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Abstract Chaos control has been applied to a vari-
ety of systems exploiting system dynamics charac-
teristics that present advantages of low energy con-
sumptionwhen comparedwith regular controllers. This
work deals with the chaos control of a smart system
composed of a pendulum coupled with shape mem-
ory alloy (SMA) elements. SMAs belong to smart
material class being employed in several applications
due to their adaptive behavior. The basic idea is to
apply the extended time-delayed feedback control on
an SMA–pendulum system by exploring the SMA
temperature-dependent behavior.Actuation constraints
are considered based on heat transfer equations. Con-
troller parameters are estimated using Floquet theory
employed to analyze controlled unstable periodic orbits
(UPOs). Results show the capability of the thermal con-
troller to perform UPO stabilization. Energy consump-
tion and stabilization time are discussed establishing a
comparisonwith an ideal controller, without heat trans-
fer constraints.
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1 Introduction

The control of chaotic behavior can be applied to a
variety of systems to provide flexibility switching from
different periodic responses. In essence, the idea is to
take advantage of unstable periodic orbits embedded
on the chaotic attractor that can be stabilized with low
energy consumption. This can be used to stabilize high-
power lasers [1], communication systems [2], mechan-
ical systems [3,4] and energy-harvesting systems [5].
Chaos control is related to several techniques varying
from discrete to continuous approaches [3,6].

The use of smart material remarkable properties
for actuation purposes is an interesting idea due to
the coupling between different physical fields. This
coupling characteristic allows one to convert differ-
ent kinds of energy, conferring adaptive capacity to
the system. Shape memory alloys (SMAs) belong to
this class of material presenting solid phase transfor-
mations. Among other interesting properties, SMAs
present pseudoelastic and shape memory effects that
have been applied on dynamical systems [7], associ-
ated with vibration control [8], origami structures [9],
robotics [10] and energy harvesting [11,12]. Systems
with this type of material have intrinsic nonlinearities
usually presenting chaotic behavior [7]. This charac-
teristic opens the possibility to implement chaos con-
trol strategies for stabilization on desirable situations
[4,13].
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SMAs have an increasing importance on applied
dynamics exploiting either property changes due to
temperature variations or hysteretic dissipation [7]. The
use and characterization of SMAs as actuators are dis-
cussed in some references [14–16] that focus on their
thermomechanical modeling. An essential problem to
the use of SMAs in dynamical systems is their actua-
tion frequency that is limited due to heat transfer issues.
This subject is discussed in only few works in the lit-
erature, and its connection with control approaches is
not treated. In this regard, it is important to evaluate
the real capacity of SMA actuators to provide control
efforts and their applicability in different controllers.

This work investigates the thermal control of an
SMA system considering heat transfer constraints.
Basically, an extended time-delayed feedback control
is applied by SMA thermal actuation on an SMA–
pendulum system composed of a nonlinear pendulum
coupled with SMA springs. Nonlinear dynamics of this
system is previously addressed on reference [17] that
shows the system ability to change equilibrium point
structure and responses due to temperature variations.
Floquet theory is employed to define controller param-
eters. Discussions about energy consumption and sta-
bilization time are presented establishing a comparison
between controllers with andwithout heat transfer con-
straints, respectively named as constrained and ideal
controllers. Numerical simulations show the possibil-
ity of using shape memory alloy actuators to control
chaotic behavior using temperature variations.

After this introduction, the paper presents a discus-
sion about the delayed feedback control approach and
the use of Floquet theory to estimate controller param-
eters. The next section presents the mathematical mod-
eling of the SMA–pendulum system and the thermal
actuation of the controller. Afterward, numerical simu-
lations of the uncontrolled system are discussed and the
chaotic response is analyzed identifying UPOs embed-
ded on the attractor. On the following section, the iden-
tification of the controller parameters is performed and
a discussion about the differences between constrained
and ideal controllers is presented. Concluding remarks
are then presented.

2 Chaos control method

Chaos control has as its main goal the stabilization of
unstable periodic orbits (UPOs) embedded on chaotic

attractor using discrete or continuous methods [18].
Basically, it consists of a two-stage method composed
of a learning stage, where UPOs are identified and con-
troller parameters are defined, and a stabilization stage,
where UPO stabilization is performed. De Paula and
Savi [3,6] presented a general overview of chaos con-
trol methods establishing a comparative analysis of the
capability of each one of them to stabilize a desired
UPO.

