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Abstract
Shape memory alloys (SMAs) are adaptive materials that exhibit complex thermomechanical
behaviors due to multiphysics coupling. The thermomechanical modeling of SMAs is a complex
task due to several phenomena involved, and the Preisach model is an interesting alternative to
describe the SMA hysteretic behavior based on experimental data. This paper deals with the
description of the thermomechanical behavior of SMA using the Preisach model. Experimental
tests are performed considering NiTi pseudoelastic wires subjected to different load conditions,
establishing reference cases. Afterward, the Preisach model is employed to describe the SMA
behavior. Numerical simulations are carried out and compared with the experimental data
showing a good agreement. Other experimental data available in the literature are employed to
investigate different macroscopic behaviors related to SMAs, including strain-temperature
relations of wires and force-displacement relations of springs. Results show that the model is
able to describe the thermomechanical behavior of SMAs, being in close agreement with
experimental data. Preisach model has advantages such as a simple numerical implementation
when compared to phenomenological and thermodynamic-based models, being an interesting
approach useful for a wide range of applications that include different macroscopic behaviors.

Keywords: shape memory alloys, hysteresis, preisach model, everett function, experimental,
numerical simulations

1. Introduction

Shape memory alloys (SMAs) belong to the class of smart
materials that have a series of complex thermomechanical
behaviors, including shape memory effect, pseudoelasticity,
phase transformation due to temperature variation, internal
subloops due to incomplete phase transformation, and tension-
compression asymmetry [1–3]. The remarkable properties
related to SMAs are due to solid-solid martensitic phase trans-
formations and hysteretic behavior is the essential point of
these complex phenomena involved.
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These materials have a significant potential for applica-
tions in different areas such as automotive, biomedical, civil
engineering, oil and gas, robotics, and aerospace fields [4–
14]. In addition, due to their capacity to dissipate energy and
to recover large deformations during the phase transformation
process, the pseudoelastic behavior has a great potential for
applications in vibration attenuation that can be used in differ-
ent mechanical equipment that show large frequency ranges,
devices exposed to impact loads, and earthquake structures [2,
15–19].

The development of engineering applications and new
devices that use SMAsmust be associated with a proper under-
standing of their thermomechanical behavior. In this regard,
SMA modeling is an essential task to be considered, and dif-
ferent approaches can be employed for this aim. In general,
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it can be considered a multiscale description varying from
micro to macroscopic levels. The most interesting approach
includes the thermodynamic-based models that encompass the
phenomenological macroscopic behaviors.

Several constitutive models are proposed to describe the
thermomechanical behavior of SMAs. A general review of the
main models is discussed by Paiva and Savi [20], Khandelwal
and Buravalla [21], Cisse et al [22, 23], and Chowdhury
[24]. Among these models, it is important to highlight one-
dimensional models: Falk [25, 26], Tanaka [27], Brinson [28],
Auricchio and Sacco [29], Savi et al [30], Paiva et al [31], and
Adeodato et al [32]. For three-dimensional media, it is import-
ant to highlight theworks developed by Souza et al [33], Popov
and Lagoudas [34], Auricchio et al [35], Oliveira et al [36,
37], Chemisky et al [38], Phillips et al [39], and Dornelas et al
[40, 41].

Experimental-based or geometric-basedmodels are another
alternative that avoids the definition of material properties,
presenting a generalist perspective that allows the descrip-
tion of different phenomena including magnetic, ferroelectric,
optical, superconducting, adsorption, economic, and mech-
anical. Usually called hysteresis models, they are essentially
based on experimental data, being adjusted by geometrical
perspectives and with simplicity as an advantage.

According to Khandelwal and Buravalla [21], there are two
main approaches in the literature using hysteresis models, ori-
ginally employed to describe magnetic materials: the Preisach
model and the Duhem–Madelung model. The Preisach model
promotes the integration of the material response consid-
ering two fixed states, which represent the type of trans-
formation that occurs. On the other hand, the Duhem–
Madelung model represents the hysteresis through differential
equations considering two differential operators to represent
the loading and unloading processes. In addition, Bouc–Wen,
Prandtl–Ishlinskii, and Krasnosel’skii–Pokrovkii models are
also employed to describe hysteresis, being explored by sev-
eral researchers such as Kuhnen [42], Al Janaideh et al [43,
44], and Zakerzadeh and Sayyaadi [45].

