couplings (Paiva et al 2005, Paiva and Savi 2006,
Lagoudas 2008). All of these aspects confer the remarkable
properties of SMAs that are attracting so much technological
interest and motivating different applications in multiple
fields of science and engineering (Machado and Savi 2003,
Bundhoo et al 2009, Hartl et al 2010 2010a, Spinella and
Dragoni 2010, Min An et al 2012).

The unique properties of SMAs result from solid phase
transformations that can be induced either by stresses or by
temperature. SMA elements can be designed using wires,

Smart Materials and Structures

Smart Mater. Struct. 24 (2015) 035012 (13pp) doi:10.1088/0964-1726/24/3/035012

3 Author to whom any correspondence should be addressed.

0964-1726/15/035012+13$33.00 © 2015 IOP Publishing Ltd Printed in the UK1

mailto:calas@cefet-rj.br
mailto:mauriciogarc@gmail.com
mailto:raaguiar@cefet-rj.br
mailto:lfelipe@cefet-rj.br
mailto:rodolphodahora@gmail.com
http://dx.doi.org/10.1088/0964-1726/24/3/035012
http://crossmark.crossref.org/dialog/?doi=10.1088/0964-1726/24/3/035012&domain=pdf&date_stamp=2015-02-06
http://crossmark.crossref.org/dialog/?doi=10.1088/0964-1726/24/3/035012&domain=pdf&date_stamp=2015-02-06


beams, and plates, among other possibilities. Hybrid com-
posites allow one to combine the properties of different
materials. SMA springs constitute an alternative for applica-
tions where large displacements are needed; this is of special
relevance in dynamical applications. A mechanical helical
spring may be defined as a body with the ability to bend,
warp, or absorb energy when subjected to a load (Shigley and
Mischke 2001).

The macroscopic mechanical behavior of SMA springs is
better expressed by force-displacement (F-u) curves, which
have similar characteristics to the stress-strain (σ-ε) curves
associated with tensile tests of wires and bars. Figure 1 pre-
sents schematic pictures of both curves, showing classical
pseudoelastic behavior. One can see a linear elastic region,
associated with the austenitic phase, followed by phase
transformation plateaus. Afterward, there is a new linear
elastic region associated with the martensitic phase. The slope
of each linear region of the stress-strain curve defines the
elastic modulus. Analogously, the slope of the linear region of
the force-displacement curve defines the spring stiffness.
Hence, two different parameters are usually defined: EA and
EM, which are the austenitic and martensitic elastic modulus
of wires or bars, respectively, and KA and KM, which are the
austenitic and martensitic spring element stiffness, respec-
tively. This general behavior is the same for other stress
components and can be observed in torsion tests, defining the
shear elastic modulus. Usually, SMAs have an austenitic
elastic modulus that can be four times greater than the mar-
tensitic modulus. Nevertheless, the stiffness of SMA helical
springs is affected by the coupling of constitutive and geo-
metrical nonlinearity effects, which introduce changes in the
usual mechanical description. The main goal of this paper is
to establish a proper comprehension of the geometrical non-
linear effect on helical springs, which is mainly expressed by
the spring’s stiffness.

SMA springs have been addressed in different forms in
the literature. Follador et al (2012) pointed out that there are
three key aspects related to the design and manufacturing of

SMA springs: modeling of the mechanical performance,
modeling of the thermomechanical cycles that occur during
heating and cooling of the material, and the design of the
electric current control. These researchers investigated man-
ufacturing procedures to build springs from wires. Basically,
these procedures consist of a mechanical conformation of the
spring and a subsequent heat treatment for 30 min at 450 °C in
a furnace, followed by a cooling process in a water medium.

Attanasi et al (2011) investigated the behavior of pseu-
doelastic SMA springs to verify the feasibility of their use in
devices where the restitution force exceeds the linear limit.
Experimental tests were conducted to consider prescribed
displacements. In general, procedures for training SMAs
consider thermally induced process that occurs when the alloy
is heated to temperatures of approximately 500 °C in a time
interval of 10 to 25 min.

