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This contribution deals with the analysis of a rotordynamic nonsmooth shape memory

alloy (SMA) system. The rotor–bearing system is modeled as a Jeffcott rotor with two-

degrees of freedom and discontinuous supports. Two different situations are investi-

gated: linear elastic support and shape memory alloy support. Numerical simulations

situations where nonlinear effects of SMAs are interesting in dynamical responses

avoiding undesirable behaviors. Temperature dependence of SMA response is investi-

gated showing adaptive aspects of this kind of system.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Rotordynamical systems are employed in several devices as engines and turbines. Rotor–bearing interactions have
attracted much attention from researchers not only due to their wide applicability in several fields, but also for their
dynamical response richness. The modeling of rotor dynamical systems is related to different research efforts, being
associated with signal analysis, finite element method, among other approaches [1–5].

Despite of recent sophisticated models, the simple sketch proposed by Jeffcott [6] is useful for nonlinear dynamical
analyses. Karpenko et al. [7] studied the nonlinear dynamics of a rotor–bearing system modeled by an oscillator with two-
degrees of freedom and discontinuous elastic supports. The physical system was based on a Jeffcott rotor and the work
revealed a rich dynamic behavior of the system, including chaos. Pavlovskaia et al. [8] analyzed preloaded snubber ring
subjected to out-of-balance excitation. Karpenko et al. [9] showed the correlation between numerical and experimental
results promoting an understanding of this kind of system and its applicability. Shang et al. [10] investigated the global
response of rotor–bearing system considering the effects of dry friction.

The Jeffcott rotor may be understood as a two-degree of freedom system with intermittent contacts that provides
nonsmooth nonlinearities. Usually, this kind of nonlinearity appears in several engineering systems with discontinuous
characteristics as contact or dry friction, being the objective of distinct researches that investigate the nonlinear dynamics
of these systems [11–13].

Since nonsmooth systems present an unusual complex behavior, their description involves many mathematical and
numerical difficulties. Therefore, proper mathematical approaches need to be developed, such as in Refs. [14–20]. Besides,
experimental studies are of great importance for a better comprehension of nonsmooth systems and several researches
were dedicated to this objective [20–28].
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The use of smart materials in rotordynamic systems is of special interest since they can provide better performance,
avoiding several undesirable behaviors. Shape memory alloys (SMAs) represent an interesting alternative where adaptive
characteristics and high dissipation capacity are required. Santos and Savi [29] and Sitnikova et al. [30] explored a one-
degree of freedom version of the rotordynamical system represented by a primary oscillator with a secondary system
(support) with an SMA element. These articles compared the elastic support responses with those obtained from an SMA
support. In general, both articles showed several complex behaviors of this system but also showed how dissipation
capacity of SMAs could be exploited to change the dynamical behavior of the system. Although SMA systems can be related
to complex behaviors, the possibility to change the response with temperature variations is attractive [31].

This contribution deals with the numerical investigation of smart rotordynamics considering an archetypal system
composed of a Jeffcot model with SMA elements providing restitution forces on the support. The main motivation is to
exploit the remarkable properties of SMAs to avoid undesirable behaviors of the rotor–bearing system. Furthermore,
temperature dependence of SMA elements offers an adaptive-passive possibility for control purposes that can be easily
implemented avoiding some complex dynamics related to elastic supports. The main goal of this paper is to establish a
qualitative comparison between linear elastic and SMA supports, showing the potential application of SMAs to promote
vibration reduction. Thermomechanical behavior of SMAs is described through the constitutive model proposed by Paiva
et al. [32] that covers the main phenomenological behaviors of SMAs and presents good agreement with experimental
data. This contribution shows the feasibility of the use of SMAs to alter dynamical behavior of rotordynamic systems by
exploiting two main aspects: dissipation capacity associated with hysteretic behavior during impact; and adaptive
behavior related to temperature dependence.
2. Mathematical modeling