The extended time-delayed feedback control (ETDF)
[19] is an interesting continuous approach that has been
successfully used in various experimental applications
in electrical systems [20–23]. The controlled system is
governed by the following equation:

ẋ = f (x, t) + p( y, y(t − τ), y(t − 2τ), . . .),

y(t) = Cx, (1)

where x ∈ R
N is the system state, t is the time,

f (x, t) ∈ R
N defines the system dynamics, and (˙)

represents time derivative; y ∈ R
M is the system obser-

vation provided by the operator C = C (x) ∈ R
M×N

applied to state variables; p ∈ R
N is the control signal

defined as follows

p (y, t) = K

[
(1 − R)

∞∑
n=1

Rn−1 y (t − nτ) − y (t)

]
,

(2)

where K ∈ R
N×M is a proportional gain and R ∈ R

is a controller parameter; τ is the period of the target
UPO to be controlled.

Controller parameters K and R are defined from the
analysis of the UPO stability under control action. For
the sake of simplicity, K is assumed to be a scalar,
K ∈ R, indicating that only one state is accessible to
the controller (p ∈ R) and only one output is used as
feedback (y ∈ R). Although parameters K and R can
be estimated using a try and error strategy, the formal
estimation needs to evaluate the UPO stability under
control action. In this regard, either Lyapunov expo-
nents [4,21,24] or Floquet exponents [20,25] can be
employed to define controller parameters.

Floquet exponents are useful to analyze the stability
of a general periodic orbit as their calculation requires
only one integration period. As a matter of fact, it con-
stitutes a spectrum μ ∈ C

N of values μ j ∈ C for
each system dimension. In brief, these exponents mea-
sure how a solution on the neighborhood of a periodic
orbit, δx, diverges during one period. If all exponents
have a negative real part, the solution converges to the
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orbit. On the other hand, if any Floquet exponent has a
positive real part, the solution diverges from the orbit.
As chaos control methods have the goal to stabilize a
UPO, Floquet exponents can be employed to evaluate
the stability of that controlled UPO.

Floquet exponents of a target UPO are estimated
following the procedure presented in reference [20]. It
considers a time evolution linearization around a ref-
erence path x0 = x0 (t), leading to a displacement
δx = x− x0 of the path. This leads to a time evolution
given by:

δ ẋ = Df (t; x0)δx(t)

+ K B

[
(1 − R)

∞∑
n=1

Rn−1δx(t−nτ)−δx(t)

]
,

(3)

where Df is the Jacobian matrix and B is the gradient
of the function C with respect to its variables.

Since Eq. 3 has the form ẋ = Ax, with a period-τ
such that, A (t) = A (t + τ), Floquet theory estab-
lishes that:

δx = eH tq, (4)

where q = q (t) is a period-τ function and H = H (μ)

is a matrix that has the spectrum of the Floquet expo-
nents as eigenvalues. Under this assumption, delayed
and present states are related as follows:

δx (t − nτ) = e−Hnτ δx (t) . (5)

Equation 5 allows one to calculate the infinite sum of
Eq. 3, which leads to:

δ ẋ =
[
Df (t; x0) + K B

(
I − e−Hτ

) (
I − Re−Hτ

)−1
]

δx,

(6)

where I is the identity matrix. Note that Eq. 5 correlates
delayed states reducing the dimension of Eq. 6 from
infinity to the uncontrolled system dimension N . Nev-
ertheless, this reduction makes the displacement time
evolution to be dependent on the Floquet exponents.

By considering the evolution of a single period, Eq. 5
can be rewritten as:

δx (τ ) = eHτ δx (0) . (7)

Therefore, Floquet exponent calculations can be done
using the following equation:

δx (t) = ψ (t) δx (0) , (8)

where ψ is the fundamental matrix and ψ (0) = I.
The time evolution of the fundamental matrix can be
obtained by replacing Eq. 8 with Eq. 6:

ψ̇ =
[
Df (t; x0) + K B

(
I − e−Hτ

) (
I − Re−Hτ

)−1
]

ψ .

