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Modelling, characterisation and
uncertainties of stabilised
pseudoelastic shape memory alloy
helical springs
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Abstract
The thermo-mechanical behaviour of pseudoelastic shape memory alloy helical springs is of concern discussing stabilised
and cyclic responses. Constitutive description of the shape memory alloy is based on the framework developed by
Lagoudas and co-workers incorporating two modifications related to hardening and sub-loop functions designated by
Bézier curves. The spring model takes into account both bending and torsion of the spring wire, thus representing geo-
metrical non-linearities. Simplified models are explored showing that a single point in the wire cross section is enough to
represent the global spring behaviour in spite of complex stress–strain distributions. The experiments are carried out
considering different deflection amplitudes, frequencies and ambient temperatures, which influence the spring behaviour
to different extents. The model is fitted against a calibration data set resulting in 1.3% residual standard deviation relative
to the full range force. Compared to the validation data set, the errors are below 10% relative to the full range of the
complex modulus. Uncertainty analysis of the model parameters using a Markov chain Monte Carlo technique shows
low to high parameter correlation, and the relative uncertainties are less than 612%. Both the heat capacity and the
convection coefficient are clearly identifiable from the performed experiments.
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Introduction

A high level of attention has been given to shape mem-
ory alloys (SMAs) because of their extraordinary char-
acteristics especially in terms of mechanical hysteresis,
variable stiffness and strong thermo-mechanical cou-
pling. Seismic applications are an example where
Speicher et al. (2009) designed a device based on an
SMA helical spring for retrofitting buildings. In the
field of rotating machines, Enemark et al. (2015)
showed from an experimental approach significant
vibration suppression and adaptable critical speeds
using SMA helical springs as foundation in a rotor-
bearing system, and Ma et al. (2014) described the
design, manufacturing and testing of a rotor support
made from entangled SMA wire elements able to pro-
vide adaptable stiffness and damping characteristics.

Plastic strains accumulate during the initial loading
cycles of SMAs. Therefore, a thermo-mechanical train-
ing process is required to get repeatable and stabilised
behaviour. The transient training period comprises a

number of loading cycles in the order of 100–400
depending on the material, its thermal treatment (shape
setting) and the mechanical loading (Morin et al., 2011;
Sakuma and Suzuki, 2007; Tobushi et al., 1992;
Wolons et al., 1998). When the SMA element is stabi-
lised, the dissipation capability as well as the average
stiffness during a loading cycle depends on the loading
amplitude, the ambient temperature and the loading
rate. The martensitic phase transformation is non-dif-
fusive, which means it is inherently rate independent.
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Nevertheless, the loading rate affects the response due
to a balance between exo- and endothermic characteris-
tics of the phase transformations (latent heat) and the
heat transfer associated with the process. This aspect
was first investigated by Shaw and Kyriakides (1995)
on virgin pseudoelastic SMA wires in different media
resulting in distinct convective conditions. Later, He
and Sun (2010), Morin et al. (2011) and Malecot et al.
(2006) investigated the temperature evolution during
cycling loading. Also, Sameallah et al. (2015) investi-
gated the evolution of the mechanical behaviour during
cyclic loading of SMA wires, but did not measure the
temperature. Pathak et al. (2010) established the con-
vective heat transfer coefficient for SMA wires using
different wire diameters, surrounding media and con-
vective conditions (free/forced). Malecot et al. (2006)
reported a 35�C increase in the average temperature
during a cycle after approximately 80 cycles with a
loading rate of 5 Hz. Therefore, the SMA temperature
may increase significantly, and it may take many cycles
before the behaviour stabilises.

For dynamic purposes, it is convenient to quantify
the SMA behaviour in terms of the complex modulus,
which comprises the storage modulus (a measure of
average stiffness) and the loss modulus (energy dissi-
pated during a loading cycle). The complex modulus
approach has been adopted by many authors to quan-
tify the cyclic SMA behaviour depending on loading
amplitude, loading rate, ambient temperature and, in
some cases, also pre-tension and convective conditions.
This includes Piedboeuf et al. (1998), Wolons et al.
(1998), Gandhi and Wolons (1999), Malecot et al.
(2006) and He et al. (2010) on SMA wires; Holanda
et al. (2014) on SMA helical springs and Ma et al.
(2014) on their proposed SMA metal rubber bearing.
Piedboeuf et al. (1998) and He et al. (2010) reported
that the energy dissipation has an optimum in terms of
loading frequency caused by a balance between the
latent heat and the convective properties. Wolons et al.
(1998) and Gandhi and Wolons (1999) mentioned that
the energy dissipation (per unit volume) of SMAs is up
to 20 times higher than that of elastomers, which are
usually used for energy dissipation.

The helical spring is a promising SMA element
because it enables more design possibilities than a wire
or bar for example. The design criteria are usually
related to stiffness, actuation force, length (deforma-
tion) and direction (tension/compression), which can
be used to determine the spring dimensions, namely,
wire diameter, spring diameter, number of coils and
potentially also the initial pitch angle. There is a diverse
range of possible applications of SMA helical springs.
Liang and Rogers (1993) highlighted four different con-
ceptual uses of them in vibration control related to the
internal friction of martensite, the hysteresis of phase
transformations, the stiffness difference of martensite
and austenite and the principle of temperature

actuation. Borges et al. (2013) used SMA springs
together with a fuzzy controller to reduce vibrations of
a rotor-bearing system when crossing a critical speed.
Han et al. (2006) strengthened a slender structure
towards buckling using an SMA spring. Thermal
actuation of SMA springs has been used for a wireless
earth-like micro robot (Kim et al., 2006) and for a pro-
pulsion system for a micro-robotic fish (Cho et al.,
2008). De Sousa and De Marqui (2014) modelled and
investigated numerically the aero-elastic behaviour of a
typical aerofoil integrated with SMA springs. Aguiar
et al. (2010) and An et al. (2012) provide good over-
views over SMA helical spring applications.

Because the material is non-linear, it is not straight-
forward to model the behaviour of SMA helical
springs. Geometrical non-linearities may also be intro-
duced (Enemark et al., 2014; Savi et al., 2015) because
SMAs can withstand large strains. This is very clear in
some of the force–deflection tests performed by
Sakuma and Suzuki (2007) and Savi et al. (2015), where
the martensitic stiffness appears higher than the auste-
nitic stiffness. Several authors proposed equivalent one-
dimensional (1D) models (Aguiar et al., 2010; An et al.,
2012; Enemark et al., 2014; Liang and Rogers, 1993),
where An et al. (2012) also accounted some geometrical
non-linearities. Generally, the 1D models are able to
represent experimental behaviour well. Moreover, finite
element models have been successfully implemented
and the cross-sectional strain and stress distributions
have been found very complex (Lagoudas et al., 2012;
Mirzaeifar et al., 2011; Saleeb et al., 2013; Savi et al.,
2015). Mirzaeifar et al. (2011) and Savi et al. (2015)
were able to directly reproduce the experimental results
and Saleeb et al. (2013) took into account the training
process in their model. Mirzaeifar et al. (2011) also used
two simpler models, and they concluded that these
models perform acceptably in comparison with the
experiments.

In the framework of reliable design of machine com-
ponents and accurate predictions, uncertainties in SMA
behaviour have to be quantified. However, to our
knowledge, there are only very few works related to
uncertainty quantification of SMAs: Oehler et al.
(2012) determined the sensitivity of the optimal location
of SMA flexures on variable geometry chevrons as a
consequence of uncertain material and geometry para-
meters. Crews and Smith (2014) evaluated the uncer-
tainties of estimated heat transfer parameters of an
SMA bending actuator using the Bayesian framework
(a Markov chain Monte Carlo (MCMC) method). The
uncertainty analysis was carried out to establish a
robust controller for the bending actuator (Crews et al.,
2013). Oliveira et al. (2014) carried out an uncertainty
analysis related to tensile tests of a pseudoelastic SMA
wire to evaluate whether modelling predictions were
within the uncertainty range of the experimental data.
For similar experiments, Enemark and Santos (2015)
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determined model parameters and their uncertainties
using maximum likelihood estimation.

In this regard, the original contribution of this arti-
cle has several aspects: (a) constitutive modelling: mod-
ifications to the existing SMA constitutive model by
Lagoudas et al. (2012) to better describe the hardening
and sub-loop behaviour relevant to springs, (b) helical
spring modelling: a two-dimensional (2D) SMA helical
spring model is established taking into account geome-
trical non-linearities, (c) experimental verification:
experimental tests are developed and compared with
numerical simulations and (d) uncertainty analysis: the
model uncertainty is evaluated to give robust estimates
of model parameters and their uncertainties. The pro-
posed SMA spring model is fitted to and validated
against experimental cyclic tensile tests highlighting the
stabilised behaviour of SMA helical springs. Deflection
amplitude, frequency and ambient temperature are var-
ied, while the pre-tension length is kept constant. The
behaviour under investigation only contains partial
phase transformations (sub-loops) and not complete
phase transformations, which motivates the implemen-
tation of a sub-loop function to the existing model by
Lagoudas et al. (2012). Simple 1D models are able to
properly represent the behaviour of SMA helical
springs as highlighted in the presented literature review.
However, to our understanding, it requires that some
parameters have to attain non-physical values to coun-
teract model deficiencies (Enemark et al., 2014). Here,
the presented spring model accounts for material and
geometrical non-linearities using a rigorous approach
and it still maintains simplicity to aid transparency and
to maintain computational efficiency compared to
finite element models. A study is carried out highlight-
ing different modelling approaches and their usability
covering 1D and 2D models and different levels of
approximations of the complex stress distributions in
the spring wire cross section. An MCMC method is
used to quantify model parameter uncertainties after
fitting the model to the experimental results.

Experimental framework

This section covers the method for SMA spring fabrica-
tion and the test-bench for performing tensile tests.

