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Abstract
In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a
dynamic system also composed of a mass, a linear spring and an excitation system. The
mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which
leads to damping capabilities and varying stiffness. Besides, these properties depend on the
temperature and pretension conditions. Because of these capabilities, shape memory alloys are
interesting in relation to engineering design of dynamic systems. A theoretical model based on a
modification of the 1D Brinson model was established. Basically, the hardening and the sub-loop
behaviour were altered. The model parameters were extracted from force–displacement tests of
the spring at different constant temperatures as well as from differential scanning calorimetry.
Model predictions were compared with experimental results of free and forced vibrations of the
system setup under different temperature conditions. The experiments give a thorough insight
into dynamic systems involving pseudoelastic shape memory alloys. Comparison between
experimental results and the proposed model shows that the model is able to explain and predict
the overall nonlinear behaviour of the system.

Keywords: dynamical systems, shape memory alloys, model validation

(Some figures may appear in colour only in the online journal)

1. Introduction

Shape memory alloys (SMAs) belong to the smart materials
family and present remarkable thermo-mechanical behaviour.
This behaviour includes large recoverable strains, pseudoe-
lasticity, and hysteretic behaviour, among others. These
effects are caused by phase transformations between auste-
nitic and martensitic phases that are stable at different con-
ditions of stress and temperature.

These capabilities have drawn increasing attention in the
field of engineering design, and nowadays SMAs are found in
several applications, e.g., as fibres in composite material
structures for adjusting natural frequencies or shape, or for
reducing vibrations (Cartmell et al 2012); in civil engineering
for seismic isolation and energy dissipation (of cultural

heritage structures); and employed as sensors, actuators, and
tendons in concrete members (Janke et al 2005).

To be able to use SMAs for complex tasks in industrial
applications, reliable models must be established, and this is
still a concern in academia. Paiva and Savi (2006), Lagoudas
(2008) presented a general overview related to SMA
modelling.

The capabilities of SMAs in relation to dynamic systems
have been investigated in distinct publications. Machado et al
(2009), Savi et al (2011) and Bernardini and Rega
(2011a, 2011b) investigated one degree of freedom systems
with SMA suspensions numerically. In these setups, both
tension and compression of the SMA elements were allowed,
and the dynamic behaviours were complex, showing period-
multiple orbits, quasi-periodic and chaotic motion, and
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coexisting attractors. Williams et al (2002) used the stiffness
differences between austenite and martensite to produce an
adaptive tuned vibration absorber by controlling the tem-
perature of the SMA elements. The same principle was
employed by Nagaya et al (1987) for passing through critical
speeds in rotor-bearing systems.

Non-smooth oscillators with SMA supports have been
investigated numerically by dos Santos and Savi (2009). Silva
et al (2013) made a similar numerical analysis on a non-
smooth rotor-bearing system, showing improved behaviour
compared with an elastic support. Again, both tension and
compression in the SMA element were allowed.

Experimental investigations of SMA systems are less
common. Aguiar et al (2013) investigated SMA oscillator
dynamics considering one and two degrees of freedom sys-
tems excited by a shaker. Different aspects of system
dynamics were treated. Enemark et al (2014) presented an
experimental investigation related to a one degree of freedom
oscillator with harmonic excitation. Concerning non-smooth
systems, a comparison between experiments and modelling
was made by Sitnikova et al (2012) in the same field, where
the resulting dynamic responses had complex nonlinear
characteristics. Pretensioned pseudoelastic SMA elements
were used.

The thermo-mechanical behaviour of helical springs is of
special interest in the dynamical study of SMA systems.

Studies of helical springs made from SMAs are found in
literature. These studies have revealed that the stress and
strain distributions in the springs can be complex (Mirzaeifar
et al 2011, Lagoudas et al 2012). This is due to small spring
indices and large pitch angles combined with large spring
deformations. Several attempts at using simple equivalent
one-dimensional models have been made, still with good
resemblance to experiments (Aguiar et al 2010, Mirzaeifar
et al 2011, An et al 2012).

This paper deals with a comparison between theory and
experiments related to a pseudoelastic SMA system. The
experimental test rig used in this work was a one degree of
freedom system consisting of a mass connected to a linear
spring and a pseudoelastic SMA spring. Both springs were in
pretension. The linear spring was connected to a DC motor
that provided a harmonic excitation to the system. The SMA
was used as an active element in the system and not as an
external actuator, and therefore the system behaviour greatly
depended on the properties of the SMA. Different operating
conditions could be induced by a change in the temperature or
a change in the level of pretension of the SMA spring. Only
passive control of the system dynamics has been treated. The
SMA spring was pseudoelastic, meaning that phase trans-
formation induced during loading is completely recovered
during unloading. Such a spring exhibits hysteretic behaviour

Figure 1. Test rig; picture (a) and schematics (b). (a): (A) PASCO oscillator, (B) PASCO rotary motion sensor for measuring excitation
displacement, (C) power supply to oscillator, (D) PASCO receiver connected to sensors and computer, (E) power supply for heating the PE
spring, (F) blower for cooling the PE spring, (G) PASCO force sensor for measuring the PE spring force, (H) PE spring, (I) PASCO rotary
motion sensor for measuring the displacement of the cart, (J) PASCO cart with masses, (K) PASCO horizontal slide, (L) linear spring.
Between the oscillator, springs, cart, and force sensor, nylon threads connect the elements. (b): Sketch of mechanical components to the right
is an oscillator (brown) pulling a thread (red). The linear spring (green) is connected to the cart (yellow). On the left side of the cart is the
pseudoelastic spring (orange). The displacement of the excitation x is measured at point A. The displacement of the cart y is measured at a
separate thread connected to the cart. At point B the thread force is measured, equalling the pseudoelastic spring force. The pseudoelastic
spring force is Fp, Fe is the linear elastic spring force and Ff is the friction force from the wheels of the cart.
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as well as changing stiffness, and both these elements greatly
affect system dynamics.

The goal of this research is to explain and predict the
behaviour of a one degree of freedom dynamical system
involving a pseudoelastic shape memory alloy (PE SMA)
spring, and through that also to show the dynamical cap-
abilities of such a smart material. It shows the feasibility of
applying SMAs as dissipation elements and shows the
potential for their adaptive behaviour to temperature, which
can be controlled. Brinsonʼs model (Brinson 1993, Brinson
and Huang 1996, Bekker and Brinson 1998) was employed to
describe the thermo-mechanical behaviour of the SMA
spring, and two novel changes ensure better resemblance to
experiments. Furthermore, direct comparison between theory
and experiment is rare in this field, and in particular the
investigations of equilibrium position changes due to tem-
perature alterations are interesting.

The outline of this paper is as follows. Initially, a
description of the experimental setup is presented. Theoretical
modelling follows, showing the Brinson model and the pro-
posed changes to it; then the helical spring model is discussed
followed by the equations of motion of the dynamic system.
Characterisation of the pseudoelastic spring is shown, and this
is used in the analyses of the dynamic system in free and
forced vibration for constant and varying temperatures.