This section presents the mathematical model employed to describe the dynamical behavior of the nonsmooth
rotordynamic system with SMA element. The system consists of a two-dimensional Jeffcott rotor with mass M, excited by
an unbalanced rotating mass m, identified by a fixed distance r from the geometrical center of the rotor, as presented in
Fig. 1a. During operation, the rotor has intermittent contact with the bearing and it is assumed that contact is non-
impulsive and that the friction is neglected. The equivalent stiffness of the rotor is assumed to be k in both directions x and
y. System dynamics has two different modes related to contact and non-contact behaviors. Both situations can be
evaluated by comparing the radial displacement R of the center of mass of the rotor and the gap g between the rotor and
the bearing: contact (RZg); and non-contact behavior (Rog). During contact, the system presents restitution forces
provided by the support elements. Here, two different systems are investigated: linear elastic support and SMA support.
All dissipations different from the SMA element hysteretic dissipation are neglected. Fig. 1b shows a disturbed condition
where there is contact between the rotor and the bearing; O represents the geometrical center of both the bearing and the
rotor in the equilibrium position, while O0 is associated with the center of the rotor, taking into account the radial
displacement R of the center of mass of the rotor. Two reference frames are adopted—the first one denoted by (x, y) is
inertial, while the second one (x0, y0) is a mobile one attached to the rotor and undergoes only translation in the (x, y) plane
to take into account the displacement of the center of mass of the rotor.

Note that f is the initial phase angle, O is the angular frequency of the rotor and c assigns the angle that the direction
of the radial displacement of the rotor makes with the horizontal direction. Besides, Rx¼u (t) and Ry¼v (t) are the
horizontal and vertical displacements of the center of the rotor mass, respectively. Thus, according to Fig. 1b, the system
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Fig. 1. Physical model for the rotor–bearing system. (a) Equilibrium position; (b) disturbed condition.
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must respect the following geometrical conditions:

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2

p
cosðcÞ ¼

u

R
sinðcÞ ¼

v

R
(1)

Fig. 2 presents the free-body diagram for the non-contact and contact situations. Fx and Fy correspond to the linear
restitution force acting on the rotor for horizontal and vertical directions, respectively; Fx and Fy are contact forces,
associated with the support element restitution force; F c is the force due to the unbalanced mass m.

Based on this conceptual model, Newton’s second law for both x0 and y0 directions is employed to establish the
following equations of motions [33,34]:

�Fx�FxþFc cosðOtþjÞ ¼M €u

�Fy�FyþFc sin ðOtþjÞ ¼M €v (2)

The rotor restitution forces Fx and Fy are assumed to be linear elastic as follows:

Fx ¼ ku

Fy ¼ kv (3)

The unbalanced force is given by: F c¼mrO2. Moreover, it is important to identify both contact and non-contact
situations of the system. Two different support elements are of concern: linear elastic and SMA element. The description of
each support depends on the constitutive modeling of the restitution force. By assuming a linear elastic support, the
support element restitution forces Fx and Fy, are given by:

Fx ¼
ksu if RZg
0 if Rog

(

Fy ¼
ksv if RZg
0 if Rog

(
(4)

Note that (R�g) is the radial displacement of the bearing. Thus, u¼ ðR�gÞ cos ðcÞ and v¼ ðR�gÞ sin ðcÞ are the support
displacements on the horizontal and vertical directions, respectively, while ks is the support stiffness.

The SMA support element employed in the bearing may be designed as a spring or a beam structure; though, the SMA
element is evaluated as an equivalent bar of cross sectional area A and length l subjected to tension/compression that
would correspond to an SMA element. Therefore, the forces Fx and Fy provided by the SMA supports are defined as follows:

Fx ¼
sxA if RZg

0 if Rog

(

Fy ¼
sy A if RZg

0 if Rog

(
(5)

where sx and sy are the uniaxial stresses developed in the SMA element for the horizontal and vertical directions,
respectively. Accordingly, the SMA element deformation can be evaluated as:

ex ¼
u

l
¼
ðR�gÞ cosðcÞ

l

ey ¼
v

l
¼
ðR�gÞ sin ðcÞ

l
(6)
x '

y '

φ

O '

xF

yF

xF

yF
Fc

x '

y '

φ

O '
xF

yF
Fc

Fig. 2. Free-body diagram for the rotor–bearing system, (a) non-contact situation; (b) contact situation.
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Finally, it is possible to rewrite the equations of motion (Eq. (2)) in their final form for both directions as:

M €uþkuþFx ¼mrO2 cosðOtþjÞ
M €vþkvþFy ¼mrO2 sinðOtþjÞ (7)

where Fx and Fy may be evaluated according to either Eq. (4) for a linear elastic support on the bearing or Eq. (5) for an
SMA support. The next section presents the constitutive modeling related to the thermomechanical behavior of the SMA.
This equations provides a proper description of the forces Fx and Fy.