Spring dimensioning

A helical spring has basically three dimensioning para-
meters, namely, wire diameter, helix or coil diameter
and number of windings. The parameters should be
chosen based on the application, but since SMA springs
are highly non-linear, this may not be a simple task. In
this work, two simple equations are used to dimension
the spring based on the requirements related to actua-
tion length and stiffness magnitude. It is assumed that
the spring is pseudoelastic, which means that the

austenitic phase is stable at room temperature if the
spring is not stressed. Follador et al. (2012) also
describe dimensioning of SMA springs.

Assuming the spring pitch angle is small, the maxi-
mum shear strain of the wire cross section (i.e. at
the circumference) g(c) is related to the spring deflec-
tion u by

g(c)=
c

2pNr2
0

u=
1

l
u ð1Þ

where c is the wire radius, r0 is the helix radius and N is
the number of windings. A schematic of the spring may
be seen in Figure 1. For dimensioning, it is further
assumed that the shear stress is given by t =GAg,
where GA is the austenitic shear modulus. This is only
satisfied when stresses are small such that the material
is elastic. The relation between spring force F and
spring deflection u becomes

F =
pc3

2r0

t(c)=
GAc4

4Nr3
0

u= kAu ð2Þ

Requirements on the length measure l and the stiffness
measure kA can be used to determine the geometric prop-
erties. The stiffness kA can be considered an upper bound
for the tangential stiffness of the spring, since the tangen-
tial stiffness during phase transformation is usually signif-
icantly lower than the austenitic, elastic stiffness.

Fabrication of SMA helical spring

The fabrication and the shape setting of SMA helical
springs are described by several authors

Figure 1. Schematic of spring, highlighting initial and deformed
dimensions and the spring force F, based on the torsional
moment MT and the bending moment MB. The torsion results in
the shear strains g in the wire cross section, and the bending
results in the normal strains e.
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(Follador et al., 2012; Liu et al., 2008; Sakuma and
Suzuki, 2007; Savi et al., 2015; Tobushi et al., 1992).
Elahinia et al. (2012) described shape setting in relation
to medical applications. The production of the springs
used in this work is greatly inspired by these articles.

The SMA wires have been annealed and straightened
and have a light oxide finish according to the manufac-
turer. A steel fixture (Figure 2(a)) is used to wind up the
SMA wire on a cylinder having a diameter of 4 mm. To
set the shape, the wire and the fixture are heated in a
pre-heated oven at 500�C for 18 min and quenched in
water afterwards. The spring is then wound further
onto a 2-mm cylinder and fixed, and the shape setting is
repeated. The reason for using a two-step procedure is
to avoid significant plastic deformation that would hap-
pen if the wire was wound directly onto the 2-mm cylin-
der (Elahinia et al., 2012). The finished spring may be
seen in Figure 2(b), where it is also wound onto its two
grips which are used for attaching the spring in the ten-
sile test-bench.

Tensile test-bench

A test-bench (Figure 3) has been designed to perform
tensile tests of the SMA springs. One end of the SMA
spring is attached to a strain gauge–based force trans-
ducer (S2M/100N from HBM) to measure the spring
force. The other end of the spring is attached to a crank
mechanism. Both the pre-tension length (slider posi-
tion) and deflection amplitude (crank radius) can be
controlled. The angular position of the crank wheel is
measured using an encoder (HEDS-9140#A00 and
HEDS-5140#A13 from Avago Technologies), and this
measurement is used to calculate the displacement of
the piston arm holding the spring. A motor
(3268G024BX4 from Faulhaber) and its controller use
a feedback loop to control the speed of the crank wheel
in the range from 0.01 to 20 Hz. The SMA spring is

surrounded by a heat chamber to facilitate control of
the ambient temperature. There is an inlet for a modi-
fied heat gun blowing approximately 6.5 L s21 of
heated air. The electric power to the gun heater is con-
trolled, and together with a thermocouple (type T) and
a feedback control loop, it is possible to maintain a
constant ambient temperature within 60.3�C. Since the
force transducer is temperature sensitive, a heat wall
and a long arm are used to hinder heat conduction to
the sensor.

Constitutive SMA model

The thermo-mechanical behaviour of the SMA is
described by the model presented by Lagoudas et al.
(2012). In order to increase resemblance to the experi-
ments, two related modifications are used, namely, a
modification to the hardening function and the inclu-
sion of sub-loop functions. Both modifications are
described in the sections below.

The stress–strain fields in the helical spring can be
approximated to be 2D containing one normal and
shear components. The strain vector is e= fe, ggT,
where e and g are the normal strain and the engineering
shear strain, respectively, and the stress vector is
s = fs, tgT, where s and t are the normal and shear
stresses, respectively. The symbol T denotes the trans-
pose. Vector and matrix notation is used in this article
opposed to tensor notation. The governing equations
of the model are

e=Ss+ et ð3Þ

_et =L _j ð4Þ

where parameters are defined as follows

S=SA +(SM � SA)j=SA +DSj

Figure 2. Spring fabrication: (a) SMA wire fixture used to keep the wire as a helical spring with inner diameter of 4 mm during
shape setting; (b) SMA wire after second shape setting having an inner diameter of 2 mm (top) and SMA spring in its grips used when
performing tensile tests after releasing it from the fixture (bottom).
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Si =
1

Ei

1 0

0 2(1+ n)

� �
(i=A,M)

L=
Lf =

Hffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 + 3t2
p s

3t

� �
_j.0

Lr =
1
~j
~et

_j\0

8><
>: ð5Þ

The linear thermal expansion is omitted because it is
negligible compared to the phase transformation strain
et. The compliance tensor (here matrix) is denoted S

and it is a linear combination of the compliances of
austenite and martensite, SA and SM. The compliance
matrices are composed by the elastic moduli Ei of mar-
tensite (subscript M) and austenite (subscript A) and by
Poisson’s ratio n. The martensitic volume fraction is
denoted as j, and it fulfils 0� j� 1. The phase transfor-
mation direction tensor (here vector) is L. The forward
phase transformation direction tensor, Lf , depends on
the maximum transformation strain H, which is consid-
ered constant in this investigation. The tilde (~et, ~j) in
the expression of the reverse phase transformation
direction tensor, Lr, indicates that the value should be
taken at the latest point in time, where a change in
phase transformation direction was encountered, that
is, a turning point.

Two transformation functions, describing forward
(Ff ) and the reverse (Fr) transformations, are defined
as follows

Ff =(1� D)LT
f s +

1

2
sTDSs+ rDs0T

�rDu0 � ff zf (j, j0)
� �

� Y

ð6aÞ

Fr = � (1+D)LT
r s � 1

2
sTDSs � rDs0T

+ rDu0 + fr zr(j, j0)ð Þ � Y

ð6bÞ

It is assumed that the difference in specific heat
capacity between martensite and austenite is negligible.
This is a common engineering assumption (Lagoudas
et al., 2012). The constants Y and D are related to the
location of the transformation surfaces in the
temperature–stress plane. The mass density is r, and
Ds0 and Du0 are the differences between austenite and
martensite in the specific entropy and the specific inter-
nal energy at the reference state, respectively. The tem-
perature is denoted T and the functions ff and fr are
called hardening functions and together with the sub-
loop functions zf and zr, they control the evolution of
the martensitic volume fraction during transformation.
These functions are modifications to the original
model. The parameters in the preceding equations are
related to common SMA parameters in the following
way

rDs0 = � 2CM CAH

CM +CA

D=
CM � CA

CM +CA

a1 = � rDs0(Ms �Mf )

a2 = � rDs0(Af � As)

a3 = � 1

20
a1(3n

f
1 � 3n

f
2 + 5)

+
1

20
a2(3nr

1 � 3nr
2 + 5)

Y =
1

2
rDs0(Ms � Af )� a3

rDu0 =
1

2
rDs0(Ms +Af )

ð7Þ

Here, Ms and Mf are the start and finish temperatures
of the martensitic (forward) transformation,

Figure 3. Tensile test-bench.
(A) SMA spring, (B) linear ball bearings holding the piston arm, (C) crank wheel controlling the deflection amplitude, (D) slider determining the pre-

tension length, (E) brushless DC motor controlling speed, (F) motor controller, (G) encoder measuring crank wheel angle and speed, (H) force

transducer measuring spring force, (I) heat gun inlet and thermocouple, (J) heat chamber (shown without its lid) and (K) heat wall and arm.
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respectively; As and Af are the start and finish tempera-
tures of the austenitic (reverse) transformation, respec-
tively; CA and CM are the slopes of the austenite and
martensite transformation surfaces in the temperature–
stress diagram at zero stress, respectively1; the para-
meters a1, a2, a3, n

f
1, n

f
2, nr

1 and nr
2 are related to the

hardening functions described in section ‘Hardening
function’. The expression for a3 is specific for the Bézier
hardening function (Enemark and Santos, 2015), but
the remaining constants in equation (7) are identical to
the expressions in the original model (Lagoudas et al.,
2012).

At all times, the transformation functions should ful-
fil the two Kuhn–Tucker conditions

_j � 0, Ff � 0, Ff
_j = 0 ð8aÞ

_j� 0, Fr � 0, Fr
_j = 0 ð8bÞ

These conditions control whether or not phase trans-
formations take place.

Energy equation

The SMA model can be coupled to the energy equation
to explore the influence of latent heat due to phase trans-
formations as described by Lagoudas et al. (2012). In
this case, the material temperature T is not an indepen-
dent variable, but it is determined via the energy equa-
tion. Disregarding the effect of linear thermal expansion
and the differences in heat capacity between martensite
and austenite, the reduced energy equation reads

rcp
_T + x _j = r~r � div(q)

where cp is the specific heat capacity, ~r is the rate of
internal heat generation, q is the heat flux and the func-
tion x is given by

x = �LT
d s � 1

2
sTDSs+ rDu0 + fd zd(j, j0)ð Þ

where subscript d indicates the forward (subscript f) or
the reverse (subscript r) component depending on the
sign of _j.