2. Experimental setup

The experimental setup is a one degree of freedom SMA
oscillator that consists of a cart with a mass connected to a
linear spring and an SMA spring. The other end of the linear
spring is connected to a 12 V DC motor that provides a
harmonic excitation. The SMA helical spring is pseudoelastic,
where the austenitic phase is stable at room temperature.
Figure 1(a) presents a system picture, whrereas a sketch of the

system components is shown in figure 1(b). The experimental
setup is monitored by two rotary motion sensors (PASCO
encoder CI-6538 with 1,440 orifices and a precision of 0.25°):
one for measuring the excitation displacement x and one for
the cart movement y. A force sensor is also employed to
monitor the SMA spring force. A power supply is coupled to
the ends of the SMA spring to promote heating by the Joule
effect. Because system response is highly temperature
dependent, changes in electrical current induce different
system behaviours. The pretension level of the SMA spring is
defined by the length of the thread between the cart and the
linear spring. Geometric properties of the SMA spring, the
properties of the system components, and characteristic
quantities of the system are shown in table 1.

The SMA helical spring is manufactured from an SMA
wire with the aid of a device that defines the shape and clamps
the spring ends. Afterwards, it is necessary to promote a heat
treatment that induces recrystallization, defining the spring
form as the natural one. This treatment depends on the size of
the spring. Here a Ni-Ti wire is employed and the heat
treatment is done by heating the spring to 500 °C for 30
minutes and, after that, cooling it in a water medium.

The SMA temperature is not directly measured. Because
there is a direct relation between electrical power and the
temperature of SMA wires Furst and Seelecke 2012, electric
current is used to evaluate temperature. It is known that the
electrical resistances are different for austenite and martensite.
Here we are interested in constant temperature conditions,
represented by constant applied electrical current. Due to the
resistance changes associated with phase transformations, the
electrical power also changes. Therefore, there are tempera-
ture fluctuations. However these temperature fluctuations are
considered to be small and are therefore ignored. In the
analysis presented in this paper, an almost (but not com-
pletely) linear relationship between electrical current and
temperature is assumed due to changing resistance. Most of
the measurements in this work are performed only either at
room temperature or under such hot conditions that the SMA
spring consists of pure austenite. The minimum and max-
imum values are stated in table 1.

3. Theoretical modelling

The modelling of the dynamic system is split into three parts:
(a) the one-dimensional Brinson model for describing the
pseudoelastic shape memory alloy; (b) modelling of a helical
spring; (c) equations of motions for the dynamic system. Two
modifications to the Brinson model are proposed to get better
resemblance with experiments.

3.1. Constitutive equations—Brinsonʼs model

The constitutive model by Brinson Brinson 1993, Brinson
and Huang 1996, Bekker and Brinson 1998 describes the one-
dimensional tensile behaviour of shape memory alloys. Here
we are interested in pseudoelastic behaviour, and therefore,
the original model is simplified, neglecting twinned

Table 1. Data of the experimental setup as well as characteristic
quantities. *Depending on the day the experiment was performed.

Pseudoelastic SMA spring
Wire diameter (mm) 0.50
Coil diameter (mm) 5.6
Initial length of spring l0 (mm) 65
Number of coils 36

Cart
Mass m (g) 770

Linear elastic steel spring
Stiffness kl (

−N m 1) 3.25

Characteristic quantities (besides l0)

Initial stiffness of SMA spring k0 ( −N m 1) 20

Frequency ω = +π
−( )k k ml0

1
2 0

1 (Hz) 0.87

Assumed current-temperature relation
No current, 0 A 23 to 25 °C*
High current, 1.1 A 80 °C
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martensite. Twinned martensite is formed only when the
temperature is below the martensitic start temperature Ms,
which is below the lowest operational temperature (i.e., room
temperature) for the current material; cf table 3. The stress
state in the spring loaded by axial force is pure shear for small
deflection (Budynas et al 2008). Although the Brinson model
was originally proposed to describe tension-compression
behaviour, SMAs have qualitatively similar characteristics in
shear, and therefore the model can be employed for this aim.
Hence, converting the model for high-temperature shear
representation, the following constitutive equation describes
the SMA behaviour.

τ γ γ ξ= −( )G , (1)
L

where τ is the shear stress, γ is the shear strain, and ξ is the
martensitic volume fraction. Note that in the original Brinson
model ξ ξ ξ= +T S represents both twinned and detwinned
martensite. Here, because the description is restricted to high-
temperature behaviour, ξ is the volume fraction of detwinned
martensite, i.e., ξ = 0T .

Besides, ξ= + −G G G G( )A M A , where GM and GA are the
shear moduli of martensite and austenite respectively, and γ

L
is

the residual shear strain caused by phase transformation. Note
that the usual thermoelastic expansion term is neglected in
equation (1) because its influence is at least an order of mag-
nitude lower than the effects from the phase transformations.
Moreover, this model does not take into account temperature
changes in the material due to mechanical deformation as well
as the exo- and endothermic properties of the phase transfor-
mations. Other models that are rate-dependent do take this into
account, e.g., Lagoudas et al (2012), Monteiro et al (2009).

The volume fraction of detwinned martensite evolution is
defined as a function of temperature T and stress τ . In this
regard, the forward transformation (from austenite to det-
winned martensite) is given by:

• If τ̇ − ˙ >C T 0A and τ τ τ⩽ ⩽ms mf then

τ π τ τ
τ τ= − −

−
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f T( , )

1
2

1
2

cos (2)
M

ms

mf ms

ξ ξ ξ τ= + −( )f T1 ( , ) (3)
M0 0

The reverse transformation (from detwinned martensite
to austenite) is described by:

• If τ̇ − ˙ <C T 0M and τ τ τ⩽ ⩽af as then

τ π
τ τ
τ τ= −

−
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f T( , )

1
2

1
2

cos (4)
A

af

as af

ξ ξ τ= f T( , ) (5)
A0

• Otherwise, ξ̇ = 0.
• Furthermore, ξ = 1 if τ τ> mf , and ξ = 0 if τ τ< af .

The boundaries in the simplified stress-temperature phase
diagram are

τ τ
τ τ

= − = −
= − = −

( )
( )

( )
( )

C T M C T M

C T A C T A

,

, .
(6)

ms M s mf M f

as A s af A f

The temperatures Ms and Mf are the start and finish
transformation temperatures for the forward transformation,
and As and Af are the austenitic counterparts. These tem-
peratures refer to a stress-free state. Furthermore, CA and CM

denote the slopes of the austenite and martensite formation
boundaries in the temperature-stress phase diagram.

It should be observed that ξ also depends on the constant
ξ0 that represents the value of ξ at the start of phase trans-
formation. Note that ξ0 is associated with previous phase
transformations that occurred during load history. The value
of ξ0 changes whenever either τ̇ − ˙C TA or τ̇ − ˙C TM changes
sign. A far more thorough explanation is given by Bekker and
Brinson (1998).