The classical Preisach model [46] was proposed in 1935 to
represent the ferromagnetic behavior [47]. Only in the 1970s,
a new interpretation of the Preisach model was presented by
Krasnosel’skii [48], being employed for a general representa-
tion of the hysteretic behavior. In brief, this model describes
the hysteresis from the superposition of operators in a trian-
gular domain, defined in an abstract space. The use of the
Preisach model to describe smart material hysteresis has been
explored in several works developed in the last few years. In
this regard, piezoelectric materials were discussed by Song
et al [49], Dong et al [50], and Xue et al [51]; while mag-
netostrictive materials were treated by Adly et al [52], Davino
et al [53], Li et al [54], and Trapanese et al [55].

Concerning SMAs, it should be highlighted the work of
Smith [56] that presented a discussion of the use of the
Preisach model for SMA modeling. Hughes and Wen [57, 58]
listed the microstructural mechanisms that promote hysteresis
in SMAs and piezoelectric materials, identifying similarities
between these materials and ferromagnetic materials. Gorbet

et al [59] developed numerical-experimental comparisons
considering the Preisach model, and experimental results
obtained through an actuator composed by SMA wires.
Results showed that the model responses are in good agree-
ment with experimental data attesting to the model’s ability to
represent the SMA phenomena.

Mayergoyz [48, 60] developed a new formulation of the
Preisach model using Everett functions, built from experi-
mental data. This approach facilitates the correlation with
experimental data, simplifying the numerical implementation.
Khan and Lagoudas [61] employed the Preisach model to
simulate the response of pseudoelastic SMA springs used
in dynamical vibration absorbers using the formulation pro-
posed by Mayergoyz [48]. Rao and Srinivasa [62] developed
a hybrid model based on the work proposed by Doraiswamy
et al [63] to simulate the pseudoelastic response for SMA
wires and springs. The model combined thermodynamics
principles and Preisach model to separate the thermoelastic
and dissipative responses. Rao et al [64] investigated the
response of pseudoelastic SMA wires subjected to torsional
loads with subloops. Numerical-experimental comparisons
using the model proposed by Rao and Srinivasa [62] were
performed, showing that the thermodynamic approach has a
broader predictive capacity when compared to the classical
Preisach model. In addition, other studies are available con-
sidering the Preisach model to describe the characteristics of
hysteresis in SMAs, for instance: Ktena et al [65], Matsuzaki
et al [66]; Liang et al [67], Rao and Srinivasa [68], and Chen
et al [69].

This paper investigates the use of the Preisach model
for the thermomechanical description of SMAs, consider-
ing different macroscopic behaviors. The classic Preisach
model is reviewed and an alternative procedure using the
Everett function built from experimental data is discussed.
Experimental tensile tests are carried out to define refer-
ence cases. Numerical simulations are carried out, evalu-
ating the model capability to describe the SMA thermo-
mechanical behavior, including internal subloops. Results
showed that the model responses are in close agreement with
experimental data. Afterward, the model is applied to dis-
tinct macroscopic behaviors including stress–strain and strain-
temperature curves of wires and force-displacement curves of
helical springs. These results show broader possibilities asso-
ciated with the SMA description. The Preisach model showed
to be an interesting approach for the description of a wide
range of applications, being useful for applications where pre-
vious tests are not available to determine model parameters.

After this introduction, this work is structured as follows.
Section 2 presents an experimental investigation consider-
ing pseudoelastic wires subjected to different load conditions
to evaluate the pseudoelasticity and internal subloops due to
incomplete phase transformation. Section 3 presents the math-
ematical fundamentals of the Preisach model and a discussion
of the Everett function showing its construction from experi-
mental data. Numerical simulations and their comparison with
the experimental data are presented in section 4. Initially, a
comparison with reference experimental data is performed
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and afterward, other results from the literature are employed
considering different macroscopic behaviors including SMA
springs. The conclusions are presented in section 5.