Mathematical modeling of the thermomechanical beha-
vior of SMA helical springs is also the objective of several
research papers. Tobushi and Tanaka (1991) proposed a
simplified model where each small segment of the pure spring
is subjected to torsion. Liang and Rogers (1997) proposed a
nonlinear thermomechanical model for springs used in
vibration control. Toi et al (2004) presented a model using
finite element formulation of the Timoshenko beam and
Brinson’s model for SMA description. Aguiar et al (2010)
developed a model for an SMA spring based on the model
proposed by Paiva et al (2005). Numerical simulations were
in close agreement with experimental data for different tem-
peratures. Sung-Min et al (2012) developed a simplified
model considering both austenite and martensite state and
analyzed some geometric effects, such as reducing the dia-
meter of the spring.

This work uses experimental and numerical approaches
to investigate the nonlinear geometric influence on the
mechanical behavior of SMA helical springs. Two different
springs built with distinct geometrical characteristics are
designed to change the phase transformation conditions. Both
springs are produced from the same SMA wire. The main

Figure 1. SMA macroscopic pseudoelastic behavior represented by a force-displacement curve for (a) springs, and (b) the stress-strain curve
for wires or bars.
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point is that one spring presents phase transformation related
to small displacements, while the other presents large dis-
placements. A comparison is presented between the results of
both springs subjected to tensile tests, establishing a proper
understanding of geometric influence. Finite element analysis
is used to confirm the experimental observations.

This paper is organized as follows. First, the SMA wires
are characterized by considering differential scanning calori-
meter (DSC) and tensile tests. The training process is an
important aspect of this investigation. Then, spring design and
fabrication, manufacturing procedures, and heat treatment are
examined. Experimental tests of the two springs are then
analyzed through tensile tests. Numerical simulations using
the finite element method are carried out, confirming the
most important conclusions. Finally, concluding remarks are
presented.

2. SMA wire

This section discusses the experimental characterization of an
SMA wire. NiTi wires of 1.7 mm (0.066 in) are used. DSC
and tensile tests are presented. The training process is also
shown.

The SMA characterization starts from the determination
of phase transformation temperatures. Austenite-martensite
and reverse transformation are associated with the release or
absorption of latent heat, respectively, which can be measured
by the DSC. Figure 2 shows a typical calorimeter measure-
ment. It shows the energy required to maintain the prescribed
temperature history of the sample. The upper curve represents
a temperature increase, and therefore, transformation from
martensite to austenite. These curves define temperatures—As

and Af, respectively—as the start and finish of the austenite
transformation. On the other hand, the lower curve shows the
austenite-martensite transformation, defining the temperatures

Ms and Mf as the start and finish of the martensite transfor-
mation. The analysis of these curves defines As= 16.7 °C,
Af= 30.2 °C, Ms= 24.8 °C, and Mf= 9.1 °C.

The next step of SMA characterization is related to ten-
sile tests. MTS Insight 30EL hydraulic test frames with 30 kN
load cells, 0.001 mm of position resolution, and 0.01 mm of
position accuracy are used, along with a coupled wire
extensometer.

Transformation-induced plasticity (TRIP) is a strain
mechanism related to the internal stresses that result from the
volume and shape changes associated with the phase trans-
formation (Marketz and Fischer 1994). TRIP is a type of
irreversible strain that occurs inside the yield surface. This
phenomenon is associated with a saturation behavior of
SMAs, where stress-strain curves present a movement until it
reaches a stabilized behavior. Therefore, it is important to
subject the specimen to a training process that can stabilize
the stress-strain curve. This training process considers several
loading cycles. Figure 3 presents a training process where the
SMA sample is subjected to 20 cycles, reaching a maximum
value of 2.5 kN load at 60 °C. Note that the stress-strain
curves tend to stabilize after several cycles.

After the training process, pseudoelastic tests can define
different characteristics of SMA behavior. Temperature
dependence is an important aspect to be considered. Hence,
tests at different temperature levels can define characteristics
such as the phase transformation stress level. In this regard,
four stress levels are defined at each temperature: σMs and σMf,
the start and finish of the martensite transformation, and σAs
and σAf, the start and finish of the austenite transformation.
Other mechanical properties can also be evaluated from ten-
sile tests. Young’s modulus is an essential property, and at
room temperature, the following values are estimated:
EA= 46 GPa, EM = 22 GPa. Table 1 summarizes all mechan-
ical properties evaluated for the SMA wire, where σrup and
εrup are the rupture stress and the rupture strain, respectively.