The functions for f
M

and f
A
, equations (2) and (4), are

hardening functions, and the functions for ξ, equations (3) and
(5), control the sub-loop behaviour. For both of these types of
functions, modifications are proposed in the next section.

This model is constructed in such a way that γ can be
found explicitly as a function of τ and T, because ξ is an
explicit function of τ and T. However, when using such
models in dynamic problems, the inverse problem is usually
of interest. Hence, it is important to evaluate stress τ as a
function of deformation γ . This means that iterative proce-
dures have to be used, and it is suggested to use a Newton-
Raphson iteration procedure between steps in strain. This
requires the use of the derivatives of strain γ τ T( , ) with
respect both to stress and temperature (keeping the other
variable constant). They are easily found by differentiation of
the governing equation (1):

γ
τ τ γ ξ

τ
∂
∂ = + − + ∂

∂
⎛
⎝⎜

⎞
⎠⎟G

G G

G
1

, (7)A M
L2

γ τ γ ξ∂
∂ = − + ∂

∂
⎛
⎝⎜

⎞
⎠⎟T

G G

G T
. (8)A M

L2

The differentials ξ
τ

∂
∂

and ξ∂
∂T

are piecewise functions, found by

differentiation of the hardening functions and sub-loop
functions equations (2)-(5).

3.2. Modified hardening and sub-loop functions

The cosine hardening functions f
A
and f

M
are smooth because

of their differentiability in addition to continuity and also
because of their horizontal tangents at the boundaries. Hor-
izontal tangents are necessary to get smooth transitions
between the thermoelastic regions and phase transformation
regions. However, the level of smoothness cannot be con-
trolled. When comparing with experiments, greater simila-
rities can be achieved by using other smooth functions, where
the smoothness at each boundary can be controlled
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individually. Initially Liang and Rogers (1990) proposed to
use cosine functions for describing the hardening kinetics,
and later the functions were adapted by Brinson (1993). The
choice of a cosine hardening function was empirically based,
and therefore other types of functions are equally valid. A
novel smooth hardening function is presented, and it is
inspired by a smooth hardening function presented by
Lagoudas et al (2012).

Due to the complex shear stress-strain distributions in the
helical springs, the Brinson model does not reproduce all
aspects of the thermo-mechanical behaviour of the springs.
An alteration of sub-loop functions, which initially are linear
functions in f

A
or f

M
respectively, provides a better resem-

blance with experimental data. This means that the proposed
alternative sub-loop functions counteract the consequence of
the simple model and its assumptions for the mechanical
model of the helical spring used in this paper. An illustration
of the existing and proposed hardening and sub-loop func-
tions is shown in figure 2.

3.2.1. Hardening function. The proposed function consists of
two successive quadratic Bézier curves =sB ( )i s sB B( ( ), ( ) )x

i
y
i

for i = 1, 2, which replaces the existing function
π= −f x x( ) cos ( )1

2
1
2 for ∈x [0; 1] (equations (2) and (4)).

The choice of Bézier curves is taken because it is easy to
control smoothness. Two successive quadratic curves are
chosen instead of a single cubic curve because of simpler
mathematical expressions. A minor advantage of the cubic
curve is that it is infinitely differentiable ( ∞C ), whereas the
two successive quadratic curves are only able to ensure one-
time differentiability in addition to continuity (C1). The Bézier
curves are used to shape the hardening function:

=
= ⩽ ⩽

= < ⩽

⎧
⎨⎪
⎩⎪

{ }
{ }

f x
s s x x a

s s x a x

B B

B B
( )

( ) ( ) for 0

( ) ( ) for 1
(9)

y x

y x

1 1

2 2

The first curve sB ( )1 is defined by the three points (0, 0),
n( , 0)1 , and a b( , ). The second curve sB ( )2 is defined by the
three points (1, 1), − n(1 , 1)2 , and a b( , ). This means that the
curves start at the boundaries for s = 0 and meet for s = 1. The
two curves are oriented oppositely to get simpler mathema-
tical expressions. The result is the same. The point a b( , ) is
determined such that ∣ = − ∣= =s sB B(d /d ) (d /d ) ,s s

1
1

2
1 which

ensures one-time differentiability.

Figure 2. Hardening and sub-loop functions in the forward and reverse transformations. The stress (τ) is input to the hardening function,
whose output ( f

M
or f

A
) is input to the sub-loop function, whose output is ξ. The solid lines are the cosine hardening function and the linear

sub-loop functions as in the Brinson model. The dashed lines are examples of the proposed smooth hardening functions and cubic sub-loop
functions.
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The smoothness is controlled by the two non-negative
parameters n1 and n2, which have to fulfil ⩽ + ⩽n n0 11 2 .
The expressions for the Bézier curves become:

=
− +

=
+ − − +

− +

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

( )

( )

s
a n s n s

s

s
a n s n s

s

B

B

( )
2 2

1
2

,

( )
2 1 2 1

1
2

1
, (10)

1
1

2
1

2

2
2

2
2

2

where = − +( )a n n 11
2 1 2 . The variable s is substituted such

that the first coordinate x becomes the independent variable
and the second coordinate y becomes the dependent variable.
The final expression for the hardening function is as follows:

=

= − + + −
− ⩽ ⩽

−

=
− − + − −

+ − < ⩽

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪
⎛
⎝⎜

⎞
⎠⎟

f x

s s
n n a n x

a n
x a

s

s

n n a n x

a n
a x

( )

1
2

where
( 2 )

2
for 0

1
1
2

where

2 1 (1 )

2 1
for 1

(11)

2 1 1
2

1

1

2

2 2
2

2

2

Special cases exist for s if − = ∧ ⩽ ⩽a n x a2 0 01 and
+ − = ∧ < ⩽a n a x2 1 0 12 because of singularities in

equation (11). In these cases, =s x
n2 1
and = −s x

n
1
2 2

respectively

from equation (10).
It is suggested that different sets of smoothing parameters

n n( , )1 2 be used for the forward and reverse transformations.
For this reason, the smoothing parameters for the forward
transformation are denoted n n( , )f f

1 2 , and for the reverse
transformation they are denoted n n( , )r r

1 2 .
An example of the smooth hardening function is seen in

figure 3(a), where it is compared with the existing cosine
hardening function.

3.3. Sub-loop function

A sub-loop function is proposed in order to alter the height
and thereby the average stiffness and the enclosed area of the
sub-loops. The area of the sub-loops determines the dissipa-
tion characteristics. Therefore, the linear sub-loop functions
(equations (3) and (5)) are replaced by cubic counterparts that
have to fulfil certain conditions in order to get reasonable
behaviour.

For the forward transformation, the original sub-loop
function is ξ ξ= + −g x x( ) (1 )

0 0 0 for ∈x [0; 1]. The pro-
posed sub-loop function g has the same boundary values:

ξ=g (0) 0 and =g (1) 1. Furthermore, it is monotone and

fulfils | < |ξ ξg x g x( ) ( )a b
0 0

for any ξ ξ<a b
0 0 and any ∈x [0; 1].