2. Experimental investigation

This section presents the main macroscopic characteristics
of the thermomechanical behavior of SMAs through exper-
imental observations. The experimental tests are performed
using a pseudoelastic Ni56Ti44 (wt.%) circular section wire
in an as-received condition, with a diameter of 1.30 mm man-
ufactured by Sandinox biomaterials. Quasi-static tensile tests
are performed using an electro-mechanical testing machine,
Instron 5882, employing a 30 kN static load cell and strain
measurement based on displacement with a gage length of
100 mm. For more details about the experimental setup, see
Dornelas et al [41].

The specimen is subjected to a training process through a
quasi-static cyclic tensile test with a peak stress of 900 MPa
and a stress rate of 180 MPa min−1. Figure 1(a) shows the
stress–strain curves obtained from 50 cycles, highlighting the
first and last cycles during the training process. Figure 1(b)
presents the evolution of the strain over the cycles, observing
the stabilization after approximately thirty cycles. This stabil-
ization is associated with the transformation induced plasticity
(TRIP), being essential for the use of SMAs in their various
applications, allowing response repeatability. It is noticeable
that the stabilization process promotes a reduction of the SMA
functional properties, such as the size of the hysteresis loop
and the strains where phase transformations start and finish
[37].

2.1. Cyclic tests

After the training procedure, the pseudoelastic behavior is
exploited considering different thermomechanical loads by
applying prescribed strain. Initially, a test considering nine
cycles, with maximum strain varying between 1% (in the first
cycle) and 9% (in the last cycle) and minimum strain close
to zero, with a loading rate of 0.5%min−1 is of concern.
Figure 2(a) shows the test loading history while figure 2(b)
presents the corresponding stress–strain curve. Note that the
SMA sample does not present phase transformation during
the first cycle (a maximum strain of 1%), showing incomplete
phase transformation between cycles two and six. From the
seventh cycle, the sample presents complete phase transform-
ation associated with the external loop.

Two other experimental tests are presented in the sequel
defining different internal subloops. Figure 3(a) shows amech-
anical loading at a strain rate of 0.5%min−1. Figure 3(b)
presents the stress–strain curve showing an external hys-
teresis loop, an envelope of the two internal subloops due
to incomplete phase transformation. A new loading pro-
cess is presented in figure 4(a) considering a strain rate of
1%min−1. Figure 4(b) presents the stress–strain curve where
it is observed a subloop due to the incomplete phase trans-
formation and an external loop that represents the complete
transformation.

3. Mathematical model

This section presents the description of the SMA thermo-
mechanical behavior through the Preisach model. Initially, the
Preisach model is presented and afterward, the Everett surface
is discussed showing its construction from experimental data.

3.1. Preisach model

The Preisach model is a generalist description that can be
employed for multiphysics hysteretic phenomena. The model
is built from elementary operators defined in an abstract space,
called Preisach hysteresis operators, which correspond to two
states, such as the SMA austenitic and martensitic phases.

The Preisach operator, γ̂αβ , is combined in rectangular
loops in an input-output diagram, representing a hysteretic
behavior [48]. In addition, this operator is associated with
abstract variables, α and β, respectively associated with two
directions of transformation, as illustrated in figure 5 which
shows the operator as a function of some input (such as the
strain, ε). Therefore, when the input is increased, the ascend-
ing branch a-b-c-d-e is followed. On the other hand, when the
input decreases, the descending branch e-d-f-b-a is followed.

In this regard, a generic hysteresis curve such as
stress–strain (σ− ε), force-displacement (f − u), or strain–
temperature (ε− T) can be represented as a sequence of
elementary transformations, expressed by the superposition
of elementary operations defined by hysteresis operators.
Therefore, it is assumed, without loss of generality, a hys-
teresis curve of stress (output), as a function of strain (input),
which is expressed as follows, assuming that α! β since
hysteresis is a dissipative phenomenon:

σ (ε) = Γ̂ε =

αnˆ
α0

βnˆ

β0

µ(α,β) γ̂αβdαdβ (1)

where µ(α,β) is the Preisach function and Γ̂ represents the
concise notation of the Preisach hysteresis operator [48]. In
addition,α0 and β0 represent the smallest switching values and
αn and βn represent the highest switching values.