(9)

Under these assumptions, Floquet exponents can be
calculated as follows:

ψ (τ ;μ) − eμ j τ I = 0. (10)

Since matrix ψ = ψ (t;μ) depends on the Floquet
exponents themselves (Eq. 9), it is necessary to estab-
lish a proper procedure for their calculation. In this
regard, Floquet exponents are estimated using a dif-
ferential evolution-based algorithm [26], presented in
Fig. 1. This optimization scheme considers, on its kth
iteration, a population of trial values of Floquet expo-
nents μt r i al [k]. Afterward, the fundamental matrix ψ

is estimated from the integration of Eq. 9 using a fourth-
order Runge–Kutta method and the trial exponents.
After obtaining ψ = ψ

(
τ ;μt r i al [k]

)
, Floquet expo-

nents,μ [k], are recalculated with Eq. 10 and compared
with the initial trial values using an Euclideanmetric on
the complex plane. Thismetric, δμ, is used as ameasure
for each individual. Lower values of δμ indicate a high
level of fitness and probability to leave descendants.
The stop criteria are defined by comparing the fitness
of the individuals with a tolerance value, δTol. If the
fitness of some population individuals is smaller than
the tolerance, the process ends and the best individuals
μbest are chosen. If the criteria are not satisfied, the
algorithm [26] selects the population individuals and
create a new generation μt r i al [k + 1].

It should be pointed out that under an uncontrolled
situation (K = R = 0), Eq. 9 becomes independent of
the Floquet multipliers, allowing one to calculate their
values by a straight time integration of ψ .

3 SMA–pendulum system

Consider a nonlinear pendulum system, shown in
Fig. 2, which is formed by a disk of diameter D (1)
and a lumped mass m (2). The excitation is provided
by a motor–spring–string system where a DC motor
(7) is connected to a string–spring system. The spring
is made of SMA providing an adaptive behavior to the
system. The string–spring system has two springs (6)
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Fig. 1 Algorithm to calculate the Floquet exponents with ETDF
control. μt r i al [k] indicates the kth population, μ [k] is the cal-
culated Floquet exponent population after temporal evolution of
the UPO’s period, δμ is the fitness value, δTol is the stopping
criteria tolerance, and μbest is the best individual on the selected
population

connected by a string. One end of the first spring is
connected to the DC motor, while the other end is con-
nected to a string that involves a disk of diameter d and,
finally, reaches the end of the second spring. The other
endof the second spring is connected to an anchor (5).A
magnetic device provides a controlled dissipation to the
apparatus (3). Costa and Savi [17] analyzed the nonlin-
ear dynamics of this system with special attention on
temperature-dependent behavior. De Paula et al. [27]
discussed the analysis of a similar system, using elas-
tic springs instead of SMA springs, considering both
numerical and experimental approaches.

By considering that φ is the angle of the pendulum
and assuming that dissipation is a combination of linear
viscous and dry friction, respectively, represented by
coefficients ϑ and ξ , the equation of motion is given
by [17,27]:

φ′′ = − ϑ

Jω0
φ′ − ξ

mgD
sign(φ′)

− sin(φ)

2
+ d

2mgD
(Fm − sm), (11)

where J is the pendulum angular inertia, g is the accel-
eration of gravity, and ω0 is a reference frequency
defined as follows,

ω0 =
√
mgD

J
. (12)

Fig. 2 Nonlinear pendulum: a physical model (1) metallic disk;
(2) lumpedmass; (3)magnetic damping device; (4) rotarymotion
sensor; (5) anchor; (6) SMA spring; (7) electric motor. b Param-
eters and forces on the metallic disk. c Parameters for driving
device [27]. d Picture of the experimental setup

Time derivative ()′ is related to a dimensionless time
defined by t∗ = tω0. Moreover, sm is the force of the
anchored spring and Fm is the excitation force of the
spring connected to the motor.

The displacement due to the motor movement is
given by:

123



Chaos control of an SMA–pendulum system using thermal actuation 575

u =
√(

a2 + b2 − 2abcos

(
ωt∗
ω0

+ θ

))

− (a − b) − dφ

2
, (13)

where a is the distance between the center of the disk
and the center of the rotor, θ is the initial phase of the
motor, ω is the excitation frequency, and b is the motor
arm length.

A polynomial constitutive model describes the gen-
eral SMA thermomechanical behavior. Basically, a
polynomial stress–strain–temperature (σ −ε−T ) rela-
tion is considered as follows,

σ = αm (T − TM) ε − βmε3 + β2
m

αm (TA − TM)
ε5,

(14)

where αm and βm are material parameters, T is the
temperature, TM is the temperature below which only
martensitic phase is stable, and TA is the tempera-
ture above which only austenitic phase is stable (at
stress-free state). This equation is based on a potential
energy that presents two minimum points at temper-
atures below TM, representing two martensitic phases
(tension induced and compression induced); threemin-
imum points at temperatures between TM and TA, rep-
resenting the stability of austenite and both martensitic
variants; and finally one minimum point at tempera-
tures above TA, representing the stability of austenite
on a stress-free state.