Figure 2. DSC test: phase transformation temperatures.
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Based on these properties, it is possible to observe a
difference of around 50% between both elastic moduli. The
shear modulus is defined as ν= +G E 2(1 ), where ν is the
Poisson ratio. Note that there is a direct relation between the
elastic and shear moduli. By assuming a Poisson ratio of 0.3,
it is possible to estimate the shear modulus: =G 17.7A and

=G 8.5M .

3. SMA helical spring

This section presents a discussion about design, fabrication,
and tensile tests of helical springs. Two different springs are
built from SMA wires. One spring has a weak influence of
geometric nonlinearities, while the other has a strong influ-
ence. Basically, geometric nonlinearity is directly related to
spring displacement. Hence, the idea is to produce two
springs that present different displacements for the same
loading level.

3.1. Helical spring design and manufacturing

A spring is a highly flexible mechanical element that is
usually used to store and release energy. Helical springs resist
and deflect under tensile or compressive loads (Shigley 1986).
Essentially, helical springs transform axial force into torque
and shear stress in the cross section of the spring. Three
geometric parameters are usually considered for the design of
a helical spring: wire diameter, d, average coil diameter, D,
and the number of active coils, N. Geometric nonlinear effects

can dramatically change helical spring behavior when sub-
jected to large displacements. This behavior affects an
important design parameter known as the spring index, which
establishes a relationship between the coil and wire diameters,
C =D/d.

In contrast with elastic helical springs, SMA helical
springs present a nonlinear distribution of shear stress due to
phase transformations. This behavior tends to produce even
higher displacements when compared to elastic helical
springs. Sung-Min et al (2012) presented a model considering
only two states: martensite and austenite. Based on that, all
intermediate phenomena are neglected and only maximum
force and displacements are of concern. Under this assump-
tion, a linear approach can be used and the force, F, can be
described by a linear relation with the displacement, u, as
follows:

=F
Gd

D N
u

8
(1)

4

3

This aims to produce two SMA helical springs that pre-
sent different nonlinear geometric characteristics. The first
one, called the W-Spring, has weak geometric nonlinearity,
while the second one, called the S-Spring, has a strong geo-
metric influence. The linear approach is used to define the
spring’s characteristics (Sung-Min et al 2012). The idea is to
produce both small and large displacements for the same
loading level. Table 2 summarizes the characteristics of both
springs.

SMA helical spring manufacturing considers an SMA
wire that is used to build the spring with the aid of a device
where shape is conformed, clamping the spring ends. Then, it
is necessary to promote a heat treatment that defines
the spring form as a natural one. This treatment is designed
to promote SMA recrystallization, assuring proper manu-
facturing of the spring. Different heat treatments can produce
springs with distinct thermomechanical behaviors. For
instance, it is possible to produce both an SMA spring
with shape memory effect characteristics—meaning that
room temperature is less than Mf—and an SMA wire
with pseudoelastic characteristics, which means that
room temperature is greater than Af. This kind of
situation illustrates the necessity of defining a proper heat
treatment.

Jee et al (2008) produced an SMA spring built with a
NiTi wire with an 0.8 mm diameter, using a heat treatment at
550 °C for 30 min. Morgan and Broadley (2004) discussed
several tests to define proper heat treatments. They claimed
that typical heat treatments are carried out at temperatures

Figure 3. Training process of 20 cycles, reaching the maximum
value of 2.5 kN load at 60 °C.

Table 1. Mechanical properties of the SMA wire at room
temperature.

Material
parameters EA (GPa)

EM

(GPa)
σrup
(GPa) εrup (%)

NiTi 46 22 1.4 10.0

Table 2. Spring parameters.

Parameters W-Spring S-Spring

Wire diameter (mm) 1.7 1.7
Coil diameter (mm) 10.5 13.8
Spring index (C) 6.2 8.1
Number of active coils 3 5

4
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between 450 °C and 550 °C. Wu (2001) confirmed the
recommendation to perform heat treatments close to 500 °C.
Other authors recommend a sequence of heat treatments,
defining different temperatures and times in the oven to
establish the proper thermomechanical behavior of the spring.