Mayergoyz [48] proposed a different approach by repla-
cing the integration by a summation and the Preisach func-
tion by the Everett function (F), built from experimental data.
This procedure mitigates amplification errors and simplifies
the numerical implementation [61]. Therefore equation (1) can
be rewritten as a summation of Everett functions, as follows:

σ (ε) =
n∑

k=1

[F(αk,βk−1)−F(αk,βk)] . (2)

On this basis, the SMAhysteretic behavior can be described
using the Preisach model following the structure illustrated
in figure 6. Experimental data are used to build the Everett
function that allows one to establish the relationship with the
Preisach space.

In this regard, numerical simulations can be considered as
a geometrical-based approach adjustment from experimental
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Figure 1. Quasi-static tensile tests of a pseudoelastic NiTi wire, training procedure. (a) Cyclic stress–strain response presenting 50 cycles;
(b) TRIP strain stabilization throughout the cycles.

Figure 2. Quasi-static tensile tests of a pseudoelastic NiTi wire with a strain rate of 0.5%min−1. (a) Loading history; (b) stress–strain curve.

Figure 3. Quasi-static tensile tests of a pseudoelastic NiTi wire with a strain rate of 0.5%min−1. (a) Loading history; (b) stress–strain curve
considering two internal subloops.
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Figure 4. Quasi-static tensile tests of a pseudoelastic NiTi wire. Loading history, and stress–strain curves with a strain rate of 1%min−1.
(a) Loading history; (b) stress–strain curve considering one internal subloop.

Figure 5. Definition of the Preisach hysteresis operator.

data. In essence, experimental data provide a set of points that
defines the Everett surface that is employed by the Preisach
approach to generate a synthetic thermomechanical behavior
SMAs.

3.1.1. Geometric interpretation. The geometric interpreta-
tion of the Preisach triangle is shown in figure 7 considering a
stress–strain curve. In this regard, the triangular representation
is built by considering that the upper limit of the α coordinate
corresponds to the maximum strain value. On the other hand,
the lower limit of the β coordinate corresponds to the min-
imum strain value. The line α= β is added to these limits,
considering α! β. In addition, the stress value at any point
in the hysteresis region can be obtained from the appropriate
choice of α−β coordinates.

The representation of the hysteresis evolution in the
Preisach triangle is schematically showed in figure 8. In gen-
eral, an increase of the value of ε (ε̇> 0) provides a change

in the α-axis while a decrease (ε̇< 0) changes the β-axis.
Furthermore, an increase of the value of ε implies summing a
value of the Everett function in equation (2) while a decrease
of ε implies subtraction.

On this basis, at the initial time, t0, the material has a strain
ε0 at the beginning of the hysteresis region, corresponding to
the coordinates in the Preisach plane (α0,β0) = (ε0,ε0). After
identifying the coordinates in the Preisach plane, the Everett
surface is calculated and applied in equation (2) obtaining the
stress value, σ (ε) = F(α0,β0). Afterward, the strain increases
and reaches the value ε1. The variation of strain is represen-
ted by the grayscale color in the Preisach triangle. The divi-
sion is performed by the line α= ε, which moves upward as
ε increases until it reaches ε1. Since this is the first variation in
the α coordinate, it is labeled with the index 1. Thus, the new
coordinates in the Preisach plane are (α1,β0) = (ε1,ε0), and
the Everett function is determined. By applying equation (2),
the value of the stress is calculated as σ (ε) = F(α1,β0). The
Preisach model has the property of storing only the extreme
points of the α and β coordinates (wiping-out property) [48,
60]. Therefore, an increment in the α coordinate promotes the
replacement of α0 by α1 resulting in the replacement of the
Everett function F(α0,β0) by F(α1,β0).

In the sequence, it is assumed that the input variable
decreases continuously until it reaches a minimum value
ε2. The boundary line showed in the Preisach triangle has
two straight lines: one horizontal and one vertical. The ver-
tical line moves until it reaches β = ε2. Once again, apply-
ing the coordinates obtained in the Preisach plane (α1,β1) =
(ε1,ε2), the Everett function is determined. Therefore, the
stress value can be obtained through equation (2): σ (ε) =
F(α1,β0)−F(α1,β1). This result illustrates another property
of the Preisach model that consists of accumulating the values
obtained in previous operations. Note that σ (ε) is composed
by a portion obtained in the previous step accumulated with
the result obtained in the current step.