A cubic function satisfying this is

ξ ξ= + − − −( )g x x px x q x( ) 1 (1 ) ( ), (12)0 0

where q x( ) is a piecewise function in ξ0:

ξ ξ

ξ ξ ξ

ξ ξ

=

− ⩽ ⩽

− − + < ⩽

− + < ⩽

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( )

( )

q x

x

x x

x

( )

(2 ) for 0
1
3

1 (1 ) for
1
3

2
3

1 (1 ) for
2
3

1 .

(13)

0 0

0 0 0

0 0

The parameter ∈ −⎡⎣ ⎤⎦p ; 11
2

controls the sub-loop

characteristics.
For the reverse transformation, a cubic function that

satisfies similar requirements is:

ξ= + −h x x px x q x( ) (1 ) ( ) . (14)0

Note that both g x( ) and h x( ) are equal to the linear sub-loop
functions for the parameter p = 0. It is suggested to use the
same value of p for both forward and reverse transformation.
An example of the effect of changing the sub-loop functions
is seen in figure 3(b). By using <p 0 the average stiffness
and the sub-loop area decrease. For >p 0 the stiffness and
area increase. In this regard, an increase is wanted in order to

Figure 3. Differences in the stress–strain behaviour between the original and the proposed hardening and sub-loop functions. Hardening
functions. (a): for the smooth function, the choice of parameters is =n 0.45f

1 (forward start), =n 0.35f
2 (forward end), =n 0.2r

1 (reverse end),
=n 0.4r

2 (reverse start). Subloop functions. (b): for >p 0 the hysteresis area increases compared with the linear case; for <p 0 it decreases.
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get better resemblance with experiments. As seen later, p has
been chosen to be equal to unity.

3.4. Helical spring model

Aguiar et al (2010) discussed the modelling of SMA helical
springs, showing that it is sufficient to assume a linear shear
strain distribution and a constant phase transformation in the
wire cross section. The relation between the elongation of the
spring y and the shear strain in the periphery γ

r
is

γ
π

= r
NR

y
2

. (15)
r 2

Here r is the wire radius, N the number of coils, and R the
radius of the spring. The strain distribution is linear, γ γ= a

r r

for ∈a r[0; ]. The relation between the spring force F and
the shear stress τ is

∫π τ=F
R

a a a
2

( ) d (16)
r

0

2

Because τ is a nonlinear function in γ , this integral cannot be
solved directly. Nevertheless, it is possible to obtain good
results by assuming that ξ ξ= ˜ is constant throughout the
cross section, which combined with the governing
equation (1) yields

∫π γ γ ξ π γ γ ξ= − ˜ = − ˜⎜ ⎟⎛
⎝

⎞
⎠ ( )F

R
G

a
r

a a
r
R

G
2

d
2
3

(17)
r

r L r L
0

2
3

3
4

Moreover, an equivalent constant strain γ γ˜ =
r

3
4

is chosen

such that an equivalent constant stress τ γ γ ξ˜ = ˜ − ˜G ( )
L

fulfils
the governing equation and

π τ= ˜F
r
R

2
3

. (18)
3

Substituting γ̃ into equation (15), it becomes

γ
π˜ = r

NR
y

3
8

. (19)2

By using equations (18) and (19) together with the governing
equation (1), the relation between elongation y and spring
force F can be found.

3.5. Equation of motion and its solution

The equation of motion for the cart is obtained by Newtonʼs
Second Law (see figure 1(b)):

ξ¨ = − + ˙ +( ) ( )my F y T F y F x y, , ( , ), (20)p f e0

The linear spring force is = − +F k x y x( )e l 0 , where kl is the
linear spring stiffness and x0 is a length measure of constant

pretension. This means that the pretension x0 is not related to
the stiffness and length of the PE spring but to the linear
spring. The excitation x is either zero (for free vibrations) or
sinusoidal (forced vibrations): πω ϕ= +x t A t( ) sin (2 ). The
system dissipation, different from hysteretic behaviour, can be
described by μ˙ = − ˙ − ˙πF y mg cy dy( ) arctan ( )f

2 , where c is a
numerically aiding constant and g is the gravitational con-
stant. This is a continuous approximation to dynamic Cou-
lomb friction, with friction coefficient μ combined with
viscous damping with the damping factor d. The chosen
values used for describing these dissipative effects are seen
table 2. The PE spring force F y( )p is determined as described
in the preceding sections (in which it is denoted F).

3.5.1. Standard approach for numerical solution. The Runge-
Kutta-Fehlberg method is used to solve the equation of
motion (20) in a state space formulation by defining a second
state ≡ ˙z y. At each time step, the vector y z( , ) is supplied and
the derivatives are found:

ξ= ( )F F y T, , (inverse problem) (21)p p 0

˙ =y z (22)

μ π˙ = − −

− + − + )

(z
m

F mg cz

dz k x y x

1 2
arctan ( )

( ) . (23)

p

l 0

As mentioned in section 3.1, the PE force Fp has to be found by
iterative procedures.

Table 2. Properties for dissipation due to friction and viscous
damping used for numerical simulation.

μ c g d

× −2.1 10 3 −10 s m3 1 −9.81 N kg 1 −0.11 N s m 1

Figure 4. The resulting graph from a DSC test. The red lines indicate
the method of determining the transformation temperatures.

Table 3. Transformation temperatures for the PE spring extracted
from the DSC test.

As Af Ms Mf

16.2 °C 21.9 °C 15.5 °C 9.3 °C
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3.5.2. Particular approach for numerical solution. The
iterative procedure of the Brinson model can be avoided by
changing the state variables so that the displacement y is
found from Fp instead, because it is an explicit function. The
displacement is substituted with the PE force as a state

variable, which means that each time step ( )F z,p is supplied

and the derivatives are determined:

ξ= ( )y y F T, , (explicit relation) (24)p 0

γ
τ

τ

γ
γ

˙ = ∂˜
∂˜

∂˜
∂

× ∂
∂˜

− ˙ ∂˜
∂

−

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

F
F

z
y

T
T

(explicit relation) (25)

p
p

1

1

μ
π˙ = − − − + − +⎜ ⎟⎛

⎝
⎞
⎠z

m
F mg cz dz k x y x

1 2
arctan ( ) ( ) . (26)p l 0

The expression for Ḟp is found from the velocity:

γ
γ
τ

τ γ

γ
γ
τ

τ γ

= = ∂
∂˜

∂˜
∂˜

∂˜
∂ + ∂˜

∂

= ∂
∂˜

∂˜
∂˜

∂˜
∂

˙ + ∂˜
∂

˙

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

z
y
t

y
F

F

t T
T
t

y
F

F
T

T

d
d

d

d
d
d

, (27)

p

p

p
p

where γ
τ

∂˜
∂˜
, γ∂˜

∂T
, τ∂˜

∂Fp
, and γ

∂
∂˜
y are found from equations (7), (8), (18),

and (19) respectively. These state equations are solved using
the Runge-Kutta-Fehlberg algorithm.