Spring behavior description is done, assuming that
phase transformation is homogeneous on the spring
cross section. Under this assumption, it is possible to
write a force–displacement–temperature equation that
is similar to the stress–strain–temperature expression
[28]. Hence, the terms related to equations of motion,
Eq. 11, can be written as follows,

Fm = am (T − TM) u − bmu
3

+ b2m
am (TA − TM)

u5 (15)

sm = am (T − TM)
φd

2
− bm

(
φd

2

)3

+ b2m
am (TA − TM)

(
φd

2

)5

. (16)

It should be highlighted that springs need to be pre-
stressed, working in a stretched configuration. More
details of the systemmodeling can be seen in reference
[17].

4 Thermal actuation modeling

The controller is designed in order to use SMA spring
temperature changes as actuation. This is achieved by
the application of an electric current providing heat
through Joule effect. The thermal actuator is modeled
by considering an SMA spring force, Fthermo, given by:

Fthermo = am [(T1 − Tref) u] , (17)

where T1 is the spring temperature and Tref is a refer-
ence temperature.

An ideal controller is the one where temperature
can be altered without heat transfer constraints. Hence,
the controller is able to apply any force and therefore
always applies the calculated control force estimated
by the ETDF method. On the other hand, a constrained
controller has restrictions related to heat transfer and
electrical power.

The definition of the constrained controller consid-
ers that temperature T1 is estimated from the energy
equation. By assuming homogeneous temperature dis-
tributions and similar resistance for all SMA phases
and neglecting thermomechanical coupling terms, the
energy equation is built as a balance of convective dis-
sipation and Joule effect, being written as follows:

T ′
1 = − h

cpω0
(T1 − T∞) + (I1 + Iref)2 Rohn

cpω0
, (18)

where T∞ is the ambient temperature, I1 is the current
on the forcing spring, Iref is a reference current which
maintains the system on the reference temperature Tref ,
Rohn is the spring resistance, cp is the spring thermal
capacity, and h is the convection dissipation coefficient.
Note that a dimensionless time was considered, being
defined in a similar way of the equations of motion.

It should be pointed out that energy equation defines
constraints that limit the SMA temperature. Besides,
current I1 is also restricted between limit values (from
0 to 5 A, for instance).

Under these assumptions, the controller has con-
straints that limit actuation. The difference between the
calculated control force using ETDF, ideal controller
and the constrained one, defined by the constrained
controller, is expressed by variable (eT ) that can be
seen as an error, expressed by a percentage of the max-
imum applied force:

eT = Fthermo − p

max (p)
. (19)
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Moreover, it is interesting to evaluate the power con-
sumed by the controller given by:

Pw = I 21 Rohn. (20)

5 Uncontrolled system dynamics

Numerical simulations of the uncontrolled system are
carried out in order to evaluate system dynamics.
Fourth-order Runge–Kutta method is employed with
time steps that lead to errors smaller than 10−8 esti-
mated by a fifth-order method.

System parameters are the ones experimentally
identified in reference [27]: m = 1.47 × 10−2kg,
D = 9.5 cm, d = 4.8 cm, b = 1.5 cm, a = 16 cm,

ξ = 1.27210−4 Nm, ϑ = 2.36810−5 kg m2

s and g =
9.81m/s2. SMA parameters are adjusted with experi-
mental data related to Nitinol: TA = 289.35K, TM =
282.45K, am = 0.4375N/mK and bm = 150 Pa/m.
Thermal parameters are: Tref = 283.15K, cp = 5 J/K
and T∞ = 281.15K. The convection coefficient h is
chosen on a range of typical experimental values, with
a reference value h = 17.76W/K, that can be varied
in order to evaluate the influence of control constraints.

By considering a forcing frequency ω = 8.5 rad/s
and initial conditions of x (0) = (− 6 rad, 0 rad/sω0),
the system presents a chaotic response (Fig. 3). In
order to assure the chaotic behavior, it is necessary to
calculate the system greatest Lyapunov exponent. If
this value is positive, chaotic regime is confirmed. The
exponent is calculated employing the algorithm pro-
posed by Wolf et al. [29] presenting a positive value of
λ = +2.86 ± 0.01 bits, confirming the chaotic behav-
ior.