By considering new inputs up to ε5, the evolution of
the coordinates in the Preisach plane is obtained, and
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Figure 6. Schematic picture of the SMA description using the Preisach model.

Figure 7. Preisach triangle and the associated hysteresis in stress–strain curve.
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Figure 8. Evolution of the Preisach triangle and the associated hysteresis obtained from a prescribed strain.

these coordinates are employed in the calculation of the
Everett surface. Equation (2) allows the determination of
the stress values. Therefore, an increase in the strain value
promotes a variation in the α -axis and an accumulation

of a positive portion of the Everett function. On the
other hand, a decrease in the strain value implies a vari-
ation in the β -axis and a negative portion of the Everett
function.
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Figure 9. Trapezoid coordinates on the boundary line. (a) Increasing input (b) decreasing input.

In general, expressions for stress as a function of F(αn,βn)
can be divided into two cases based on strain increase or
decrease. For the strain increase (ε̇> 0), showed in figure 9(a),
the last change in ε corresponds to a value in the α coordinate,
which segment is a horizontal line. Therefore, equation (2) can
be rewritten as follows:

σ (ε) =
n−1∑

k=1

[F(αk,βk−1)−F(αk,βk)] +F(εn,βn−1) . (3)

On the other hand, for a decreasing strain (ε̇< 0), showed
in figure 9(b), the final segment is a vertical line, and the
last change in ε corresponds to a value in the β coordinate.
Therefore, equation (2) can be rewritten as:

σ (ε) =
n−1∑

k=1

[F(αk,βk−1)−F(αk,βk)] +F(αn,βn−1)

−F(αn,εn) . (4)

3.2. Everett function

The Everett function is a surface on ℜ3, built from experi-
mental data and establishing a connection with the Preisach
domain. The Everett surface is defined by the number of
experimental points necessary for the description of the hys-
teretic behavior, given through the coordinate points (α,β,F)
associated with the Preisach triangle. An interpolation can be
employed to define the Everett function.

The construction of the Everett surface is now in focus
using an experimental stress–strain curve as example.
Figure 10 illustrates the construction of the Everett surface
by dividing the stress–strain space into nine regions. The
experimental points identified in the stress–strain curve are
highlighted by red dots, showed in figure 10(a). Figure 10(b)
presents the Preisach triangle, showing that each experimental
point has an equivalence in the Preisach triangle space. These

experimental points are represented as solid points, while the
gray points represent the external points to the Preisach tri-
angle. Finally, figure 10(c) shows the Everett surface obtained
by mapping the experimental points. It is observed that the
Everett function appears as an envelope of the region of the
Preisach triangle (solid red dots).

On this basis, a procedure to determine the coordinate
points (α,β,F), is presented in the sequel:

1. Select the experimental data.
2. Divide the hysteresis region into an appropriate number of

divisions using vertical lines.
3. Identify the experimental points obtained by the intersec-

tion between the vertical lines and the experimental data.
4. Identify the experimental strain values to obtain α and β

values.
5. Build the Hαβ stress matrix, which defines the third

coordinate to obtain the Everett surface.
6. Build tshe Everett function by two-dimensional linear

interpolation.

To illustrate the procedure for obtaining the Hαβ matrix,
consider the experimental data showed in figure 10(a) with
nine divisions of the stress–strain space. From lines ε0→9,
nineteen experimental points are obtained as showed in table 1.
It is observed that points 1 and 19 are coincident, and there-
fore, present the same strain and stress values. There is a cor-
respondence between the stress–strain space and the Preisach
domain and therefore, it is necessary to map the Preisach plane
for ten lines ε0→9, considering αi = βi = εi (i = 0, 1, 2, … 9)
as illustrated in figure 10(b).

The construction of Hαβ matrix is illustrated in table 2,
which allows one to calculate coordinate F. The values of
the first line are found by subtracting the smallest stress
value of the experimental points of the austenite → martens-
ite transformation (σ1) from the stress values of each exper-
imental point of this same transformation (σ1 −σ10). On
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Figure 10. Everett surface construction. (a) Experimental points mapped from a division of the hysteresis region; (b) associated Preisach
triangle considering the mesh obtained from the proposed division; (c) Everett surface obtained.