Here, three different test temperatures are considered:
450 °C, 500 °C, and 550 °C. Three different treatment times
in the oven are also investigated: 10 min, 20 min, and 30 min.
After some tests, it is assumed the sample heated at 500 °C for
30 min and, in the experimental sequence, water cooling is
performed. Air cooling can generate springs that exhibit the
shape memory effect.

3.2. Tensile tests

Tensile tests are performed to characterize the pseudoelastic
behavior of SMA helical springs, considering both the W-
Spring and S-Spring. Different test scenarios are conducted
considering distinct maximum displacements for the same
loading level—W-Spring: 5 mm, 10 mm, 25 mm, 30 mm,
35 mm, and 40 mm; S-Spring: 30 mm, 45 mm, 65 mm,
80 mm, 100 mm, and 120 mm. An INSTRON 5966 testing
system with 10 kN capacity equipped with a 1 kN load cell is
used, considering that the prescribed displacement loading
varies from zero to a maximum displacement value using a
triangular shape wave with a loading rate of 100 mmmin−1.
Figure 4 presents pictures of the W-Spring and figure 5 shows
the S-Spring.

Stiffness is considered as the essential characteristic of
the spring. It is defined from the slope of the linear elastic

regions observed before (austenitic phase) and after (mar-
tensitic phase) the hysteresis plateau related to the stabilized
experimental pseudoelastic curves. The stiffness associated
with the austenitic phase is estimated during the loading
stage, considering points in the region from 12% to 20% of
the maximum load. On the other hand, the stiffness associated
with the martensite phase is obtained during the unloading
stage, considering points in the region from 90% to 98% of
the maximum load. This methodology reduces the influence
of instability effects related to the load inversion stage.

First, tensile tests of the W-Spring are presented. Figure 6
shows force-displacement curves for different loadings. The
pseudoelastic response of the spring is evident, showing the
hysteretic behavior. Although the system has nonlinear
characteristics, it is possible to use stiffness related to the
austenitic and martensitic phases to define mechanical aspects
of the spring. Basically, the slope of the linear elastic regions
before and after the hysteresis plateau was considered to be
related to the austenitic and martensitic phases, respectively.
Note that the slope of the elastic response at the austenitic
phase is larger than the one in the martensitic phase. Table 3
presents the summary of the stiffness, showing the average
values of =K̄ 9.0A Nmm−1 and =K̄ 4.4M Nmm−1. This
represents a decrease of around 50%, which is the same
amount of the difference of the shear modulus.

Next, tests related to the S-Spring are discussed. Figure 7
shows force-displacement curves related to this spring. The
pseudoelastic response is observed again, but this spring has a
strong nonlinear geometric influence that causes the opposite

Figure 4. W-Spring test at the maximum displacement configuration: (a) 25 mm, (b) 40 mm.
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behavior in terms of the definition of stiffness as the slope of
the curve. Note that the austenitic stiffness, which is calcu-
lated from the slope of the austenitic region, is generally
smaller than the martensitic stiffness calculated from the slope
of the martensitic region. Table 4 presents the summary of the
stiffness, showing the average values of =K̄ 1.2A Nmm−1

and =K̄ 1.5M Nmm−1. This represents an increase of around

Figure 5. S-Spring test at the maximum displacement configuration: (a) 65 mm, (b) 120 mm.

Figure 6. Force-displacement curves of the W-Spring.

Table 3. Stiffness estimation of the W-Spring.

Displacements
(mm) 5 10 25 30 35 40 Average

KA (N mm−1) 9.9 9.5 9.3 8.8 8.5 8.0 9.0
KM (N mm−1) 4.9 4.3 4.1 4.2 4.4 4.6 4.4

Figure 7. Force-displacement curve of the S-Spring.
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20%. Since the austenitic shear modulus is larger than the
martensitic one, the geometric nonlinearity is responsible for
this change.

4. Finite element analysis

Numerical simulations promote a proper explanation of the
experimental observations. A three-dimensional finite element
model is used to study the pseudoelastic behavior of SMA
helical springs subjected to axial loadings. Geometrical non-
linearities are included in the analysis, considering a large
displacement hypothesis. A commercial finite element code
ANSYS is employed considering coupled thermal and
mechanical fields. Element SOLID 186 is chosen to perform
spatial discretization.