This particular approach makes inner iterations of the
Brinson model unnecessary, which leads to less numerical
computation. Note that γ

τ
∂˜
∂˜

and γ∂˜
∂T

also have to be calculated
when performing inner iterations. Simulations have shown
that this approach saves approximately 10% of the overall
computation time.

4. Characterization of pseudoelastic spring

This section presents the characterisation of the PE spring
used in the experimental setup. This is done by using a DSC
test and also by considering force-displacement curves.
Figure 4 and table 3 present results of the DSC test, showing
the amount of heat necessary to maintain a constant tem-
perature rate (positive or negative) of a specimen of the SMA.
At a peak or valley, phase transformations happen. Note that
at room temperature (≈ °25 C), the PE spring is stable at the
austenitic state because Af is lower than room temperature.
The transformation temperatures are determined by the
intersection between the tangent at the absolute highest slope
and the tangent at the start or end of the transformation area.
This is indicated in figure 4 by the red lines.

The force-displacement experimental test of the PE
spring is done by uncoupling the oscillator and the linear
spring from the cart in the system shown in figure 1(b), and a
chosen displacement path is induced to the cart. Experimental
tests are done at different temperatures by inducing distinct
(and constant) values of electric current. It is estimated that
the temperature is 80 °C when applying 1.1 A. Moreover, a
linear relationship between current and the temperature rela-
tive to room temperature is initially assumed. Small dis-
crepancies from this linear model are used in order to get
slightly better resemblance between the model and the
experiments for the overall temperature range. The assumed
current-temperature relation is shown in figure 5. This is
consistent with the considerations in section 2.

Results of the force-displacement tests and the model fit
are shown in figure 6. The model parameters have been
determined by nonlinear least square regression of the model
prediction to the experimental results. There is a very good
resemblance. Only at high temperatures is the model unable
to match the experimental curve. This will be reflected in the
comparisons throughout this paper. The model parameters
used, which are the same for all temperatures, are shown in
table 4 .

Figure 7 presents a comparison between experimental
data with Brinsonʼs model with different hardening and sub-
loop functions. Tests are performed at 25 °C. Note that the
outer loop is matched very well in all three cases. For the
original Brinson model, figure 7(a), there is a small linear
region at the beginning of the reverse transformation that is
not seen in experiment. Moreover, to get good resemblance at
the outer loop the residual strain γ

L
has be given a high value

(4.99%) so that the cosine hardening behaviour does not
interfere at that point. This is again determined by a least
square regression scheme that minimized the difference
between model predictions and experimental results. On the
other hand, this means that the sub-loop behaviour is not
captured well. When smooth hardening is introduced
(figure 7(b)), the outer loop becomes smoother and the resi-
dual strain is reduced to 3.11%, which results in better
resemblance in the inner loops. Both average stiffness and
hysteresis area of the sub-loops are matched even better when
the cubic sub-loop function is also introduced (figure 7(c)).

Figure 5. Relationship between electrical current through the PE
spring and the assumed temperature.
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It is important to highlight that the PE spring is subjected
to large deformations, reaching more than four times the
original length. Therefore, complex stress distributions can be
induced, causing non-homogeneous phase transformations
(Phillips and Costello 1972, Mirzaeifar et al 2011, Lagoudas

et al 2012). At the spring wire cross section centre, the stress
is always (close to) zero, even though the spring is highly
loaded globally (Aguiar et al 2010). This means that mar-
tensite is not induced by stress (i.e., detwinned martensite) at
the cross section centre, and therefore the spring material

Figure 6. Experimental force–displacement results for the pseudoelastic spring compared with the Brinson model with smooth hardening and
cubic sub-loop. The relationship between electrical current and temperature is estimated.

Table 4. Parameters used in the spring model using the Brinson model with smooth hardening and cubic sub-loop.

γ
L

GA GM As Af Ms Mf

3.11% 16.8 GPa 47.6 GPa −39.1 °C 22.9 °C 20.0 °C −32.3 °C

CA CM n f
1 n f

2
n r

1 n r
2 p

5.55 MPa °C−1 6.18 MPa °C−1 0.286 0.001 0.166 0.280 1.00
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cannot reach a complete detwinned martensitic state
throughout the wire cross section. For the same reason, and
because the spring model uses an assumption of constant
material properties in the wire cross section, the chosen phase
transformation temperatures in the model are not the same as
found by the DSC. Furthermore, the model is restricted to
displacements below approximately 300 mm ( l4.6 0) and
temperatures from 23 °C to 80 °C because of the choice of
parameters.

Inspection of the force-displacement behaviour at room
temperature reveals that the initial stiffness at room tem-
perature ( = −k 20 N m0

1) is lower than the tangential stiffness

of the mixture (≈ =− k31 N m 1.61
0). This is also reflected in

the material parameters, where >G GM A (table 4). It is well
known that the stiffness of martensite is lower than the
stiffness of austenite, but these results show the opposite. This
incongruence is believed to be caused by large deformations.
For large strains in the spring, normal stresses may be
induced, resulting in a stiffening effect (Phillips and Cost-
ello 1972, Mirzaeifar et al 2011, Lagoudas et al 2012). This
means that the apparent martensitic stiffness is higher than the
actual martensitic stiffness. The stiffening effect due to the
geometry is also the reason why the stiffness in the high-
temperature condition is higher in experiment

=− k(34 N m 1.7 )1
0 than in model prediction

=− k(29 N m 1.4 )1
0 . The geometric stiffening effect is not

incorporated in the model. During transformation, the stiff-
ness is lower ( =− k10 N m 0.51

0) than the initial stiffness.
This means that the stiffness changes up to a factor of three

−(10 N m 1 to −34 N m )1 between different conditions of stress
and temperature; cf figure 6.

The dissipation due to hysteresis is an important char-
acteristic of the PE spring. Note that the increase of dis-
placement tends to be related to the increase of dissipation
due to the larger hysteresis loops. Furthermore, for increasing
temperature, the hysteresis loops are smaller, indicating less
dissipative capabilities. The average stiffness and the hyster-
esis are coupled properties.

5. Free vibrations

The free vibration analysis considers the setup shown in
figure 1(a) by implying that the DC motor is turned off.
Temperature influence is investigated during the tests, con-
sidering two cases: constant and varying temperatures.

An equilibrium position is a point in y where the sum of
forces acting on the cart vanishes. Therefore, it should be a
proper balance between the elastic spring force Fe and the PE

Figure 7. Best fit of the Brinson model with and without modifications to the experimental force–displacement test at 25 °C. (a) Cosine
hardening and linear sub-loop; (b) Bézier hardening and linear sub-loop; (c) Bézier hardening and cubic sub-loop.