Table 1. Experimental points obtained by dividing the stress–strain space into nine regions.

Experimental point Strain Stress

1 ε0 σ1

2 ε1 σ2
...

...
...

9 ε8 σ9

10 ε9 σ10

11 ε8 σ11
...

...
...

18 ε1 σ18

19 ε0 σ19 = σ1

Table 2. Determination of the Hαβ matrix.

α0 α1 . . . α8 α9

β0 σ1 −σ1 σ2 −σ1 . . . σ9 −σ1 σ10 −σ1

β1 0 0 . . . 0 σ10 −σ18
...

...
...

. . .
...

...
β8 0 0 . . . 0 σ10 −σ11

β9 0 0 . . . 0 σ10 −σ10

the other hand, the values in the last column are obtained
by subtracting the highest stress value of the experimental
points of the martensite → austenite transformation (σ10)
from the stress values of each experimental point of this
transformation (σ19 −σ10). After obtaining the Hαβ matrix,

a linear interpolation is performed and the Everett sur-
face is obtained, as showed in figure 10(c). Based on
the considered experimental points, the matrix Hαβ has
only the first row and the last column with non-vanishing
values.
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Figure 11. Numerical results obtained from the Preisach model considering four regions in the stress–strain space of an experimental result.
(a) Selected points on the experimental curve used in the numerical implementation; (b) associated Preisach triangle; (c) Everett surface; (d)
numerical-experimental comparison.

4. Numerical simulations

Numerical simulations are now carried out in order to show the
Preisach model’s capabilities to capture the thermomechan-
ical behaviors of SMAs. In this regard, comparisons between
numerical and experimental results are presented. Initially, a
discussion on the construction of the Everett surface and the
numerical representation of the mechanical behavior of the
material is presented. Next, the numerical-experimental com-
parisons are shown. Finally, other macroscopic phenomena
related to SMAs are analyzed considering experimental res-
ults available in the literature.

4.1. Everett function

The proper definition of the Everett surface is essential for
the description of the thermomechanical behavior of SMAs
through the Preisach model. In this regard, the procedure
discussed in the previous section is considered to evaluate
the relationship between the number of experimental points
necessary for the construction of the Everett surface and the

numerical results. Therefore, it is possible to estimate the min-
imum number of divisions of the experimental space necessary
for a correct representation of the material behavior.

This analysis is developed from the experimental results
discussed in section 2.1 , figure 2, considering only the external
loop. Initially, consider the stress–strain space divided into
four regions, associated with nine experimental points, as
showed in figure 11(a). The Preisach triangle associated with
the experimental points is illustrated in figure 11(b) while
the Everett surface is shown in figure 11(c). The numerical-
experimental comparison is shown in figure 11(d) where it
is observed a discrepancy between results, demonstrating that
the number of experimental points for the construction of the
Everett surface is insufficient for the correct description of the
pseudoelastic behavior.

A refinement is adopted considering nine divisions in the
stress–strain space, which is associated with nineteen experi-
mental points as illustrated in figure 12(a). Figure 12(b) shows
the correspondent Preisach triangle and figure 12(c) presents
the Everett surface where it is noticeable a smoother surface
when compared with the previous case. Since only the external
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Figure 12. Numerical results obtained from the Preisach model considering nine regions in the stress–strain space of an experimental result.
(a) Selected points on the experimental curve used in the numerical implementation; (b) associated Preisach triangle; (c) Everett surface; (d)
numerical-experimental comparison.

loop is used for both tests, the Everett function is just an envel-
ope of the Preisach triangle. The numerical-experimental com-
parison is presented in figure 12(d) showing a good agreement
with experimental data. Based on that, it is assumed nine divi-
sions as a minimum value for a correct representation of the
SMA macroscopic behavior through the Preisach model. This
value is greater than the one employed byDel Hoyo [70] where
eight divisions were employed to estimate the Everett function
to describe several levels of magnetization using the Preisach
model.