It is assumed that the SMA spring temperature is
uniform, and that the heat conduction through the
spring fixtures is negligible and much smaller than the
heat convection. This assumption is reasonable because
the interfaces between the spring and the spring fixtures
are small, and because the spring fixtures are com-
pletely enclosed in the heat chambers and therefore
have the same temperature as the surrounding air. The
collected energy transfer, that is, r~r � div(q), is there-
fore assumed to have the form �ĥ(A=V )(T � T‘), where
ĥ is the specific heat transfer coefficient, A/V is the
ratio between surface area and volume of the spring
wire and T‘ is the ambient temperature. In the case of
a helical spring, the surface-area-to-volume ratio is

A=V =((2pcL)=(pc2L))= 2=c, where L is the spring
wire length and c is the wire radius. The energy equa-
tion is rearranged

E = rcp
_T + x _j + ĥ

2

c
(T � T‘)= 0 ð9Þ

Hardening function

In this work, the cubic Bézier hardening function is
used, which was first presented by Enemark and Santos
(2015). The function is inspired by the smooth harden-
ing function used in the original model (Lagoudas
et al., 2012). Enemark and Santos (2015) showed that
the cubic Bézier hardening resulted in better resem-
blance to the experiments of tensile tests of SMA wires.

The hardening function is designated by the cubic
Bézier curve

B1(s)

B2(s)

� �

=
�2(1� 3d)s3 + 3(1� 3d)s2 + 3ds

(3na + 3nb � 2)s3 + 3(1� 2na � nb)s
2 + 3nas

� �

for s 2 ½0, 1�, and where na, nb 2 (0, 1) are the curvature
controlling parameters and d� 1 is an auxiliary vari-
able used for numerical implementation. In this work,
d= 10�4 is used. The forward and reverse hardening
functions are given by

ff (zf )= a1f (zf )+ a3 fr(zr)= a2f (zr)� a3 ð10Þ

where a1, a2 and a3 are the constants, cf. equation (7),
and

f (z)= B2(s)jB1(s)= z ^ s 2 ½0, 1�f g; z 2 ½0, 1�

and z depends on the volume fraction of martensite j,
and it is calculated using the sub-loop functions
described in the next section. The equation B1(s)= z is
a third-order polynomial in s and the unique solution
in the definition interval is

s=
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

1� 3d

r
cos

1

3
arccos

1� 2z

1� d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3d

1� d

r" #
+

p

3

 !

Since the forward and reverse transformations may
evolve differently, the curvature controlling parameter
set (na, nb) is substituted by (n

f
1, n

f
2) in forward transfor-

mation and by (nr
1, n

r
2) in reverse transformation. The

inverse hardening function is

z= f �1(~f )=

0 for ~f \0

B1(s)jB2(s)=~y ^ s 2 ½0, 1�f g for 0� ~f � 1

1 for 1\~f

8><
>:

ð11Þ

2726 Journal of Intelligent Material Systems and Structures 27(20)

 at UNIV FED DO RIO DE JANEIRO on November 28, 2016jim.sagepub.comDownloaded from 

http://jim.sagepub.com/


where

~f =

1
a1

(1� D)LT
f s+ 1

2
sTDSs+ rDs0T � rDu0 � Y � a3

h i
for _j.0

1
a2

(1+D)LT
r s + 1

2
sTDSs + rDs0T � rDu0 + Y + a3

	 

for _j\0

8<
:

ð12Þ

The expression of ~f is determined by equating the trans-
formation function to 0 in equations (6) and then isolat-
ing the hardening function value. The inverse hardening
function is used to determine the variable z if _j changes
sign, which is necessary in the numerical implementa-
tion. For further information about the cubic Bézier
hardening and its inverse function f �1, the reader is
referred to Enemark and Santos (2015).

Sub-loop function

In order to better capture the behaviour of sub-loops or
minor loops, it is necessary to introduce sub-loop func-
tions to the constitutive model. The purpose of these
functions is to alter the position of the transformation
surfaces depending on where in the stress–temperature
plane _j changes sign or becomes 0 at the latest point in
time (a turning point). This way the initialisation of
phase transformation becomes smooth in the case of
incomplete transformations (as long as the hardening
function also has smooth transitions), which is not the
case if sub-loop functions are not used. The Brinson
model (Brinson, 1993) has sub-loop capability imple-
mented by default, but this is not the case for the model
by Lagoudas et al. (2012). However, the sub-loop beha-
viour was investigated and implemented in various
ways by Bo and Lagoudas (1999) in an earlier version
of the same model. This work uses sub-loop functions
similar to the ones proposed by Enemark et al. (2014),
which consist of polynomials. Enemark et al. modified
the sub-loop function in the Brinson model to better
capture the experimental behaviour of an SMA spring.
The reader is referred to Enemark et al. (2014) and
Enemark and Santos (2015) for additional information
on this family of sub-loop functions.

The sub-loop function determines the variable z

according to the direction of transformation depending
on the martensitic volume fraction j and an auxiliary
variable j0, which is related to j at the latest turning
point. In forward transformation, z increases monoto-
nically in the interval ½0, 1� as a function of j 2 ½j0, 1�.
A simple sub-loop function uses a linear relationship,
but in order to control the sub-loop behaviour, more
advanced functions have to be used. Here, a quadratic
Bézier curve is proposed, and it is defined by the three
consecutive points

Q1 =
j0

0

� �

Q2 =
1

1� j0

� �
+

1

2
(p+ 1)

j0

j0

� �
� 1

1� j0

� �� �

Q3 =
1

1

� �

where p 2 (� 1, 1) is a sub-loop controlling parameter.
The end points are trivial, but Q2 is constructed in such
a way that the width of the sub-loop increases with
increasing p. For p= 0, the curve becomes a straight
line. The resulting Bézier curve is

Cf 1(s)

Cf 2(s)

� �
=(1� s)2Q1 + 2(1� s)sQ2 + s2Q3

=
(1� j0)ps2 +(1� j0)(1� p)s+ j0

(1� 2j0)ps2 +(1+ 2j0p� p)s

� �

for s 2 ½0, 1�. The actual sub-loop function for forward
transformation is

zf (j, j0)= Cf 2(s)
Cf 1(s)= j ^ s 2 ½0, 1�

� �
,

j 2 ½j0, 1�, j0 2 ½0, 1)
ð13Þ

It is necessary to solve a second-order polynomial to
determine s and evaluate zf . The solution is unique in
the definition interval s 2 ½0, 1�.

Similarly, the sub-loop function during reverse trans-
formation is a monotonically increasing function in the
interval ½0, 1� for j 2 ½0, j0�. The proposed quadratic
Bézier function is defined by the successive points

Q4 =
0

0

� �

Q5 =
1

1� j0

� �
+

1

2
(p+ 1)

j0

j0

� �
� 0

1� j0

� �� �

Q6 =
j0

1

� �

which result in the curve

Cr1(s)

Cr2(s)

� �
=(1� s)2Q4 + 2(1� s)sQ5 + s2Q6

=
�j0ps2 + j0(1+ p)s

(1� 2j0)ps2 +(1+ 2j0p� p)s

� �

for s 2 ½0, 1�. The sub-loop function for reverse trans-
formation becomes

zr(j, j0)= Cr2(s)jCr1(s)= j ^ s 2 ½0, 1�f g,
j 2 ½0, j0�, j0 2 (0, 1�

ð14Þ

Evaluation of zr also requires solution of a second-
order polynomial, and the solution is unique in the def-
inition interval.
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The inverse with respect to j0 of the sub-loop func-
tions has to be used in turning points. For forward and
reverse transformations, they are

j
f
0(zf , j)=

0 for zf 2 ½j, 1�, j 2 ½0, 1)

j0jCf 1(s)= j ^ Cf 2(s)= zf ^ s 2 ½0, 1�
� �

for zf 2 ½0, j), j 2 ½0, 1)

8<
:

ð15aÞ

jr
0(zr, j)=

1 for zr 2 ½0, j�, j 2 (0, 1�
j0jCr1(s)= j ^ Cr2(s)= zr ^ s 2 ½0, 1�f g

for zr 2 (j, 1�, j 2 (0, 1�

8<
:

ð15bÞ

Both inverse functions have unique solutions, but
solution of third-order polynomials in s is required; see
Algorithms 1 and 2.

Numerical implementation

The numerical solution closely follows the one provided
by Lagoudas et al. (2012). There are two additions,
which are described in the following sections. The
implementation is independent of the number of spatial
dimensions, that is, 1D, 2D or three-dimensional (3D).

Coupled constitutive and energy equations. In every time
step n, the strain en is considered known, and the con-
stitutive equation (3) and the energy equation (9) are
solved simultaneously in two steps. Also, the variable
j0 is known and constant as long as _j does not change
sign, and this issue is treated in the next section. The
energy equation (9) is written in a backward Euler
sense, that is

E = rcp

Tn � Tn�1

Dt
+ xn

jn � jn�1

Dt
+ ĥ

2

c
(Tn � T‘)= 0

ð16Þ

where Dt= tn � tn�1 is the time difference between the
time steps.

The first step is a thermo-elastic prediction, where it
is assumed that _j = 0 resulting in jn = jn�1 and
etn = etn�1

. This means that it is straightforward to cal-
culate sn and Tn from equations (3) and (19).