Figure 8. Illustration of the range of equilibrium positions for the
dynamic system. The level of pre-tension here is =x 9000 mm
(equivalent to =y l2.3

0 0 in the sense of =k y k xl0 0 0). For a given
position y the PE spring contains the minimum possible amount of
martensite at the topmost loading branch in the force–displacement
diagram, indicated by the red dashed line.
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spring force Fp, namely =F Fe p. Figure 8 shows the force-

displacement curves for both springs of this system. The
intersections between the blue and green lines establish a
proper balance between the spring forces, representing equi-
librium positions. Note that the lines are crossing four times,
but one could imagine an infinite number of possibilities

along the green line, which can be called the ‘equilibrium
line’, for values of y larger than approximately140 mm in this
case, because this is the maximum force considered for the PE
spring. It should be pointed out that there is only one equi-
librium point at any instant in time and cart position, but the
equilibrium is able to move along the line. The vertical

Figure 9. Experimental results (a, b) and numerical simulations (c, d) for force and state space of free vibration with seven different initial
conditions indicated by different line colours. The level of pretension is ≈x 8700 mm ( l2.2 0) in the experiments but =x 9000 mm ( l2.3 0) in
the numerical simulations. The specified temperature is T = 23 °C in the simulations.

Figure 10. The equilibrium changes both as a function of the initial point and the level of pretension. Here it is illustrated both by experiments
(a) and by simulation (b) modelling. The dashed black line indicates identical initial position and equilibrium. For the theoretical results
T= 23 °C is used.
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position of the green line is determined by the amount of
pretension x0.

5.1. Constant temperature

Free vibration tests are done by releasing the cart from a
range of positions, measuring the displacement and the PE

force until the cart is at rest. Both the linear and the PE
spring are attached to the cart. At the initial position of each
test, it is ensured that the PE spring produce the highest
possible force for the given position y, as indicated in
figure 8. This is done in order to maintain comparability
between the tests.

Figure 11. Force and state space for three free vibration tests, both experimentally (a, b) and theoretically (c, d), using different initial
positions. In the experiment the PE spring is heated by 1.0 A and the pretension level is approximately 715 mm ( l1.8 0). The simulation
temperature is T = 80 °C, and the level of pretension is =x 6700 mm ( l1.7 0).

Figure 12. Experimentally obtained (a) and simulated (b) equilibrium position changes due to temperature variations, shown here by three
tests (distinct colours) using different initial positions. The initial positions are indicated by ○; during heating of the PE spring, the cart
moves to ▿; and it reverses to × during cooling of the spring. In experiments x0≈ 900mm (2.3l0), in modelling x0 = 905mm (2.3l0)
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The first test is done by considering three levels of pre-
tension in room temperature. The pretension level is defined
by the length of the thread between the linear spring and the
cart, which can be changed. Furthermore, a test is done with
the PE spring heated with 1.0 A of electric current.

In figure 9, seven of the tests for a single pretension level at
room temperature are shown, highlighting the initial positions
(black circles) and their respective resting points/equilibria
(black plus signs). The state space plot shows that there is a
great amount of energy dissipation due to the hysteresis and
other dissipation mechanisms in the system. Experimental tests
(figures 9(a) and (b)) are followed by numerical simulations
(figures 9(c) and (d)). Generally, there is good agreement with
the experimental tests. All qualitative properties are reproduced.
However, the stiffness of the PE spring is higher in the simu-
lations. This is probably caused by temperature variations
during tests. Thermo-mechanical couplings may drastically
affect tests, depending on frequency (Monteiro et al 2009), and
this is not considered in simulations.

The initial and resting positions for each of the three tests
using different pretension levels are highlighted in figure 10.
For the three values of pretensions, the starting point is varied
in a range of 170 mm ( l2.6 0), and this gives a variation of
30 mm ( l0.5 0) to the equilibrium positions in the experimental
tests. It is seen that if the starting point is far away from the
equilibrium point (long distance from the starting point to the
black dashed line), the equilibrium point is almost constant
for the two low levels of pretensions. This is also the case for
the simulations. Only close to the black dashed line does the
equilibrium depend on the starting position. These results
show that the equilibrium position depends on the starting
position, the initial amount of martensitic phase, and the
pretension level. The discrepancies between experimental
results and theoretical predictions in figure 10 are the same as
for figure 9. Small differences in stiffness and hysteresis
between model and experiment have large impact on the
resting position.

Experimental and theoretical results of the high-tem-
perature test are shown in figure 11. From the experiments, it
is seen that the PE spring force is almost linear, indicating that
phase transformations are not occurring, even though the
displacements are large. As a consequence, there is a smaller
amount of energy dissipation as shown in the state space
behaviour. The dissipation is now primarily due to dissipation
effects different from hysteretic behaviour, and the level of
dissipation is matched very well in the simulations. Due to the
linear behaviour of the PE spring, the equilibrium position is
almost constant. Furthermore, the equilibrium position has a
smaller y-value when compared with the low temperature
results because of the higher average PE stiffness

=− k(36 N m 1.8 )1
0 . This change due to temperature will be

further investigated in the following sections.

5.2. Varying temperature

This section deals with tests where the cart initially rests at
one of its equilibrium positions in room temperature,

evaluating the influence of temperature changes. The PE
spring is heated, causing the cart to move, and then the spring
is cooled down by forced convection with the use of an air
blower. Again, this causes the cart to move. The test is per-
formed three times with distinct initial conditions without
changing the level of pretension. Experimental and numerical
results are shown in figure 12. By heating the PE spring in
tension, phase transformation to a fully austenitic state takes
place. The equilibrium position at this state is independent of
the starting point (the ▿ symbols in figure 12). When the
spring is cooled down, the cart moves backwards, but only to
a minimum amount of detwinned martensite, which is also
independent of the starting point. These results show that it is
possible to get to the same position, a zero position, no matter
what prior activity the spring has been exposed to, simply by
heating and cooling the spring, if the heat treatment happens
quasi-statically so that inertia effects are low. This zero
position lies on the line of maximum possible PE force;
cf figure 8. Note that the distance between the equilibrium
positions is large compared with the initial length of the
spring; see table 1.

The temperature paths induced into the spring in simu-
lation are defined as follows:

= ° + ° − °
× − −( ){ }

T tHeating: ( ) 23 C (80 C 23 C)

1 exp (28)t
6.5 s

= ° + ° − °
× − −( ){ }

T tCooling: ( ) 80 C (23 C 80 C)

1 exp (29)t
15 s

For the heating, the spring starts at 23 °C and ends at 80 °C
through a first-order low-pass filter with a time constant of
6.5 s. For the cooling, the temperatures are opposite, and the
spring changes as through a similar filter with a time constant
of 15 s. First-order low-pass filtered temperature changes are
related to heating and cooling of a material with constant
thermal properties (heat capacity and thermal conductivity)
subjected to constant heat and collected radiation and con-
vection being proportional to the temperature relative to room
temperature. The filter constants are chosen such that the
overall speed matches the experiments. The cooling process is
significantly slower than the heating process.

The simulations are in good agreement with the experi-
mental results. The jagging behaviour is captured well. By
numerical simulation, it can be shown that this behaviour is
solely due to the phase transformations, and it is not caused
by other dissipation forces, e.g., the Coulomb friction. Note
that the equilibrium positions at the hot state are different in
simulation and experiments (y = 92 mm and y = 80 mm
respectively). This is because the simulated stiffness of the
austenite is lower than the measured stiffness as seen before
in figure 6. The difference is therefore expected.