Constitutive nonlinearity is related to the SMA’s ther-
momechanical behavior, and different constitutive models can
be used for this description. Lagoudas (2008) and Paiva and
Savi (2006) presented an overview of constitutive models for
SMAs. Here, the constitutive model proposed by Auricchio
et al (1997) is used. This three-dimensional model can
describe the pseudoelastic behavior considering both the
austenite (A) and martensite (M) phases. The internal vari-
ables, ξA and ξM, are introduced to represent, respectively,
austenitic and martensitic volume fractions that satisfy the
relation ξA+ ξM = 1. Hence, it is possible to use only one
internal variable, ξ= ξM= 1− ξA. Under these assumptions, the
constitutive relation is given by:

σ ε ε= −E: ( ) (2)tr

ε σξ ε= ̇ ∂
∂

�� P
(3)tr L

where E is the elastic tensor, εtr is the transformation strain
tensor, and εL represents a parameter associated with reco-
verable strain resulting from martensitic phase transformation.
Isotropic assumption is adopted, and the phase transformation
obeys a Drucker-Prager loading function, P. The elastic
behavior for the austenite and martensite phases is related to
Young’s modulus (E) and the Poisson ratio (ν). The process
of phase transformation is controlled by four critical stresses
—σs

AM, σf
AM, σs

MA, and σf
MA—where the s and f subscripts stand

for start and finish, AM represents the austenite-martensite
transformation, and MA represents the martensite-austenite
transformation. The following relations define phase trans-
formations:

ξ
ξ

ξ
̇ =

− −
̇

−
̇

−

H
P

P R

H
P

P R

(1 )

(4)

AM

f
AM

MA

f
MA

⎧

⎨
⎪⎪

⎩
⎪⎪

where σ α= +R (1 )f
AM

f
AM and σ α= +R (1 ).f

MA
f
MA In

addition, it is important to define:

= < < ̇ >H R P R P1 if and 0

0 otherwise
(5)AM s

AM
f
AM⎧⎨⎩

= < < ̇ <H R P R P1 if and 0

0 otherwise
. (6)MA s

MA
f
MA⎧⎨⎩

Figure 8 presents a one-dimensional stress-strain curve
related to the pseudoelastic behavior described by the model
by Auricchio et al (1997). It is important to highlight that this
model uses the same Young’s modulus for both the austenite
and martensite phases. Based on this restriction, all simula-
tions are performed assuming the austenitic Young’s
modulus.

Although this model cannot describe all the complex
details of the SMA’s thermomechanical behavior, it is con-
venient for several purposes because it allows the description
of important features used in the design of SMA devices.
Several authors have adopted similar hypotheses to success-
fully model SMA behavior (Abeyaratne and Kim 1994,
Brocca et al 2002, Sadjadpour and Bhattacharya 2007, Zhu
and Zhang 2007, Auricchio et al 2007, Kadkhodaei
et al 2008). Indeed, despite the limitations of the model used
in this work, comparisons with experimental data show that
this SMA model properly captures the main behavior of a
pseudoelastic helical spring subjected to mechanical loadings.

Numerical simulations are performed by considering
parameters presented in table 5. In essence, these values are

Table 4. Stiffness estimation of the S-Spring.

Displacements
(mm) 30 45 65 80 100 120 Average

KA (N mm−1) 1.3 1.4 1.2 1.2 1.2 1.0 1.2
KM (N mm−1) 1.3 1.3 1.4 1.4 1.6 1.7 1.5

Figure 8. Idealized one-dimensional stress-strain curve for the
pseudoelastic behavior described by the model of Auricchio
et al (1997).
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adjusted using the experimental data described in the pre-
ceding section.