4.2. Pseudoelastic tests

This section treats the experimental pseudoelastic tests dis-
cussed in section 2.1. Initially, the Everett function is estimated
considering internal subloops, whichmap the interior region of
the Preisach triangle domain. Figure 13(a) presents the exper-
imental test with nine load cycles with maximum strain vary-
ing between 1% and 9% and minimum strain close to zero.
Nine partitions in the stress–strain space are adopted and the

experimental points are selected for the construction of the
Everett surface. Figure 13(b) shows the Preisach triangle con-
sidering selected experimental points. The Everett function is
defined in every region of the Preisach triangle as showed
in figure 13(c). Figure 13(d) presents the numerical results
obtained from the Preisach model, showing that the model
captures the general qualitative behavior of the SMA during
pseudoelastic loading tests.

Figure 14 highlights the numerical-experimental compar-
ison for different cycles (2, 4, 6, and 9), showing all numer-
ical cycles in the background, in grayscale, to facilitate
the visualization. It should be pointed out a good agree-
ment between numerical and experimental results, showing
the model’s capability to describe the SMA pseudoelastic
response. Furthermore, results demonstrate that the use of nine
divisions in the experimental stress–strain space is satisfactory
for the construction of the Everett function.

Based on the Everett function built for the previous
test, two new numerical-experimental comparisons are per-
formed based on the experimental results discussed in section
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Figure 13. Pseudoelastic behavior of a NiTi wire during tensile tests. (a) Selected points on the experimental curve used in the numerical
implementation; (b) associated Preisach triangle; (c) Everett surface; (d) numerical result.

2.1. Initially, consider the experimental result presented in
figure 15(a) which shows a stress–strain curve with two
internal subloops due to incomplete phase transformation.
Figure 15(b) shows the numerical-experimental comparison,
where it is possible to observe a good agreement between
the results. This result shows that two different tests can be
described by the same Everett function, which is an interest-
ing property that enlarges the model application.

A new test is in focus considering internal subloops dis-
cussed in figure 16(a). Figure 16(b) presents the numerical-
experimental comparison, where it is possible to observe a
good agreement. Once again, it should be highlighted that
the Preisach model is able to reproduce the thermomech-
anical behavior of SMAs under different loading conditions
using the same Everett function. Note that once the Everett
function is properly defined from a general experimental test,
figure 13(c), the model can reproduce other behaviors associ-
ated with SMAs, such as different subloops due to incomplete
phase transformations.

4.3. Thermal loadings

The thermomechanical behavior of SMAs due to thermal
loadings is now in focus considering the experimental res-
ult presented by Qin et al [71] as reference. This work stud-
ied NiTi wires subjected to different thermal loads, initially
in the austenitic phase, at constant stress. Figure 17(a) shows
the experimental strain-temperature curve obtained after ten
training cycles varying the sample temperature between 367–
292 K and the respective selected experimental points. The
Everett function is built considering nine divisions, where it
is possible to identify the selected experimental points. The
temperature is assumed to be the input variable while strain is
the output. Since the increase in temperature causes the strain
decrease, the Preisach triangle is adjusted considering α" β
as showed in figure 17(b). Experimental points are related to
the external loop and therefore, the Everett function is just the
envelope of the Preisach triangle as illustrated in figure 17(c).
Figure 17(d) presents the comparison between numerical and
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Figure 14. Pseudoelastic behavior of a NiTi wire during tensile tests. Numerical-experimental comparative for different cycles. (a) Cycle 2;
(b) cycle 4; (c) cycle 6; (d) cycle 9.

Figure 15. Pseudoelastic behavior of a NiTi wire during tensile tests, strain rate of 0.5%min−1. (a) Experimental result;
(b) numerical-experimental comparative.
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Figure 16. Pseudoelastic behavior of a NiTi wire during tensile tests, strain rate of 1%min−1. (a) Experimental result;
(b) numerical-experimental comparative.

Figure 17. Thermal cyclic test under a constant uniaxial load based on the experimental test due to Qin et al [71]. (a) Selected points on the
experimental curve used in the numerical implementation; (b) associated Preisach triangle; (c) Everett surface; (d) numerical-experimental
comparison.
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Figure 18. Experimental and numerical load-displacement curves based on the experimental test due to Savi et al [72]. (a) Selected points
on the experimental curve used in the numerical implementation; (b) associated Preisach triangle; (c) Everett surface; (d)
numerical-experimental comparison.

experimental results showing that the Preisach model captures
the general behavior observed in experimental data, presenting
a good agreement.