6. Forced vibrations

Forced vibration is now of concern when considering that the
system is excited by a DC motor rotating a lever, which pulls
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a thread (see figure 1(b)). Initially, a frequency response is
performed, and later the effects of changing temperature are
analysed.

6.1. Constant temperature

The frequency response analysis is done by considering the
system steady state responses for specific forcing frequencies.
This analysis is done by inducing oscillations at different
frequencies. After the steady state is reached and the reading
has been performed, the system is stopped and then a new
frequency is analysed.

Figure 13 presents the experimental and modelled fre-
quency response. The experimental analysis points to a
resonance frequency around 0.8 Hz ( ω0.92 0), being asso-
ciated with a non-symmetric peak, which is well reproduced
in simulation. The lower side of the resonance peak is steeper
in experiments than in simulation.

Figure 14 shows the PE spring force and the state space
for three oscillator frequencies: below, at, and above the

resonance condition. It is important to observe that the system
response at resonance is related to the great amount of energy
dissipation due to hysteresis. In the experiments, the equili-
brium point changes within 5 mm ( l0.08 0) with varying fre-
quencies, which is in agreement with the movement of the
equilibrium point investigated earlier. This is, however not
reproduced in simulation, where the centre of oscillations is
constant. Again, the simulated oscillation amplitudes are
higher than measured right below resonance, i.e., at 0.7 Hz.

In experiments, the change in amplitude from measure-
ment to measurement is large just below resonance
ω ∈( [7.5; 8]Hz). This could indicate a bifurcation, where
the dynamic state jumps from one attractor to another. As
mentioned in the Introduction, such behaviour has been
detected in SMA dynamic systems before and has been
reported in the literature (e.g., Sitnikova et al (2012)).
Nevertheless, coexisting attractors have not been detected
based on several tests of frequency sweeps around the reso-
nance peak both experimentally and numerically.

Figure 13. Experimentally obtained (a) and numerically simulated (b) frequency responses. The excitation amplitude is A = 61 mm ( l0.9 0),
and in the numerical simulations, the pre-tension is =x 6300 mm l(1.6 )0 and the temperature is = °T 23 C. In experiments, the quantities are
estimated to be the same.

Figure 14. State space and PE spring force at several oscillator frequencies in experiment (a) and numerical simulation (b). In the numerical
simulations, the pre-tension is =x 6300 mm l(1.6 )0 , and the temperature is = °T 23 C. In experiments, the quantities are estimated to be
the same.
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6.2. Varying temperature

At this point, forced vibrations with temperature variations
are investigated. This analysis is of special interest in terms of
vibration reduction. Tests consider heating and cooling pro-
cesses, defining two different conditions: hot and cold. Two
forcing frequencies are evaluated.

The first case starts at room temperature close to a
resonance condition. After the steady state is reached, the
spring is heated, and this condition is held constant until a
new steady state is reached. Results for this test and the
related simulation are shown in figures 15(a) and (b). At room
temperature, the peak-to-peak amplitude is 122 mm ( l1.88 0)

and the average stiffness is −17 N m 1 ( k0.85 0) in experiments.
When the temperature is increased, the cart moves 61 mm

l(0.94 )0 to the left, the peak-to-peak amplitude is decreased to

20 mm ( l0.15 0), and the stiffness is increased to −37 N m 1

k(1.9 )0 . Because of the increasing stiffness due to the rising
temperature, the system resonance frequency increases and
moves away from the excitation frequency. This means, that it
is beneficial in terms of vibration reduction to heat the PE
spring to increase the stiffness at this forcing condition at
room temperature. However, it is important to highlight that

when heating the spring to increase the stiffness, the dis-
sipative characteristics due to hysteresis are sacrificed. Phase
transformations cannot occur in large scale at high tempera-
tures. This case highlights the trade-off between a beneficial
stiffness increase and an unfavourable hysteresis decrease.
The same qualitative behaviour is seen in simulation. The
quantitative properties are, however, slightly different; e.g.,
the stiffness at high temperature and the distance between the
equilibrium positions due to the temperature change. This is
primarily because the force-displacement relationship of the
spring in the hot condition is not captured perfectly; the
stiffness is too low; cf figure 6.

In the second case, seen in figures 15(c) and (d), the
system is started in a hot condition around its resonance
frequency and later is cooled down to room temperature. At
high temperature, the peak-to-peak amplitude is 94 mm

l(1.44 )0 and the stiffness is −36 N m 1 ( k1.8 0). No significant
hysteresis occurs at this temperature, even though the
amplitudes are large. When cold, the peak-to-peak amplitude
is reduced to 28 mm ( l0.44 0), with an average stiffness of

−24 N m 1 ( k1.2 0) in experiments. Still, the amount of hyster-
esis is negligible, and this time the reason is the low vibration
amplitudes. This means that in this case, both stiffness and

Figure 15. Experimental and simulated forced steady state responses. (a) and (c) Experiments at ω = 0.8Hz and ω = 1.2Hz, respectively; (b)
and (d) simulations at ω= 0.8Hz and ω= 1.2Hz, respectively. In experiments, the spring is heated by a 1.0 A current. In simulation, the
temperature changes between = °T 23 C and = °T 80 C; the pre-tension is =x 670 mm0 ( l1.7 0). The excitation amplitude is in both cases
A = 61 mm ( l0.9 0).
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hysteresis changes are beneficial, even though the major
improvements are due to the stiffness changes alone, and the
increase in hysteresis is insignificant. Note, however, that the
change in stiffness is less than it is in the first case because the
amplitude in the cold case is smaller, which gives a higher
average stiffness. In simulation the behaviour is similar.
However, because the high temperature stiffness is lower than
in experiments, an excitation frequency of 1.1 Hz has been
chosen instead of 1.2 Hz to get closer to the resonance
condition.

For the two cases, it is concluded that a shift in tem-
perature causes changes in both stiffness and hysteresis. Gen-
erally the stiffness is the most dominant factor in terms of
system dynamics. Furthermore, there is a trade-off; a beneficial
stiffness change might cause unfavourable loss of hysteresis,
which appears only at low temperatures and high amplitudes.

7. Vibration reduction—theoretical model
application

The theoretical model presented has been shown to be
appropriate to match experimental data related to pseudoe-
lastic SMA systems with high accuracy. Results presented in
sections 4, 5, and 6 reinforce this argument, and therefore, it
can be applied to investigate situations related to vibration
reduction. In this regard, two numerical investigations are
carried out, evaluating the influence of pretension and tem-
perature changes. Figure 16 shows results related to frequency
response analysis for different levels of pretension and tem-
peratures. Note that the pretension level does not influence the
resonance frequency but has a significant influence on energy
dissipation because it promotes changes in hysteresis. On the
other hand, the temperature of the SMA element has a sig-
nificant influence on the resonance condition due to stiffness
change. Note that the resonance frequency is changed 20%
relative to the cold case. Both situations can be employed for
vibration reduction purposes.