Subsequently, it is tested, whether the Kuhn–Tucker
conditions (8) are satisfied. If they are not, a phase
transformation is taking place and a transformation
correction step has to be made to s, T and j. This is
done iteratively using a return mapping algorithm,
which basically is consecutive Newton step, because E
has to be 0 at all times and F has to be 0 during
transformation

F+ ∂sFDs + ∂jFDj + ∂T FDT = 0 ð17aÞ

E + ∂sEDs+ ∂jEDj + ∂T EDT = 0 ð17bÞ

SDs+(DSs+L)Dj = 0 ð17cÞ

where ∂yx denotes the partial derivative of x with
respect to y. Equation (17c) comes from equation (3),
where De= 0 in the correction step. The iterative step
in j is found by solving the system of equations

Dj =

(E∂T F�F∂T E)

∂T E∂jF� ∂jE∂T F½ +(∂sE∂T F� ∂T E∂sF)S�1(DSs+L)



ð18Þ

Algorithm 1. Algorithm for the inverse function is given in
equation (15a).

if zf = 0 then
j0  j;

else if zf � j then
j0  0;

else if p 6¼ 0 then
p1  p(1+ zf � 2j)� 1;

p2  
1

3
� p1

p2
;

p3  
p1 + 3zf

3p2
� 2

27
;

s 1

3
+ 2

ffiffiffiffiffi
p2

3

r
cos

1

3
arccos

3p3

2p2

ffiffiffiffiffi
3

p2

s !
+

p

3

" #
;

j0  
j � zf

(1� ps)(1� s)
;

else

j0  
j � zf

1� zf

;

end if

Algorithm 2. Algorithm for the inverse function is given in
equation (15b).

if zr = 1 then
j0  j;

else if zr<j then
j0  1;

else if p 6¼ 0 then
p1  p(2j � zr)� 1;

p2  
1

3
� p1

p2
;

p3  
p1 � 3zr + 3

3p2
� 2

27
;

s 2

3
� 2

ffiffiffiffiffi
p2

3

r
cos

1

3
arccos

3p3

2p2

ffiffiffiffiffi
3

p2

s !
+

p

3

" #
;

j0  1+
j � zr

1� (1+ ps)(1� s)
;

else

j0  
j

zr

;

end if
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This means that j is updated by j(i+ 1)
n  j(i)n +Dj,

where i denotes the iteration. The boundaries 0� j� 1

have to be enforced when updating j. Next, s, T, F and
E are updated, and iterations continue until conver-
gence. It should be noted that the Kuhn–Tucker condi-
tions specify that the transformation functions always
should be below or equal to 0 only in the case that trans-
formation in the appertaining direction is admissible
and the relevant transformation function is defined. For
example, this means that the computed value of Ff will
exceed 0 when j becomes 1. Therefore, iterations during
the forward phase transformation correction should be
stopped if j persistently encounters its upper boundary,
even though Ff

  does not meet its tolerances. This is
similar in reverse transformation for j = 0.

Turning point. The aspect of turning points, that is, when
_j changes sign, is two-parted: detecting a possible turn-
ing point and updating and calculation of j0 in the case
of a turning point. The value of j0 is constant (and
known) as long as the sign of _j is constant.

The parameter j0 enters into the expression of F.
The value of F determines whether or not a transfor-
mation is taking place and it therefore determines the
sign of _j. This means that it is somewhat a circular
problem to determine, whether there is a turning point.
However, this is solved by setting up some rules:

1. The transformation indicator dn at time step n is
defined by

dn[

sign(jn � jn�1) if jn 6¼ jn�1

1 else if jn = 0

�1 else if jn = 1

�dn�1 otherwise

8>><
>>:

Forward transformation corresponds to
dn = 1, and reverse to dn = � 1.

2. Initially, the preferred direction of transforma-
tion ~dn between time step n� 1 and n is given by

~dn[

1 if jn�1 = 0

�1 else if jn�1 = 1

dn�1 otherwise

8<
:

3. If ~dn 6¼ dn�1, then there is a turning point in time
step n� 1 and j0 has to be calculated at time
step n.

4. If the Kuhn–Tucker condition corresponding to
the preferred direction of transformation ~dn at
time step n is satisfied after the thermo-elastic
prediction, a turning point takes place at time
step n� 1. In this case, ~dn  �dn�1 and j0 have
to be calculated at time step n.

For example, if a forward transformation takes
place between time step n� 2 and n� 1, Ff is

calculated at first in time step n. Note that Fr is not
defined before j0 is calculated, and therefore, Fr is not
calculated. Then, it should be checked if the Kuhn–
Tucker condition related to forward transformation,
equation (8a), is violated in time step n. If so, it is not a
turning point, the transformation continues in the same
direction and j0 is unchanged. If on the other hand, the
Kuhn–Tucker condition is satisfied, there is a turning
point at time step n� 1, j0 has to be calculated, and
now reverse transformation is the preferred direction of
transformation. If there is no phase transformation
taking place, dn changes sign and j0 is calculated in
each time step. When jn�1 = 0 or jn�1 = 1, the situa-
tion is trivial, because then only one transformation
direction is admissible and furthermore j0 = jn�1.

If time step n� 1 is a turning point (which is detected
in time step n), the transformation surface of the new
preferred direction is moved to the temperature–stress
state at time step n if possible. This means that Fd = 0

has to be solved for j0 for the values of s, T and j at
time step n� 1 using the new preferred direction. If
there is no solution, then j0 becomes jn�1. This special
case is included by the expressions of the inverse func-
tions, equations (11), (12) and (15). Note that the proce-
dure of detecting a turning point and resetting j0 is not
a correction to the former time step. It is a way to
ensure continuity at time step n. By moving the trans-
formation surface, smooth transitions are ensured,
because the hardening function is smooth at the bound-
aries, z = 0 and z = 1. From time step n� 1, all state
variables are known, and therefore, it is possible to
determine ~f = fd(zd) using the values of sn�1 and Tn�1

using equation (12). Then the inverse hardening func-
tion, equation (11), is used for determining zd . Finally,
j0 is found using the inverse sub-loop function in equa-
tion (15) by inserting zd and jn�1. The overall numerical
implementation is summed up in Algorithm 3.

Helical spring model

As mentioned in the introduction, there exist a variety
of model approaches for SMA helical springs in the lit-
erature. Equivalent 1D models generally provide accep-
table performance (Aguiar et al., 2010; An et al., 2012;
Enemark et al., 2014), and they are advantageous
because of their simplicity. The idea behind the 1D
models is to choose a point in the spring wire cross sec-
tion to govern the SMA behaviour and then extrapo-
late to obtain the global spring behaviour. Therefore,
also formulas relating the spring deformation to the
representative SMA strain and the spring force to the
representative SMA stress are needed. The disadvan-
tage of most presented 1D models is that they do not
take into account large global deformations (large pitch
angles) resulting in geometrical stiffening. If the pitch
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angle is large, bending of the spring wire becomes sig-
nificant (Wahl, 1944), and therefore, the stress and
strain states become 2D. An et al. (2012) also consid-
ered large pitch angles of SMA springs but made an
equivalent 1D model based on several simplifying
assumptions.

A 2D model is presented here, in which a single
point in the cross section is used to govern the SMA
behaviour, as described above. If the spring index (ratio
between coil and wire radii) is small, there is another
phenomenon taking place, that is, distortion of the oth-
erwise symmetric strain distribution in the wire cross
section, because the spring wire is equivalent to a
curved bar. This effect was taken into account for an
SMA spring by Mirzaeifar et al. (2011), but it was con-
cluded that it did not have a significant impact on the
force–deflection relationship. For linear elastic springs,
Wahl (1944) showed that the error of the force–
deflection relationship is less than 3% when not cor-
recting for the distortion for spring indexes as low as
2.7. Also, end effects are not considered in this model,
and in practice they have been avoided (to a high
extent) by the type of spring grip.

The SMA spring is a helix with initial coil radius r0,
assumed constant wire radius c, initial height h0, N the
number of windings and assumed constant length

L=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

0 +(2pNr0)
2

q
, see Figure 1. The initial pitch

angle is then a0 = arctan (h0=ð2pNr0)). It is assumed
that the spring is restricted from rotating, which results
in the condition

r

r0

=
cos a

cos a0

where r and a denote the coil radius and pitch angle of
the deformed spring, respectively. This relation is used

to simplify the expressions below. The deformed pitch
angle is given by

a= arcsin
u

L
+ sin a0

� �
where u is the spring elongation. The shear and normal
strain distributions in the wire cross section are (Wahl,
1944)

g(a)= a
sin a cos a

r
� sin a0 cos a0

r0

� �

=
a

r0

cos a0( sin a� sin a0)

ð19Þ

e(y)= y
cos2 a0

r0

� cos2 a

r

� �

=
y

r0

cos a0( cos a0 � cos a)

ð20Þ

where a 2 ½0, c� is a radial coordinate, and y 2 ½�c, c� is
a Cartesian coordinate perpendicular to the spring cen-
tre axis. These strain expressions are symmetric, and
the distortion due to the fact that the spring wire is a
curved bar is not considered as mentioned above. The
strain distributions are illustrated in Figure 1.

The tensile spring force F comes from the torsional
momentMT and the bending momentMB in the spring,
cf. Figure 1

F =MT

cos a

r
+MB

sin a

r

=
cos a0

r0

(MT +MB tan a)
ð21Þ

MT =

ðc
0

ðp
�p

t e(u, a)ð Þa2duda ð22Þ

Algorithm 3. Algorithm for using the constitutive model by Lagoudas et al. (2012) coupled to the energy equation and with the
Bézier hardening function and sub-loop function.

1. Load jn�1, j0n�1
, en�1, etn�1

, Tn�1 and dn�1 from the former time step and en from the current time step.
2. Make a thermo-elastic prediction:

(a) jn  jn�1, j0n
 j0n�1

, etn  etn�1
.

(b) Calculate sn (3) and Tn (16).

3. If jn = 0 then ~dn  1, else if jn = 1 then ~dn  �1, otherwise ~dn  dn�1.

4. Calculate zd (13, 14), fd (10), Ld (5) and Fd (6) using d= ~dn.

5. If both Fd\0 and �~dn is admissibley do (turning point):

(a) ~dn  �dn�1 and calculate sn�1 (3).