An essential part of chaos control is the learning
stage where UPOs embedded on chaotic attractor are
identified. The forthcoming analysis presents this UPO
identification for the mentioned chaotic attractor, per-
formed with the algorithm proposed by Auerbach et al.
[30] that searches for periodic orbits through Poincaré
map time series.

The basic idea of this algorithm is to search for
a period-P UPO in time series with Np data points,
represented by state vectors. The search is carried
out for pairs of points that satisfy the condition

|xi − xi+P |Np−P
i=1 ≤ r1, where r1 is the identification

radius value for distinguishing return points. After this
analysis, all points that belong to a period-P cycle are

Fig. 3 Phase space and Poincaré section of the chaotic response

Table 1 Identified UPO’s Floquet exponent values without con-
trol

UPO μ1 μ2

1 0.37 + 0.47i −0.39 + 0.47i

2 0.32 − 0.34

3 0.22 − 0.24

grouped together. During the search, the vicinity of a
UPO may be visited many times, and it is necessary to
distinguish each orbit, remove any cycle permutation
and to average them in order to improve estimations.
In this regard, separation radius r2 needs to be defined.

Basically, the SMA–pendulum system is analyzed
considering a Poincaré map with 25,000 points, iden-
tification radius of r1 = 0.04 and separation radius
of r2 = 0.15. After the identification, Floquet expo-
nents (μ) of each orbit are calculated employing the
procedure described in Sect. 2 via straight integration
of ψ (K = R = 0) [20]. Figure 4 shows three iden-
tified UPOs: period-1, period-2 and period-3. Table 1
presents Floquet exponents of each one of these orbits.
It is important to highlight that each orbit has a Floquet
exponent with positive real part indicating its instabil-
ity.

6 Controlling the system with thermal actuation

Thermal control is now in focus for the stabilization of
UPOs. SMA–pendulum velocity is considered as the
only observable variable, being also employed to define
controller actuation. Numerical simulations are carried
out with Runge–Kuttamethod, considering an approxi-
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Fig. 4 Phase space and Poincaré sections: a period-1 UPO, b
period-2 UPO, c period-3 UPO

mation of the delayed equations using the first ten terms
[15]. Initial conditions of x (0) = (− 6 rad, 0 rad/sω0)

are employed for all simulations. The controller is
turned on after 75 periods, which means that delayed
states are known.

Initially, a period-1 UPO stabilization is analyzed.
Controller parameters K and R are estimated usingFlo-
quet exponents, considering ideal actuation. Figure 5
shows the maximum real part of the Floquet exponents
μmax = max(Re (μ)) for several values of K and R.
Note that for each value R, curves present a minimum
optimum value,μopt, that decreases and translate to the
right as R increases. The optimum Floquet exponent is
considered to be the one with the most negative real
part, and values in this neighborhood are chosen for
the UPO stabilization. The UPO is considered to be
stabilized after the temperature variations during one
period, which are less than 0.2 K.

Figure 6 shows theUPO stabilizationwith ideal con-
troller and parameters K = 0.4 and R = 0.3, condition
close to the optimumvalue indicated in Fig. 5. Note that
the control starts around t∗ = 500 with a peak on its
power and stabilizes theUPOafter 36 periods,when the
actuation power consumption starts to decrease until it
vanishes. One may also notice an exponential enve-
lope when the system response is close to the UPO
(Fig. 6d). This decay furnishes a good approximation
of the largest Floquet exponent real part and can be
clearly identified considering an exponential fit on the
Poincaré section (Fig. 6e) resulting on a Floquet expo-

nent of μmax = − 0.13±0.01 that agrees with the pre-
dicted Floquet exponent (Fig. 5). The Poincaré section
also shows that the system converges to the period-1
UPO throughout a period 2 orbit, which means that
the Floquet exponent with maximum real part has an
imaginary part, Im (μmax) = π/τ .