The finite element analysis is carried out considering a
solid model (shown in figure 9) that represents both the W-
Spring and the S-Spring with a mesh obtained after a con-
vergence analysis. Experimental situations are reproduced by
considering proper boundary conditions involving displace-
ment restrictions and loadings. Basically, it is assumed that

one end of the spring is fixed, prescribing null displacements
for all degrees of freedom on its cross section area. The other
end’s cross section is subjected to a prescribed load-unload
cyclic displacement in the spring’s longitudinal direction.
Variables’ distribution through the spring, as stress and
volume fractions, are analyzed at a central section to avoid the
effects of the loadings and the prescribed boundary conditions
at the spring’s two ends.

Initially, a calibration process is developed to adjust the
model parameters presented in table 5. Figure 10 shows a
comparison between numerical and experimental data con-
sidering 4 loading conditions of the W-Spring. Similar com-
parisons related to the S-Spring are presented in figure 11.
Results show that model simulations capture the general
behavior observed in the experimental data. Note that since
the constitutive SMA model considers the same Young’s
modulus for both the austenitic and martensitic phases,
numerical simulations have this restriction and do not capture
the stiffness change. Nevertheless, results show that the

Table 5. SMA mechanical parameters.

Mechanical properties Value

E (GPa) 46
ν 0.30
σs
AM (MPa) 297
σf
AM (MPa) 772
σs
MA (MPa) 306
σf
MA (MPa) 78
εL 0.07

1
ELEMENTS 1

ELEMENTS

>>NSYS
JUN 25 2014

13: 37: 00

>NSYS
JUN 25 2014

19: 29: 00

Helical spring _ SMA

1
ELEMENTS >NSYS

JUN 25 2014
13: 39: 20

Helical spring _ SMA

1
ELEMENTS >NSYS

JUN 25 2014
19: 26: 38

Helical spring _ SMA

Helical spring _ SMA

(a)

(b)
Figure 9. SMA helical spring finite element mesh. (a) W-Spring. (b) S-Spring.
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proposed model can represent the behavior of the SMA
helical spring.

After the model adjustment, numerical simulations are
performed to show the influence of the geometrical non-
linearities. The maximum displacements of the previous
results are treated as follows: the W-Spring with 40 mm of
maximum prescribed displacement, and the S-Spring with
120 mm of maximum prescribed displacement. To establish a
proper comparison between both springs, two situations are
chosen that analyze similar values of stresses and volume
fractions. Figure 12 shows SMA helical springs in initial and
deformed configurations for both springs. As observed in the
experimental analysis, SMA helical springs are subjected to
large displacements. The W-Spring has an initial length of
approximately 6 mm and hence, the 40 mm maximum value
of prescribed displacement represents eight times the original
length. On the other hand, the S-Spring has an initial length of
approximately 10 mm, and therefore the spring is subjected to
a twelve-fold increase of its initial length.

Figure 13 shows the von Mises equivalent stress dis-
tribution, while figure 14 shows the martensitic volume
fraction for the two situations. Under these assumptions, the
differences between both springs are smaller than 3% (von
Mises equivalent stress of 600MPa and martensitic volume
fraction of 62%, approximately). The results show just the
central coils, avoiding the boundary effects by removing the
two end coils. The stress field presents a typical distribution
of helical springs, which is associated with a combination of
shear internal loads acting in the cross section. Since a torque
in cylindrical bodies promotes a shear stress distribution with
zero values at the center and maximum values at the surface,
values of either the von Mises equivalent stress or the mar-
tensitic volume fraction are maximum at the cylinder surface.
Nevertheless, it is important to note that equivalent stresses
and the martensitic volume fraction distribution along the
wire diameter do not present a symmetrical distribution. This
is a consequence of the curvature effect, and higher values of

Figure 10. Experimental and numerical load-displacement curves for cyclic tests of the W-Spring. Maximum displacement of (a) 25 mm, (b)
30 mm, (c) 35 mm, and (d) 40 mm.

9
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Figure 11. Experimental and numerical load-displacement curves for cyclic tests of the S-Spring. Maximum displacement of (a) 65 mm, (b)
80 mm, (c) 100 mm, and (d) 120 mm.

Figure 12. SMA helical spring, initial and deformed configurations: (a) W-Spring (40 mm maximum displacement), and (b) S-Spring
(120 mm maximum displacement).

10
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stresses and the martensitic volume fraction are observed near
the spring’s longitudinal axis (Mirzaeifar et al 2011).