(b) For time step n� 1, calculate Ld (5), ~f (12), zd = z (11) and j0 (15) using d=~dn, sn�1 and Tn�1.

(c) For time step n, recalculate zd (13, 14), fd (10), Ld (5) and Fd (6) using d=~dn and the new value of j0.

6. dn  ~dn.
7. If Fd.0 do (transformation correction):

(a) Calculate the derivatives of Fd and Ed with respect to jn, Tn and sn.

(b) Calculate Dj (18) and enforce its boundaries. Update j(i)n  Dj+ j(i�1)
n and e

(i)
tn  L(i�1)

d Dj + e
(i�1)
tn .

(c) Calculate Tn (16), and sn (3).
(d) Calculate zd (13, 14), fd (10), Ld (5), Fd (6) and Ed (16).
(e) If both jFdj\tol1 and jEdj\tol2 the solution has converged. Otherwise go to item 7a.

y~dn = 1 is admissible only if jn\1, and ~dn = � 1 is admissible only if jn.0.
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MB =

ðc
0

ðp
�p

s e(u, a)ð Þa2 sin ududa ð23Þ

Here, u is the angular coordinate corresponding to
the radial coordinate a. Note the geometrical stiffening
effect on F due to the tan a factor.

It is not straightforward to evaluate the integrals in
the expressions of the moments above, because the mar-
tensitic volume fraction varies through the wire cross
sections and it couples the shear and normal stresses.
Nevertheless, a constant martensitic volume fraction
throughout the cross section is approximated, which is
also the basis of the equivalent 1D models found in the
literature, including Liang and Rogers (1993), Aguiar
et al. (2010), An et al. (2012) and Enemark et al. (2014).
This approximation is justified in the next section.
Under shear behaviour, the constitutive equation reads
t =G(g � gt) (equation (3)). From equation (19), we
have that g(a)= (a=c)g(c). The shear modulus G and
the transformation shear strain gt are assumed constant
in the cross section. By evaluating the integral in equa-
tion (22), the torsional moment becomes

MT =
2

3
pc3G

3

4
g(c)� gt

� �

=
2

3
pc3G(g� � gt)=

2

3
pc3t�

Here, g�[(3=4)g(c)= g((3=4)c) is defined in order to
use the governing equation and further define
t�[G(g� � gt). This means that the location
a�=(3=4)c is representative for determining an equiva-
lent constant martensitic volume fraction. To our
understanding, the maximum shear strain and stress,
corresponding to a point at the circumference (a�= c),
are used to govern the SMA behaviour in the most
equivalent 1D models found in the literature. The dif-
ference is significant as will be shown in the following
section.

A similar approach is made for the normal strain
and stresses, where e(y)= (y=c)e(c) and
s=E(e� sign(e)et) (equation (3)).2 The elastic modu-
lus E and the transformation normal strain et are
assumed constant in the cross section. The bending
moment becomes

MB =
4

3
c3E

3p

16
e(c)� et

� �
=

4

3
c3E(e� � et)=

4

3
c3s�

This results in e�[(3p=16)e(c)= e((3p=16)c),
s�[E(e� � et) and y�[(3p=16)c.

The resulting force, equation (21), becomes

F =
2

3

c3

r0

cos a0(pt�+ 2s� tan a) ð24Þ

To determine the spring force at a given deflection
u, first the representative strain tensor
e�= fe�, g�gT = fe(3p=16)c, g((3=4)c)gT is determined
using equations (19) and (20). Then the representative
stress tensor s�= fs�, t�gT is determined using the
SMA model and e�. Finally, the force is calculated
using equation (24).

Justification of modelling approach

In order to justify the approach for modelling the SMA
helical spring, some comparisons to other approaches
are provided. The different approaches are illustrated
in Figure 4 and they are as follows:

2S The 2D model using the star point: both shear
and normal strains are taken into account, and
the four points represented by a�=(3=4)c and
y�=(3p=16)c are used to govern the SMA
behaviour.

2C The 2D model using the point of maximum
strain (the circumference point): both shear and
normal strains are taken into account, and the
two points represented by a�= c and y�= c

are used to govern the SMA behaviour.
2L The 2D model using line integration: shear and

normal stresses are evaluated at integration
points along a line from the wire cross section
centre to the circumference at maximum nor-
mal strain as shown in Figure 4. The stresses
are then extrapolated to the whole cross section
and integrated numerically to evaluate the
moments

Figure 4. Illustration of different approaches to integrate the
SMA behaviour in the wire cross section. The 2S approach uses
the four star points to represent the SMA behaviour in the
cross section, the similar 2C approach instead uses the two
circumference points (solid circles) and the 2L approach
integrates numerically the behaviour along the thick dashed line
and extrapolates to the whole cross section.

Enemark et al. 2731

 at UNIV FED DO RIO DE JANEIRO on November 28, 2016jim.sagepub.comDownloaded from 

http://jim.sagepub.com/


MT , line = 2p

ðc
0

t e(y)ð Þy2dy

MB, line = 4

ðc
0

s e(y)ð Þy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � y2

p
dy

In this case, the shear stress is simplified to be
independent of the angular position u like the
shear strain, and the normal stress is simplified
to be independent of the horizontal position x
like the normal strain. The stresses s and t are
coupled due to the constitutive model and the
2D strain field.

2P The 2D model using plane integration: shear
and normal stresses are evaluated at integration
points spread out over the entire wire cross sec-
tion, and the moments in equations (22) and
(23) are evaluated numerically. This is the most
accurate model approach, and also the most
computationally demanding.

Using the same notation, the approaches 1S, 1C and
1L are also included, where normal strains (and there-
fore also normal stresses) are neglected. The 1L and 1P
approaches give identical results, and 1P is therefore
omitted. Simulated force–displacement tests are shown
in Figure 5 for isothermal conditions. Generic SMA
material properties are used, and the geometrical prop-
erties of the spring are given in Table 1. From Figure 5,
it is evident that 1S and 2S perform very acceptably if
deflections are of a moderate level (here less than
16 mm) when comparing to the precise 1L and 2P
models. At large deformations, the errors become pro-
nounced. On the other hand, the transformation sur-
faces are misplaced in the 1C and 2C approaches
resulting in significant errors. There are also clear

discrepancies between the 1S and 2S approaches as
shown in Figure 5(c) even for relatively small deflec-
tions indicating that bending of the spring is an impor-
tant aspect. The results for the 2L and 2P approaches
are very similar for all levels of deflection. The chosen
values of the elastic moduli for martensite and austenite
are 30 and 40 GPa, respectively. Even so, the 2D mod-
els predict that the spring stiffness is highest when the
SMA is in the martensitic phase. This is caused by geo-
metric non-linearities, which have also been observed
in the experiments (Enemark et al., 2014; Sakuma and
Suzuki, 2007; Savi et al., 2015).

From this example, it is clear that it is possible to
significantly increase the predictability using the star
points instead of the circumference points and the 2D
model instead of the 1D model. The 2L model and
especially the 2P model are considerably heavier com-
putationally than the 2S model and the difference is
small if the spring is subjected to moderate deflections.
Also, if the SMA model is coupled to the energy equa-
tion, the 2L and 2P approaches become significantly
more complicated, because heat conduction terms have
to be added, which connect the integration points in
the cross section.

It is possible to almost identically replicate the 2P
model results using even the 1C model, if the model
parameter values are changed. In this regard, it should
be emphasised that many model parameters would
obtain unrealistic values, and it is therefore not possible
to give reliable predictions, if the unrealistic values are

Figure 5. Force–displacement relationship for different model approaches when using the same spring and material properties. (a)
One and (b) two dimensional model approaches and (c) comparison between the two.

Table 1. Geometrical properties of SMA spring.

c (mm) r0 (mm) h0 (mm) N (–)

0.28 1.28 7.0 6
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not known a priori. Using the 2S model, only H and
EM have to be changed to increase predictability at
large deformations, that is, up to a 40% decrease from
their initial values in this case. But as long as deforma-
tions are moderate, parameter tuning of this level
should not be necessary.

The importance of including the normal stress and
the coupling between the two directions is also illu-
strated in Figure 6. Here, the normal, shear and von
Mises stresses are shown in a quarter of the cross sec-
tion for a deflection of 12 mm. The results are based on
the 2P model. The magnitude of the normal stresses is
comparable to the shear stresses. It is also clear that the
normal stress varies with the horizontal x coordinate,
even though the normal strain is independent of x.
Similarly, the shear stress is not symmetric around the
cross section centre even though the shear strain is. This
is because of the coupling of the stresses, s and t, in the
transformation functions, Ff and Fr. Nevertheless, the
2L model results are almost identical to the 2P results
in Figure 5, so the approximation that the stress distri-
butions have same symmetric properties as the strains
can indeed be used without significant loss of accuracy.
The tension–torsion coupling of SMAs is more thor-
oughly investigated by Lagoudas et al. (2012) and
Mehrabi et al. (2014) for example.