Constrained controller is now in focus consider-
ing different convection coefficients: h = 17.76W/K
(Fig. 7) and h = 13.32W/K (Fig. 8). Note that con-
troller stabilizes the orbit after 19 UPO periods for the
first case and 36 UPO periods for the second. After this
stabilization, the power consumption vanishes for both
cases, in the same way of the ideal controller. Never-
theless, the exponential envelope appears just closer to
the UPO when compared with the ideal one. Poincaré
section of both cases indicates an exponential conver-
gence of the period-1 UPO through a period-2 orbit.
Floquet exponents are still approximatedwith the expo-
nential decay, presenting the same results for calcu-
lated and fitted values. They also indicate the ther-
mal constraints influence on controlled UPO stabil-
ity as they are greater than the ideal controller. When
h = 17.76W/K, it presents μmax = −0.12 ± 0.01,
while μmax = − 0.10 ± 0.01 when h = 13.32W/K.

The power consumption after stabilization is sim-
ilar for both cases. This occurs since the control sig-
nal tends to vanish after the stabilization and therefore,
minimizing the temperature variation needed to gener-
ate the actuation force and the influence of the thermal
constraints. The stabilization convergence is evident on
the controller actuation error plots shown in Figs. 7 and
8.

A comparison between both controller behaviors
shows that the constrained controller stabilizes the sys-
tem faster than the ideal one, but this is not always
the case. This stabilization time is dependent on the
initial conditions. For instance, by considering ini-
tial condition to be x (0) = (− 7 rad, 0 rad/sω0) and
h = 17.76W/K, the ideal controller stabilizes the sys-
tem after 20 periods, while the constrained controller
stabilizes after 24 periods. A possible explanation for
this is that the controller can effectively stabilize the
UPO only when the system solution visits the UPO
neighborhood. As a matter of fact, on discrete tech-
niques such as OGY, the control is only turned on when
the system solution is on the neighborhood of the UPO
leading to a waiting time. Although this waiting time
is not necessary to be considered for continuous tech-
niques, it can be an interesting approach to minimize
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Fig. 5 Real part of period-1
UPO’s Floquet exponents
for various values of K and
R

Fig. 6 Ideal controller
(standard ETDF) applied to
a period-1 UPO. The
Floquet exponents
encapsulation is calculated
using an exponential fitting
A0 + A1e−μmax t∗ which
displays the same value for
the Floquet multiplier:
μmax = − 0.13 ± 0.01. a
Pendulum position. b
Controller energy
consumption. c Stabilized
orbit. d Temperature. e
Position of Poincaré section
versus time and exponential
fitting
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Fig. 7 Constrained
controller applied to a
period-1 UPO with
h = 17.76W/K. The
Floquet exponents
encapsulation is calculated
using an exponential fitting
A0 + A1e−μmax t∗ which
displays the same value for
the Floquet multiplier:
μmax = − 0.13 ± 0.01. a
Pendulum position. b
Controller energy
consumption. c Stabilized
orbit. d Control signal. e
Position Poincaré section
versus time and exponential
fitting. f Controller
actuation error against time

control energy consumption, to increase the controller
efficacy [3,6] and enlarge the basin of attraction of the
controlled UPO [31].

The idea that chaos control confers flexibility to
the system can be shown by considering a control
rule that makes the system switches from one UPO
to another. In this regard, a test is performed to eval-
uate the controller performance to follow a control
rule: During the first 75 periods, controller is turned
off. After that, it is turned on to stabilize a period-
1 UPO (UPO-1) using K = 0.4, R = 0.3; control
parameters are changed on the 300th period to stabi-
lize a period-2 UPO (K = 0.2, R = 0.1) (UPO-2);
finally, a period-3UPO is targeted after the 600th period
(K = 0.1, R = 0.1) (UPO-3). The control strategy is

performed with both controllers, ideal and constrained
(with h = 17.76W/K).

Figure 9 shows the Poincaré section and control cur-
rent (I1) for the ideal controller, while Fig. 10 shows
results for the constrained controller. The comparison
of these results makes possible to identify that the ideal
controller has a more evident exponential envelope
associated with the control signal on the transitions
between each UPO, while the constrained controller
signal envelope is restricted to a smaller neighborhood
of the UPO. It is also noticeable that the constrained
controller has greater control signal amplitude after sta-
bilization due to its restrictions, but needs a smaller
time to perform the transition from period-1 UPO to
period-2 UPO.
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Fig. 8 Constrained
controller applied to a
period-1 UPO with
h = 13.32W/K. The
Floquet exponents
encapsulation is calculated
using an exponential fitting
A0 + A1e−μmax t∗ which
displays the same value for
the Floquet multiplier:
μmax = − 0.10 ± 0.01. a
Pendulum position. b
Controller energy
consumption. c Stabilized
orbit. d Control signal. e
Position Poincaré section
versus time and exponential
fitting. f Controller
actuation error against time