4.4. SMA helical springs

The Preisach model is now employed to analyze the macro-
scopic behavior of a NiTi helical spring subjected to tensile
tests considering experimental results presented by Savi et al
[72]. Figure 18(a) shows the experimental force-displacement
curve divided into nine regions and the respective selected
points for the construction of the Everett function. It should
be pointed out that now the input is the displacement while
the output is the force. Figure 18(b) shows the associated
Preisach triangle. Once again, the Everett function appears as
an envelope of the Preisach triangle region since only exper-
imental points of the outer loop are considered, as showed in
figure 18(c). Figure 18(d) presents the numerical-experimental
comparison where it should be pointed out a good agreement
between results. It is noticeable that the Preisach model is cap-
able to describe the pseudoelastic behavior of SMA springs

subjected to tensile tests, whichmeans that force-displacement
curves are also possible to be described.

In order to deal with internal subloops related to helical
springs, experimental results proposed by Khan and Lagougas
[61] are evaluated considering a NiTi spring subjected to com-
pression tests with prescribed strain at an ambient temperat-
ure of 25 ◦C. Figure 19(a) shows the force-displacement curve
considering twelve loading cycles, which include internal sub-
loops, and the respective experimental points selected from
twelve divisions of the experimental space. Figure 19(b)
shows the correspondent Preisach triangle that is adjusted
to contemplate the compression test. The Everett function
is defined in the whole Preisach triangle domain as showed
in figure 19(c). The numerical-experimental comparison is
presented in figure 19(d) considering all the load cycles.
Figure 19(e) presents the numerical-experimental comparison
for the outer loop in order to facilitate the visualization of the
proposed test. Once again, themodel allows a close numerical-
experimental agreement, demonstrating its ability to describe
the SMA thermomechanical behavior of springs subjected to
compressive loads.
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Figure 19. Numerical-experimental comparative based on the experimental test due to Khan and Lagoudas [61]. (a) Selected points on the
experimental curve used in the numerical implementation; (b) associated Preisach triangle; (c) Everett surface; (d) numerical-experimental
comparison considering all cycles; (e) numerical-experimental comparison considering the major cycle.

The tension-compression of a NiTi helical spring is now in
focus considering the experimental tests proposed by Speicher
et al [73] as reference. Figure 20(a) presents the experi-
mental data, highlighting the proposed divisions and the exper-
imental points. Figure 20(b) shows the Preisach triangles
associated with both tension and compression. Once again,

only the experimental data of the external loops are con-
sidered, and the Everett function is an envelope of the Preisach
triangles showed in figure 20(c). Figure 20(d) presents the
numerical-experimental comparison indicating a good agree-
ment, showing the model’s capability to represent the tension-
compression of SMA springs.
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Figure 20. Numerical-experimental comparative based on the experimental test due to Speicher et al [73]. (a) Selected points on the
experimental curve used in the numerical implementation; (b) associated Preisach triangle; (c) Everett surface; (d) numerical-experimental
comparison.

5. Conclusions

This work investigates the thermomechanical description of
SMAs using the Preisach model built from the Everett func-
tion that, in turn, is built from experimental data. Experimental
tests are performed to identify some macroscopic character-
istics of SMAs considering wire samples subjected to tensile
tests. Different thermomechanical loads are of concern after a
training process responsible for the phase transformation sta-
bilization. In this regard, experimental tests provide different
stress-train curves related to internal subloops due to incom-
plete phase transformations. Numerical simulations are car-
ried out and compared with the proposed experimental data,
showing a good agreement. An important conclusion is that the
thermomechanical behavior of SMAs can be described from a
limit amount of information provided by experimental tests,
being possible to extrapolate the behavior observed in experi-
mental data based on the available information.

In addition, other tests are carried out based on differ-
ent experimental data available in the literature considering
strain-temperature of wires and force-displacement of helical
springs. Once again, results show that the model responses are

in close agreement with experimental data. The model is able
to capture the main features of the SMA thermomechanical
behavior, properly describing stress–strain, strain-temperature
and force-displacement curves. Besides, it should be pointed
out that different tests can be reproduced with the same Everett
function, which enlarges the model capability to describe mac-
roscopic behaviors.
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