Complex modulus representation

In order to use SMAs in dynamic systems, it is conveni-
ent to explore the dynamic properties in terms of the
complex modulus. There exist several ways to quantify
the complex modulus from either experiments or simu-
lations (Gandhi and Wolons, 1999; Holanda et al.,
2014; Malecot et al., 2006; Piedboeuf et al., 1998), and
they result in slightly different values. The method used
here is very similar to the one presented by Gandhi and
Wolons (1999), but here the complex modulus is evalu-
ated in terms of forces instead of stresses. This means
the storage modulus, K, is a measure of average stiff-
ness (measured in N m21) during a loading cycle. The
loss factor is called h, and it is equivalent to linear vis-
cous damping b by h=(bv=K), where v is the

frequency of oscillation. The loss modulus equals Kh,
and the actual complex modulus is K(1+jh), where j
is the imaginary unit. The storage modulus and the loss
factor are determined by assuming that the response of
the dynamic system, in which the SMA spring is the
active element, is harmonic: x(t)= x0 +A sin (vt +f),
where x0 denotes the pre-tension length, A is the ampli-
tude and f is the phase. A response x̂(t) is defined by
being equal to x(t), but delayed by a phase angle of 908,
that is, x̂(t)= x0 +A sin (vt � (p=2)+f)= x0 � A

cos (vt +f). The size of the equivalent force from the
SMA element has the form ~F =F0 +K(x� x0)+
b _x=F0 +K(x� x0)� Kh(x̂� x0), similar to a com-
bined linear spring and a viscous or hysteretic damper
plus a pre-tension force F0. It is possible to extract the
complex modulus by the two following integrals

I1 =

þ
Fdx=

ðp=v

�p=v

F _xdt ’

ðp=v

�p=v

~F _xdt =pA2Kh

I2 =

þ
Fdx̂=

ðp=v

�p=v

F _̂xdt ’

ðp=v

�p=v

~F _̂xdt =pA2K

The integral
Þ

Fdx is the amount of energy dissipated
during a cycle. Subsequently, the storage modulus and
the loss factor are

K =
I2

pA2
, h=

I1

I2

The pre-tension force F0 is determined by

v

2p

ðp=v

�p=v

Fdt ’
v

2p

ðp=v

�p=v

~Fdt=F0

Model parameter estimation and
uncertainty quantification

The Bayesian framework is used to estimate the model
parameters and their uncertainties based on

Figure 6. Normal, shear and von Mises stresses in a quarter of the cross section for a deflection of 12 mm. The intervals between
the contour lines are 25 MPa.
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comparison with the experiments. This basically means
that the parameters are not considered as scalars but as
probability distributions (which can be characterised
by mean and variance, for example). Namely, we use
an MCMC method and an adaptive Metropolis algo-
rithm to determine the statistical properties of the
model parameters (Gelman et al., 2014).

The basis of the Bayesian approach is Bayes’ rule

P(ujy)= P(u)P(yju)Ð
P(u)P(yju)du

which uses a prior (known) distribution of the model
parameters u, P(u), and a sampling distribution P(yju)
(being the probability of getting observation y given u)
to determine the posterior distribution P(ujy). The pos-
terior distribution, being the distribution of the para-
meters u given the observations y, is what we search.
However, it is not possible to evaluate this expression
analytically when having complex models with many
parameters, and this is why Markov chain simulations
are used. The residual r is the difference between the
experimental results y and the model predictions f that
depend on u. If it is assumed that the residual vector is
normally distributed with zero mean and zero autocor-
relation, we have

P(yju)= 1ffiffiffiffiffiffiffiffiffiffi
2pŝ2
p exp �RSS(u)

2ŝ2

� �

where ŝ is the residual standard deviation and
RSS(u)= rTr=(y� f(u))T(y� f(u)) is the residual sum
of squares. In order to maximise the likelihood P(yju),
the residual sum of squares has to be minimised.
Therefore, the MCMC procedure can be initialised by
determining the prior distribution of u using an ordi-
nary least squares (OLS) estimate. This is carried out
with the lsqnonlin function in the MATLAB
Optimization Toolbox that uses a trust-region-
reflective algorithm. Next, the measurement standard
deviation is estimated by

ŝ2 ’
RSS(u�)

nm � np

ð25Þ

where u� denotes the OLS estimate of u, nm is the num-
ber of measurements and np is the number of para-
meters. The covariance matrix of u� is estimated by

S ’ ŝ2 J(u�)TJ(u�)
� ��1

ð26Þ

where J is the Jacobian of f with respect to u, which can
be estimated by central difference.

The Metropolis algorithm is as follows (Gelman
et al., 2014): initially, a random sample u0 is drawn
from the distribution N (u�,C2S) being a multivariate
normal distribution with mean u� and covariance C2S,

where C ’ 2:4n�1=2
p is the coverage factor. For every

iteration i, another sample û is drawn from the jumping
distribution N(ui�1,C2S) and the likelihood ratio

R=
P(yjû)

P(yjui�1)
= exp �RSS(û)� RSS(ui�1)

2ŝ2

 !

is calculated. This sample is only conditionally accepted

ui =
û with probability min (R, 1)
ui�1 otherwise

�

This means that the sample is always accepted when
the likelihood has increased since the last sample, but it
may also be accepted with a non-zero probability if the
likelihood has decreased. Iterations continue until the
sample distribution becomes stationary. Then the initial
samples (the warm up) are rejected and the remaining
samples as a whole represents the posterior distribution
of u.

In order to speed up convergence, a simple adapta-
tion is added to the algorithm (Gelman et al., 2014;
Haario et al., 2001): for every n0th iteration i0, where
n0 � 1, the covariance matrix of the jumping distribu-
tion is updated to be proportional to the posterior cov-
ariance estimated from the former simulations

C2S C2cov(ui0�1, ui0�2, . . . , u0)

There are several criteria that should be fulfilled to
ensure that the samples actually do represent the pos-
terior distribution well (Gelman et al., 2014). The in-
between and within variances of multiple independent
Markov chains show whether the chains are similar
and have converged. Also, the acceptance ratio should
be around 0.23 when having more than five parameters
(Gelman et al., 2014). If the acceptance ratio is too low,
C2 should be decreased and vice versa.

If the residual contains significant autocorrelation,
that is, the number of actually independent measure-
ments is reduced, both ŝ2 and S become underesti-
mated. To counteract this, equations (25) and (26) can
be substituted accordingly (Enemark and Santos, 2015)

~s2 ’
~nm

nm

RSS(u�)

~nm � np

ð27Þ

~S ’~s2 nm

~nm

J(u�)TJ(u�)
� ��1

ð28Þ

where ~nm is the number of independent measurements
ensuring a residual with insignificant autocorrelation.

Results and discussion

Experiments

With regard to spring dimensioning, we want to
explore and utilise the non-linearities of the SMA
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spring, when displacements are in the order of a few
millimetres (Du ’ 2mm). This can be specified by
l =(Du=Dg(c))= 2mm=1% (equations (1)), because
phase transformations are expected when Dg(c)’ 1%.
The maximum stiffness is required to be kA =2 N mm �1.
In order to determine the three parameters fully, it
requires a third criterion. In this context, this criterion
relates to the availability of specific wire diameters at
the market (e.g. Memry Corporation, Amazon, Nitinol
Devices & Components, Inc. and Johnson Matthey,
Inc.).

The chosen spring dimensions are provided in
Table 1. They are based on GA ’ 15GPa (Enemark and
Santos, 2015), the values of l and kA, equations (1) and
(2) and the available spring diameters at the market.

The SMA springs are thermo-mechanically trained
to get stabilised behaviour. The training consists of
approximately 100 loading cycles using an amplitude of
A = 7.9 mm, a frequency of v= 0:5Hz and an ambi-
ent temperature of T‘ = 308C. Then around 100 cycles
follow at T‘ = 708C. We found that it is important to
explore the entire thermo-mechanical field during the
training to avoid further training during the actual
experiments. The choice of the minimum temperature
(30�C) is based on the capabilities of the heat gun. At
temperatures closer to the room temperature (25�C),
the heat gun is not able to keep a constant temperature.
The choice of the highest temperature (70�C) is made so
that the spring is almost linearly elastic even for large
deflections. A maximum amplitude of A= 7:9mm is
chosen because the spring easily breaks at higher ampli-
tudes if combined with the high temperature. After the
training, the spring has permanently elongated

approximately 2.5 mm as a consequence of
transformation-induced plastic strains.

The characterisation of the spring consists of experi-
mentally obtained stable loading cycles at different
ambient temperatures (T‘ being 30�C, 50�C or 70�C),
excitation amplitudes (A being 2.4, 3.3, 4.4, 5.8 and
6.9 mm) and frequencies (v being 0.1, 0.3, 1.3, 4.0 and
10.0 Hz). The pre-tension length x0 = 6:5mm is kept
constant. We found that the spring breaks after rela-
tively few cycles (in the order of hundreds) if using
A.5:8mm. For this reason, A= 7:9mm is only used
during training, and A= 6:9mm is only used with slow
speeds. Each experiment, of the 3 	 5 	 5= 75 different
combinations, is performed a total of nine times using
five different spring specimens to explore the uncertain-
ties. Some experiments are discarded as outliers because
of insufficient training.

Figure 7 shows 11 tests, which are used to calibrate
the model. The size of the hysteresis loops and the tan-
gential stiffness depends on both ambient temperature
and oscillation frequency. The tangential stiffness dur-
ing transformation is only slightly lower than during
the thermo-elastic state. For SMA wires, the tangential
stiffness during transformation is usually at least an
order of magnitude lower than the pure austenitic
or martensitic states (see, e.g., Enemark and Santos,
2015).

To get a better overview of the characteristic proper-
ties, the storage modulus K, the loss factor h and the
pre-tension force F0 are calculated from all the experi-
mental results, and they are shown in Figure 8. They
are represented by a mean value and an estimate of the
90% confidence interval based on the calculated

Figure 7. Cyclic tensile tests. Calibration data set (circles) and 2S model predictions (lines) of stable deflection cycles. For a given
deflection, the force is measured and the force and temperature are predicted. The temperature loops are clockwise in the 0.1 and
1.3 Hz cases and counter clockwise in the 10.0 Hz cases.
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standard deviation and the Student’s t-distribution
using the appropriate number of degrees of freedom.

The storage modulus K depends on the ambient
temperature to great extent, whereas the dependencies
on frequency and amplitude are more moderate, even
though the dependencies are clear, cf. Figure 8. The
storage modulus increases with ambient temperature
and frequency, whereas the dependency on amplitude
is non-monotonic and coupled to the temperature.