The maximum real-part Floquet exponents for each
UPO, employing the ideal controller, are: μmax

UPO-1 =
− 0.05, μmax

UPO-2 = − 0.15 and μmax
UPO-3 = − 0.14,

with a precision of ± 0.01. Using the constrained con-
troller, the maximum Floquet exponents real parts are:
μmax
UPO−1 = − 0.05, μmax

UPO-2 = − 0.15 and μmax
UPO-3 =

− 0.09 with a precision of ± 0.03.
Since the essential thermal controller constraint

is represented by the convection coefficient, h, it is
expected that the increase in this coefficient tends to
eliminate the constraint, making both controllers sim-
ilar. In order to verify this behavior, an analysis of
the influence of h over the constrained controller is
performed. The controller is employed to stabilize a
period-1 UPO considering K = 0.42 and R = 0.3.
Figure 11 shows the stabilization of a period-1 orbit

together with associated errors. Results show that the
constrained controller transient errors decreasewith the
increase in h values but, after stabilization, all results
present the same error and control effort. This behav-
ior is explained by considering that the control effort
tends to vanish after stabilization, which facilitates the
constrained actuation to provide the force needed.

Figure 12 shows the influence of thermal convection
h on the controller behavior showingFloquet exponents
as a function of h/ω0cp. Note that the controller tends
to loose stability with the decrease in h/ω0cp, which is
associated with the increase in actuation errors. This is
related to the trend of μmax to become positive. On the
other hand, as h/ω0cp tends to infinity, the constrained
controller tends to a behavior similar to the ideal one.
This can be clearly observed by the convergence of the
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Fig. 9 Multi-orbit stabilization with ideal controller: a Poincaré
map position against time and b controller power consumption
against time

UPO Floquet exponent values to the value of the ideal
controller (dashed dotted line).

Based on this analysis, it is possible to define three
different situations. The first one (right-side region,
green diagonal lines) is related to situations where both
controllers are similar, being delimited by a saturation
point where the Floquet exponent of the constrained
controller is 99% of the ideal one. This region is char-
acterized by the fact that variations in h/ω0cp do not
affect the control. The second situation (central part
region, yellow vertical lines) defines cases where the
constrained controller is still effective to stabilize the
UPO, but with different behavior compared with ideal
controller, which is expressed by changes in Floquet
exponents. Finally, the third situation (left-side region,
red horizontal lines) is where the controller is not able
to stabilize the UPO.

7 Conclusions

This work deals with the application of chaos control
to smart adaptive systems considering thermal actu-

Fig. 10 Multi-orbit stabilization with constrained controller,
with parameter h = 17.76W/K: a Poincarémap position against
time and b controller power consumption against time

ation constraints defined by heat transfer issues. An
SMA–pendulum system is analyzed considering the
stabilization of unstable periodic orbits using extended
time-delayed feedback control. Thermal constraints are
defined by the energy equation. Control parameters
are evaluated by calculating the target UPO Floquet
exponents. Performance of the constrained controller
is compared with the ideal controller, without con-
straints. Results indicate that the constrained controller
is able to perform UPO stabilization. Both controllers
have similar behaviors after stabilization since control
force tends to vanish. The difference between both con-
trollers is essentially defined by the heat convection
coefficient, and the errors tend to vanish when it tends
to infinity, increasing when it tends to zero. This anal-
ysis allows one to define three regions of effectiveness
for the constrained controller: a region where the con-
troller is not able to stabilize UPOs; a region where
constrained controller is similar to the ideal one; and
an intermediate region where the controller is able to
stabilize UPOs, but with different costs.
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Fig. 11 Influence of convection coefficient h during a period-
1 stabilization. Time history of errors and stabilized orbit for
different values of the parameter h. a, b h = 4440.00W/K; c, d
h = 444.00W/K; e, f h = 44.40W/K; g, h h = 17.76W/K

Fig. 12 Analysis of Floquet exponents as a function of the con-
vection coefficient h/ω0cp using control parameters K = 0.42
and R = 0.3. Dashed dotted line (green) represents the ideal
controller. (Color figure online)
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