The change in resonance frequency can be exploited to
avoid critical situations. For instance, it is possible to pass

through critical speeds reducing transient vibration ampli-
tudes with the use of active temperature variations. Never-
theless, there is a trade-off between stiffness and hysteretic
changes, in the sense that the level of energy dissipation is
also changed by temperature variations; cf figure 15. At
55 °C, there is a region around resonance (ω ∈ [0.96; 1.03]
Hz), where the energy dissipation capabilities are so low that
the vibration amplitude becomes higher than the pretension of
the PE spring, causing the spring and the connecting threads
to become loose (not in tension) at certain instants in the
oscillation cycle. This state of motion involves unwanted
complex dynamic behaviour. This means that high-tempera-
ture conditions are useful and safe only when the excitation
frequency is far away from the resonance frequency.

8. Conclusions

Experimental and theoretical analyses are carried out for a one
degree of freedom oscillator with a pseudoelastic SMA ele-
ment. The system investigation shows complex nonlinear
behaviour due to the intricate thermo-mechanical relations of
the pseudoelastic shape memory alloy spring. Brinsonʼs
model is employed for the thermo-mechanical description of
the SMA spring, and two modifications have been presented:
hardening and sub-loop functions. These modifications allow
very good agreement with experimental data obtained either
for quasi-static or dynamical situations. Equilibrium positions
are investigated, showing that they strongly depend on the
initial condition of the cart (position, velocity, and martensitic
volume fraction) at room temperature. The equilibrium posi-
tion varies up to 50% of the initial SMA spring length.
Moreover, it significantly depends on the temperature, where
variations are up to 150%. By heating the pseudoelastic
spring when the cart is in equilibrium, the cart starts moving
in a jagged fashion, which is caused by a competition
between compliance (due to a forward phase transformation)
and stiffening (due to temperature increase). Similar beha-
viour can be achieved when cooling the spring. Pretension of
the SMA spring is investigated, showing its influence on

Figure 16. Theoretical frequency response functions of the system under different conditions. (a) Different levels of pre-tension. The
temperature is = °T 25 C. (b) Distinct temperatures. The pre-tension is =x 8000 mm l(2.0 )0 .
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energy dissipation induction and hysteretic behaviour
(vibration amplitudes reduced 50% at resonance for high-
level compared with low-level pretension). Temperature
variations are also investigated, showing the possibility of
inducing stiffness change due to phase transformation asso-
ciated with temperature variations. At high temperatures, the
spring behaves linearly elastically, which means that the
spring consists of pure austenite. Essentially, it is important to
point out the trade-off between both aspects, stiffness and
hysteresis, in order to define system dynamics. Strong
vibration reduction can be achieved using SMA elements.

Acknowledgments

The authors would like to thank the Danish Ministry of Sci-
ence, Innovation and Higher Education for the support to FTP
Research project 12-127502, as well as the Brazilian research
agencies CNPq, CAPES, and FAPERJ and, through the
INCT-EIE (National Institute of Science and Technology—
Smart Structures in Engineering), CNPq and FAPEMIG for
their support. The Air Force Office of Scientific Research
(AFOSR) is also acknowledged.

References

Aguiar R A A, Savi M A and Pacheco P M C L 2010 Smart Mater.
Struct. 19 025008

Aguiar R A A, Savi M A and Pacheco P M C L 2013 J. Intell. Mater.
Syst. Struct. 24 247–61

An S M, Ryu J, Cho M and Cho K J 2012 Smart Mater. Struct. 21
Bekker A and Brinson L 1998 Acta Mater. 46 3649–65
Bernardini D and Rega G 2011 Int. J. Bifurc. Chaos Appl. Sci. Eng.

21 2769–82

Bernardini D and Rega G 2011 Int. J. Bifurc. Chaos Appl. Sci. Eng.
21 2783–800

Brinson L C 1993 J. Intell. Mater. Syst. Struct. 4 229–42
Brinson L C and Huang M S 1996 J. Intell. Mater. Syst. Struct. 7

108–18
Budynas R and Nisbett J 2008 Shigleyʼs Mechanical Engineering

Design 8th edn (New York: McGraw-Hill) pp 500–39
Cartmell M P, Żak A J and Ganilova O A 2012 Nonlinear Dynamic

Phenomena in Mechanics (Solid Mechanics and Its
Applications vol 181) ed J Warminski, S Lenci, M P Cartmell,
G Rega and M Wiercigroch (Dordrecht: Springer) pp 115–58

dos Santos B C and Savi M A 2009 Chaos Solitons Fractals 40
197–209

Enemark S, Savi M A and Santos I F 2014 Smart Struct. Syst.
at press

Furst S J and Seelecke S 2012 J. Intell. Mater. Syst. Struct. 23
1233–47

Janke L, Czaderski C, Motavalli M and Ruth J 2005 Materials and
Structures 38 578–92

Lagoudas D C (ed) 2008 Shape Memory Alloys: Modeling and
Engineering Applications (New York: Springer) pp 171–80

Lagoudas D, Hartl D, Chemisky Y, Machado L and Popov P 2012
Int. J. Plasticity 32-33 155–83

Liang and Rogers 1990 J. Intell. Mater. Syst. Struct. 1 207–34
Machado L G, Lagoudas D C and Savi M A 2009 Int. J. Solids

Struct. 46 1269–86
Mirzaeifar R, DesRoches R and Yavari A 2011 Int. J. Solids Struct.

48 611–24
Monteiro Paulo Cesar C J, Savi M A, Netto T A and Pacheco P M C L

2009 J. Intell. Mater. Syst. Struct. 20 1675–87
Nagaya K, Takeda S, Tsukui Y and Kumaido T 1987 J. Sound Vib.

113 307–15
Paiva A and Savi M A 2006 Math. Prob. Eng. 2006 56876
Phillips J W and Costello G A 1972 J. Acoust. Soc. Am. 51 967–73
Savi M A, de Paula A S and Lagoudas D C 2011 J. Intell. Mater.

Syst. Struct. 22 67–80
Silva L C, Savi M A and Paiva A 2013 J. Sound Vib. 332 608–21
Sitnikova E, Pavlovskaia E, Ing J and Wiercigroch M 2012 Smart

Mater. Struct. 21 075028
Williams K A, Chiu G T C and Bernhard R J 2002 Proc. SPIE 4701

200–13

17

Smart Mater. Struct. 23 (2014) 085018 S Enemark et al


	1. Introduction
	2. Experimental setup
	3. Theoretical modelling
	3.1. Constitutive equations&#x02014;Brinson&#x002BC;s model
	3.2. Modified hardening and sub-loop functions
	3.2.1. Hardening function

	3.3. Sub-loop function
	3.4. Helical spring model
	3.5. Equation of motion and its solution
	3.5.1. Standard approach for numerical solution
	3.5.2. Particular approach for numerical solution


	4. Characterization of pseudoelastic spring
	5. Free vibrations
	5.1. Constant temperature
	5.2. Varying temperature

	6. Forced vibrations
	6.1. Constant temperature
	6.2. Varying temperature

	7. Vibration reduction&#x02014;theoretical model application
	8. Conclusions
	References