The loss factor h also greatly depends on tempera-
ture and frequency, and it monotonically decreases with
both. The dependency on amplitude is insignificant.
The values of K and h seem to saturate with increasing
frequency: The changes in their values are similar from
0.1 to 0.3 Hz and from 4.0 to 10 Hz.

The mean pre-tension force F0 greatly depends on
temperature, and the dependencies on frequency and
amplitude are insignificant. Malecot et al. (2006) and
He and Sun (2010) showed that the mean pre-tension
force significantly increases with the excitation fre-
quency caused by high temperature rises, which is a
consequence of the latent heat of phase transforma-
tions and the lack of heat transfer to the surroundings.
However, in this case, the level of forced convection is
so high that the mean temperature and therefore also
the mean force during a cycle do not increase signifi-
cantly. Piedboeuf et al. (1998) and Gandhi and Wolons
(1999) showed strong amplitude-dependent behaviour
on SMA wires, whereas the amplitude dependencies of
K, h and F0 are insignificant in these experiments

performed on springs. The reason is that the tangential
stiffness during transformation is only slightly lower
than in the thermo-elastic regions for the springs (maxi-
mum a factor of 4), which again is caused by the bend-
ing in addition to torsion of the spring wire and the
otherwise complex stress and strain fields. Oppositely,
the tangential stiffness during transformation for
straight wires is usually considerably lower than in the
thermo-elastic regions. In some conditions, the tangen-
tial stiffness is even 0 or slightly negative (Piedboeuf
et al., 1998). Because there is a direct connection
between the storage modulus and the tangential stiff-
ness and because the loading cycles both include
thermo-elastic and transformation regions, it results in
a large amplitude dependency for the straight wires.

There are clear discrepancies between the experimen-
tal results highlighted by the confidence intervals. These
discrepancies reflect the differences between the spring
specimens, that is, material imperfections and geometri-
cal inaccuracies. Also, small differences in training have
an impact, and the characteristics change slightly dur-
ing the lifetimes of the springs after the training process.
This means that they never reach a perfectly stabilised
state, but the changes are small and happen slowly.

Model fitting

The 2S model is fitted using OLS to the calibration data
set highlighted in Figure 7, where the geometrical prop-
erties of the spring are fixed, and they are shown in

Figure 8. Storage modulus K, loss factor h and mean pre-tension force F0 as function of excitation amplitude and frequency and
ambient temperature. Experimental results are indicated by circles (mean) and error bars (estimated 90% confidence interval) from
nine experiments. The lines are model predictions using the 2S model.
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Table 1. A former differential scanning calorimetry
(DSC) test showed that the phase transformation tem-
peratures are As = 4�C, Af = 25�C, Ms = 20�C and
Mf = 23�C of the as-received material (Enemark and
Santos, 2015). These temperatures are determined using
tangential fits. However, when smooth hardening func-
tions are used, the phase transformation temperatures
used in the model can be altered to improve agreement
between model predictions and experiments. This is
exemplified by Lagoudas et al. (2012), where the phase
transformation temperatures are changed up to 8�C to
increase resemblance to a DSC curve. Also, the phase
transformation temperatures may change as a conse-
quence of the shape-setting heat treatment and the
training process (Gloanec et al., 2013). Using these
arguments, the phase transformation temperatures are
allowed to change 610�C from their DSC values when
fitting the model. Since the experiments only contain
partial transformations and not full transformations, it
is not possible to uniquely identify all model para-
meters. The two parameters n

f
2 and nr

2 determine the
curvatures of the end of the forward transformation
and the beginning of the reverse transformation, respec-
tively, and they are not represented by the experiments.
They are therefore fixed to be 0.36, making the curva-
ture follow closely the cosine hardening function used
by Brinson (1993), who has made a widely used consti-
tutive model. Also, Poisson’s ratio n= 0:33 is fixed,
because it is not identifiable from the experiments.
When fixing some parameters, the solution of other

parameters might depend on the chosen fix points, so
in this relation the solution is not unique.

In the OLS solution (Table 2), the phase transforma-
tion temperatures encounter their enforced boundaries.
Also p encounters the upper boundary of its definition
interval (� 1, 1), which is set to 0.99 in the numerical
implementation. The model predictions and the calibra-
tion data set are compared in Figure 7 and the resem-
blance is high. The residual standard deviation is
~s= 0:24N, where nm=~nm = 9 is used to counteract the
level of autocorrelation. Figure 7 also shows the spring
temperature during the loading cycle, which forms a
closed orbit confirming stabilised behaviour. The tem-
perature primarily increases during loading and
decreases during unloading, because the forward trans-
formation is exothermic and the reverse transformation
is endothermic. However, because the convection forces
the temperature towards the ambient temperature, the
temperature rate changes sign before the loading
changes direction in each cycle. The maximum tem-
perature depends on both frequency and amplitude.
The mean temperature during a cycle is within 65�C of
the surroundings in all cases, which is because of the
high level of convection.

To validate the model, model predictions and the
remaining experiments are also compared. This is
shown in terms of the complex modulus in Figure 8.
The model predictions follow closely the experimental
results both in terms of qualitative behaviour and low
(quantitative) error. For K, the residual standard

Table 2. Determined model parameters using OLS for both the 1S and 2S models, and the parameter distribution mean and
confidence intervals using MCMC for the 2S model.

Model 1S 2S

OLS OLS Mean 5th Perc. 95th Perc.

H (mm m21) 13.8 14.6 14.6 14.2 15.0
EA (GPa) 38.5 36.8 36.8 36.5 37.0
EM (GPa) 37.7 30.9 30.8 29.9 31.8
n (–) 0.33 0.33 (Fixed)
CA (MPa K21) 10.4 10.6 10.6 10.3 10.9
CM (MPa K21) 11.8 11.1 11.2 10.7 11.6
As (�C) �6:0 �6:0 (Lower bound)
Af (�C) 35.0 35.0 (Upper bound)
Ms (�C) 30.0 30.0 (Upper bound)
Mf (�C) �13:0 �13:0 (Lower bound)

nf
1 (–) 0.58 0.71 0.70 0.65 0.76

nf
2 (–) 0.36 0.36 (Fixed)

nr
1 (–) 0.74 0.72 0.72 0.68 0.76

nr
2 (–) 0.36 0.36 (Fixed)

p (–) 0.99 0.99 (Upper bound)
rcp (MJ m23 K21) 2.59 2.63 2.63 2.42 2.85

ĥ (kW m22 K21) 0.34 0.37 0.37 0.33 0.42

OLS: ordinary least squares.

Confidence intervals are highlighted in terms of the 5th and 95th percentiles. The obtained residual standard deviations for the OLS fits are
~s1S = 0:26 N and ~s2S = 0:24 N, respectively (corrected for autocorrelation).
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deviation (between model and mean of experiments) is
0.043 N mm21, which can be compared with the mean
standard deviation of the experiments of
0.023 N mm21. For h, the numbers are 0.021 com-
pared with 0.012, and for F0 it is 0.14 N compared with
0.24 N. The model errors are very acceptable, even
though they cannot be explained by the measurement
uncertainties entirely. The model errors are small com-
pared to the full scale of the variables (K: 3.4%, h:
8.3% and F0: 1.4%).

The literature values of some of the model para-
meters are provided in Table 3. The determined value
of H is substantially lower than expected. The value is
low becauseH determines not only the maximum trans-
formation strain but also the tangential stiffness during
transformation. A higher value of H would therefore
result in too low stiffness during transformation. This
can either be compensated by decreasing the values of
Mf and As or by letting H be a function of the von
Mises stress (Lagoudas et al., 2012). However, because
only tests in the pseudoelastic region and the DSC test
are available, it would not be possible to give a quali-
fied estimate of the expression of H and it would not be
reasonable to ignore the DSC results. The remaining
parameters obtain reasonable values. It should be noted
that the SMA wires used in this study are from the
same company and have the same diameter as the wires
used by Enemark and Santos (2015).

The OLS parameters of the 1S model (where only
shear is taken into account) are also shown in Table 2.
The same requirements regarding parameter bound-
aries are enforced as for the 2S model. Many of the
model parameters are very similar. However, the values
of EM and EA are almost equal, whereas they clearly
differ in the 2S model. It is well-known that EA is sub-
stantially higher than EM as the 2S model predicts. The
value of EM has to attain a non-physically high value
to counteract the deficiency regarding the geometrical
non-linearities of the 1S model. These model para-
meters can therefore validate that the 2S model cap-
tures the physical behaviour of the spring to a higher
extent compared with the ‘standard’ 1S model. On the
other hand, the residual standard deviations of the two

models are ~s1S = 0:26N and ~s2S = 0:24N, respectively,
meaning that they perform almost equally well.

Parameter uncertainties

MCMC is used to determine the uncertainties of the
parameters of the 2S model. The parameters that are
fixed or have encountered their boundaries during
OLS are considered fixed without uncertainties. This
is necessary because otherwise the MCMC would find
another optimum that does not satisfy the constraints.
Four chains of each 15,000 samples are used, and the
initial 7500 samples are removed before analysing the
result. For every n0 = 500 samples until the 7500th
sample, the covariance matrix of the jumping distribu-
tion is updated. Only the calibration data set is used
for determining the parameter uncertainties. The
uncertainty analysis reflects the stability and the
‘width’ of the optimum determined by OLS, but not
necessarily the observed discrepancies between the dif-
ferent springs used in the experiments. The resulting
samples representing the parameter distributions are
highlighted in terms of mean and 5th and 95th percen-
tiles in Table 2, and they are shown as histograms and
pairwise correlation plots in Figure 9. The parameters
are well-defined, having uncertainties less than 612%
(5th and 95th percentiles compared with mean), and
the means are either identical to or very close to the
OLS estimates. The distributions are close to sym-
metric and also close to Gaussian. However, the tails
of the distributions are non-Gaussian, and especially ĥ

is slightly skew. Therefore, the uncertainties found
using the MCMC method differ from the initial linear
estimate given in equation (28). Some parameters are
highly correlated, for example, H with EM, EM with
CM and CM with n

f
1. This means that they are difficult

to isolate from each other with the given experiments.
However, because of the non-linearities in the model
with respect to the parameters, the uncertainties
become limited. The parameters EA, rcp and ĥ have
low correlations with all other parameters. Therefore,
they are clearly identifiable. However, it should be
highlighted that they might depend on the values of
the fixed parameters.