The effect of geometric nonlinearity is now of concern. A
comparison between numerical results considering two dis-
tinct models is performed: the geometric linear (GL) model,
neglecting nonlinear geometrical effects; and the geometrical
nonlinear (GNL) model. This can be achieved through the
NLGEOM command in the ANSYS computational package.
Once again, it is important to point out that the SMA con-
stitutive model does not consider a different Young’s mod-
ulus for the austenite and martensite phases. Therefore, the
model does not capture the stiffness change observed in
experimental tests. Nevertheless, the model has a good
agreement with the experimental data, making it an appro-
priate tool to evaluate the effect of geometric nonlinearities in
the spring’s stiffness. Figure 15 shows the results for both

springs, considering both models for each spring. The W-
Spring analysis adopts a maximum prescribed displacement
of 64 mm. On the other hand, the S-Spring analysis adopts a
value of 175 mm. Under these assumptions, for the GNL
model, both springs present maximum values of von Mises
equivalent stress and a martensitic volume fraction of
1280MPa and 100%, respectively. It is clear that geometric
nonlinearities induce changes in the martensitic phase,
reaching situations observed in experimental tests. This is
evident when observing that the S-Spring has more pro-
nounced changes in spring stiffness when compared with the
W-Spring, which is exactly what the experimental tests
revealed.

Since the spring index (C) is usually used to quantify the
effect of the geometric nonlinearity, one can now focus on
numerical simulations considering different indexes. The idea

Figure 13. von Mises equivalent stress distribution: (a) W-Spring (40 mm maximum displacement), and (b) S-Spring (120 mm maximum
displacement).

Figure 14. Martensitic volume fraction distribution: (a) W-Spring (40 mm maximum displacement), and (b) S-Spring (120 mm maximum
displacement).
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is to define the S-Spring as a reference (d= 1.7 mm;
D= 13.8 mm; N = 5), giving a situation with a spring index of

C = 8.1. Three other springs with different spring indexes are
treated, considering the variation of the external diameters.
Therefore, four spring indexes are investigated: 6, 8.1 (S-
Spring), 10, and 12. Figure 16 presents results related to these
four situations with similar loading levels (maximum values
for von Mises equivalent stress and martensitic volume
fraction of approximately 600MPa and 62%, respectively).
Note that the increase of the spring index, C, tends to increase
the stiffness variation, represented by the ratio KM/KA. The
larger index values are associated with stronger geometric
nonlinearity effects. Therefore, the larger geometric nonlinear
effects are present in the spring with the larger C value (12).
Figure 17 shows this variation, while table 6 presents the
calculated values.

5. Conclusions

This paper investigates the nonlinear geometric effect on the
mechanical behavior of SMA helical springs. Initially, char-
acterization of the SMA wires was presented. Then, the
design and manufacturing of SMA springs was discussed.
Experimental tensile tests were then carried out to show the
nonlinear geometric influence. Results showed the change of
austenitic and martensitic stiffness due to geometric influence.
Two different springs were built from SMA wires, defining a
spring with weak nonlinear geometric influence, called the W-
Spring, and another one with a strong nonlinear geometric
influence, called the S-Spring. Tensile tests show that the
W-Spring has KA>KM, while the S-Spring presents KA<KM.
Since the shear modulus is GA>GM for both cases, this

Figure 15. Effect of the geometric nonlinearities for the W-Spring
and S-Spring, considering the GL and NGL models.

Figure 16. Effect of the spring index on the geometric nonlinearities:
force-displacement curves.

Figure 17. Effect of the spring index on the geometric nonlinearities: stiffness changes.

Table 6. Effect of spring index on the geometric nonlinearities.

C KA (N m−1) KM (N m−1) KM/KA

6 3422 4812 1.4
8.1 1375 2471 1.8
10 742 1848 2.5
12 219 1434 6.6
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difference is due to geometrical nonlinearities. Finite element
analysis was performed to confirm this general conclusion.
GL and NGL models were used for this analysis. Results
confirmed conclusions obtained from experimental data. In
addition, an analysis related to the spring index showed how
the geometric nonlinearity can be quantified. On this basis, it
is important to contemplate the coupling between constitutive
and geometric nonlinearities in the design of SMA helical
springs.
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