Table 3. Some values of comparable model parameters found in the literature.

Parameter OLS value Ref. value Reference

H (mm m21) 14.6 33, 40 Lagoudas et al. (2012); Enemark and Santos (2015)
EA (GPa) 36.8 33, 44 Lagoudas et al. (2012); Enemark and Santos (2015)
EM (GPa) 30.9 23, 26 Lagoudas et al. (2012); Enemark and Santos (2015)
CA (MPa K21) 10.6 9 Enemark and Santos (2015)
CM (MPa K21) 11.1 12 Enemark and Santos (2015)
rcp (MJ m23 K21) 2.63 2.5 to 2.6, 3.2 Lagoudas et al. (2012); Zanotti et al. (2012) (r’6500 kg m�3)

ĥ (kW m22 K21) 0.37 0.1 to 0.4 Pathak et al. (2010) (straight wire, air velocity: 0–3.2 m s21)

OLS: ordinary least squares.
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Optimal damping conditions

Inspired by Piedboeuf et al. (1998) and He et al. (2010),
who reported that the loss factor has a maximum with
respect to frequency for constant convective conditions,
additional experiments are carried out for frequencies
lower than 0.1 Hz with another sixth spring. The results
are shown in Figure 10. Compared to the experiments
performed using springs 1–5 at 0.1 and 0.3 Hz, the
results from spring 6 lie within the confidence interval.
Indeed, the experimental results confirm that there
exists an optimal frequency regarding the loss factor. It
is at 0.08 Hz giving h= 0:21 for the given conditions
for spring 6. It should be emphasised that the specific
optimum depends on the convective conditions (He
et al., 2010). At the same time, the storage modulus
decreases significantly at low frequencies, while the pre-
tension force is almost constant. The model is also able
to predict this behaviour, even though it is only

calibrated for frequencies higher than 0.1 Hz. The pre-
dicted optimal condition is h= 0:25 at v= 0:9Hz. It is
possible to explain why there exists an optimal fre-
quency by the model. From the temperature loops
(temperature as function of deflection) in Figure 11, the
difference in spring temperature during loading and
unloading is largest at 0.08 Hz. This means that the
force increases during loading and decreases during
unloading compared to the isothermal situation, which
finally results in a hysteresis loop with a larger area. At
lower frequencies (illustrated using 0.01 Hz), the spring
temperature is almost constant due to the convection,
which results in a narrow and flat temperature loop. At
higher frequencies (illustrated using 0.30 Hz), the tem-
perature loop becomes inclined and narrower again,
because the convection is not strong enough to dissipate
the thermal energy resulting from the exothermic load-
ing process before the endothermic unloading process

Figure 9. Accepted MCMC samples with the 2S model. Histograms are shown in the diagonal, and the off-diagonal plots are
scatter plots showing the pairwise correlations. The linear correlation coefficients are highlighted in the corner of each plot.
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occurs. At even higher frequencies, close to adiabatic
conditions, the area of the temperature loop becomes 0,
as may be seen in the 1.3 and 10.0 Hz cases in Figure 7.

Additional DSC tests

After characterisation, additional DSC analyses were
carried out using a second batch of the as-received
SMA wire and a piece of the SMA spring after the
shape-setting treatment. The results are shown in Table
4 together with the reference test (wire, batch 1) that is
used for characterisation. From Gloanec et al. (2013)
(and others), it is known that heat treatments may sig-
nificantly change the phase transformation tempera-
ture, which is the motivation for carrying out the
additional tests. Also, it is interesting to determine
whether the temperatures are stable across different
batches.

From the results (Table 4), the transformation tem-
peratures differ slightly (up to 68C628C) between the

wire batches, but it would not have a crucial impact if
one or the other was used as the basis for the characteri-
sation. However, the temperatures change considerably
(up to 178C628C relatively to wire, batch 1) as a conse-
quence of the shape-setting heat treatment. If using
these temperatures as a reference for the characterisa-
tion, it has a large impact on the rest of the model para-
meters, and equally important, the model fit notably
worsens.

The methodology of the characterisation is based on
information available in the literature and from manu-
facturers. For this reason, we chose to use the DSC
results of the wire and not the spring, because these
would be the values that would be available from the
manufacturer. Again, it should be emphasised that the
phase transformation temperatures may also change as
a consequence of the training process that the springs
are subjected to after the heat treatment. For example,
Gloanec et al. showed that the phase transformation
temperature values differed up to 158C comparing an
untested sample with a sample subjected to 3324 load-
ing cycles.

Table 4. DSC results based on the mean of two experiments.

As (�C) Af (�C) Ms (�C) Mf (�C)

Wire, batch 1 4 25 20 �3
Wire, batch 2 �2 24 18 �6
Spring 21 33 25 13

Uncertainty related to reproducibility is approximately 618C and uncertainty related to bias is approximately 618C.

Figure 10. Investigation of the complex modulus for low
frequencies using A= 5:8 mm and T‘ = 308C highlighting the
optimal frequency regarding the loss factor. For springs 1–5, the
90% confidence interval is shown.

Figure 11. On top is the experimental (circles) and modelled
(lines) force–deflection relationship using A= 5:8 mm and
T‘ = 308C. Below is the predicted spring temperature as
function of the deflection. The loops are clockwise in time.
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Conclusion

Through justification of the modelling approach, it is
shown that it is possible to use a single point (the star
point) in the wire cross section to represent the global
behaviour of the spring despite strong material non-
linearities and complex stress–strain fields in the cross
section. This is valid for moderate deflections. We also
raise attention to the problem of choosing the maxi-
mum strain and stress in the cross section (at the cir-
cumference) to govern the SMA behaviour, because it
may substantially misplace the transformation surfaces.
At the same time, it is shown that normal strains and
stresses are important if the global spring deformation
is large, and therefore, these components should be
included forming a 2D spring model.

The experiments show that the storage modulus K
(stiffness), the loss modulus h (hysteresis) and the mean
pre-tension force F0 greatly depend on temperature.
The high relative to low-temperature values (70�C rela-
tive to 30�C) are up to 170% for K, up to 40% for h,
and up to 190% for F0. To a smaller extent, K and h

also depend on frequency, and less on the deflection
amplitude. The largest changes in K and h are in the
low-frequency range (below 1.0 Hz), whereas they satu-
rate at higher frequencies (up to 10 Hz). There is no
clear dependency of F0 on either frequency or
amplitude.

The 2D star point model with modified hardening
and sub-loop behaviour is fitted to a calibration data
set based on the available information about the trans-
formation temperatures. The residual standard devia-
tion is 0.24 N, which can be compared to the maximum
obtained force of 17 N (i.e. 1.4%). All the model para-
meters attain physically sound values as a consequence
of the model structure. Therefore, the model is able to
explain the experimental behaviour. The proposed sub-
loop functions have a sub-loop controlling parameter
p 2 (� 1, 1), which attain a value of 0.99 reflecting that
the sub-loops are considerably wider and have a higher
stiffness than predicted by the simple Duhem–
Madelung sub-loop function corresponding to p= 0.
The elastic stiffness during the mixed phase is equal to
that of the pure austenitic phase. However, the value of
the martensitic modulus is lower than the austenitic
modulus when using the 2D model, which is physically
sound. The appearing change in stiffness is caused by
bending of the spring in addition to torsion resulting in
a geometrical stiffening effect, which the model is able
to capture. The 1D model does not capture this beha-
viour, but by choosing a (slightly unrealistic) high value
of the martensitic modulus, the 1D and 2D models per-
form almost equally well.

The observed frequency dependency is due to the
latent heat of phase transformations that alters the
spring temperature up to around 610�C from the ambi-
ent temperature. This is captured by the model, because

the constitutive equation is coupled to the energy equa-
tion taking into account the latent heat and the convec-
tive conditions. It is shown that the damping factor has
an optimum with respect to frequency for the specific
convective conditions. The optimum is a due to an
interaction between the heat capacity, heat convection
and the latent heat of the transformations that results
in large temperature differences during loading and
unloading. The model and the validation data sets are
compared showing that the model errors are compara-
ble in size with the experimental uncertainties evaluated
from nine repetitions of the same experiments using five
different spring specimens. Even though the experi-
ments are relatively complex, it is possible to identify
both the heat capacity and the convection coefficient
independently of all other uncertain model parameters,
which is based on their low correlation coefficients to
other parameters. All parameters have relative uncer-
tainties less than 612%, which is due to the diversity of
the experiments and because the model non-linearities
limit the uncertainties, where parameter correlations
are high.

A DSC analysis showed that the phase transforma-
tion temperatures change up to 17�C as a consequence
of the shape-setting treatment. However, since the
model calibration is based on the available information
from the literature and suppliers and because the train-
ing process most likely would change the temperatures
again, it was chosen to use the initial values based on
the as-received wire. This reinforces the need of linking
the constitutive models to uncertainty analysis to assure
reliable predictions of SMA properties in the context of
machine element design.
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Notes

1. The transformation surfaces are not straight lines in the
temperature–stress plane in the model by Lagoudas and
co-workers, and therefore, the values of CA and CM are
specific for zero stress.

2. The reason for the sign(e) in the expression of s is to
ensure tension/compression symmetry, when et is assumed
to be a constant.
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