2.1. Constitutive modeling

This section deals with the constitutive modeling of the thermomechanical behavior of the SMA element. There are
several theories capable to perform the macroscopic description of the main phenomena presented by SMA materials
[35,36]. Here, a simplification of the model proposed by Paiva et al. [32] is employed [37,38]. This simplified version
considers a one-dimensional model with four macroscopic phases, being able to describe the main SMA behaviors such as:
pseudoelasticity, shape memory effect, phase transformation induced by temperature variation and internal sub-loops due
to incomplete phase transformations. The constitutive equations of this model establish the stress s as a function of the
observable variables strain e and temperature T; besides, three internal variables that correspond the volume fraction of
each phase: b1 and b2 are the volume fractions associated with the detwinned martensitic variants, respectively, related to
tension (denoted by Mþ) and compression (denoted by M�) behaviors, while b3 is the volume fraction associated with
austenitic phase (denoted by A). Note that a fourth phase related to twinned martensite is also considered in the
formulation but, as a matter of fact, it may be written as function of the other three by the relation: b4¼1�b1�b2�b3.
Therefore, the following set of constitutive equations is defined:

s¼ Eeþ½aþEah�ðb2�b1Þ�Y ðT�T0Þ (8)

_b1 ¼
1

Z1

aeþLþ 2ahaþEa2
h

� �
ðb2�b1Þþah Ee�Y ðT�T0Þ½ ��@b1

Jp
� �

þ@ _b1
Jw (9)

_b2 ¼
1

Z2

�aeþL� 2ahaþEa2
h

� �
ðb2�b1Þ�ah E e�Y ðT�T0Þ½ ��@b2

Jp
� �

þ@ _b2
Jw (10)

_b3 ¼
1

Z3

�
1

2
ðEA�EMÞ ½eþahðb2�b1Þ�

2þL3þðYA�YMÞ ðT�T0Þ eþahðb2�b1Þ
� �

�@b3
�Jp

� �
þ@ _b3

Jw (11)

In these equations, E¼EMþb3 (EA�EM) is the elastic modulus, Y¼YMþb3 (YA�YM) is related to the coefficient of
thermal expansion, while T0 is a reference temperature. The subscript indices ‘‘M’’ and ‘‘A’’ refer to martensitic and
austenitic phases, respectively. The parameter a is related to the height of the hysteresis loop, while ah is related to its
width. The terms @bn

Jp ðn¼ 1,2,3Þ are the sub-differential of the indicator function Jp with respect to bn(n¼1,2,3), being
related to the internal constrains related to the coexistence of phases.

The terms @ _bn
Jw ðn¼ 1,2,3Þ are sub-differentials of the indicator function Jw with respect to _bnðn¼ 1,2,3Þ, which is

associated with the conditions for the proper description of internal sub-loops due to incomplete phase transformations.
These restrictions also avoid the physically unfeasible transformations: Mþ)M and M�)M.

The parameters L¼L (T) and L3¼L3 (T) are associated with critical stress values for phase transformations, being
defined as follows:

L¼
�L0þ

L
TM

T�TMð Þ if T4TM

�L0 if TrTM

(
(12)

L3 ¼
�LA

0þ
LA

TM
ðT�TMÞ if T4TM

�LA
0 if TrTM

8<
: (13)

where TM is the temperature below which the martensitic phase is stable, while L0, L, L A
0 and LA are parameters that control

phase transformations.
In order to consider different characteristics of phase transformation kinetics, the dissipation parameter Zn(n¼1,2,3)

may assume different values for loading and unloading behaviors.
For further details, please see Ref. [32]. The use of constitutive Eqs. (8)–(11) in the equations of motion of the

rotordynamical system allows the description of the restoring forces Fx and Fy on the SMA support element.

3. Numerical simulations

This section presents numerical simulations of the rotor–bearing system with SMA supports, exploring the
pseudoelastic behavior. The main goal of the present analysis is to compare the SMA dynamical system behavior with



Table 1
SMA properties.

EA (GPa) EM (GPa) a (MPa) ah (MPa)

54 42 50 50

L0 (MPa) L (MPa) LA
0 (MPa) LA (MPa)

0.15 4.0 6.3 165

YA (MPa/K) YM (MPa/K) TM (K) T0 (K)

0.74 0.17 201.4 298.0

Z1 (MPa s) Z2 (MPa s) Z3 (MPa s)

5.0 5.0 2.0

Table 3
Geometric data of an equivalent spring related to the SMA element.

D (m) d (m) N dshaft (m) JP (m4)

0.008 0.0003 10 0.01 9.81�10�10

Fig. 3. Displacement evolution. (a) x-direction; (b) steady state in x-direction; (c) y-direction; (d) steady state in y-direction.

Table 2
Rotor–bearing system parameters.

M (kg) m (kg) g (m) r (m) k (N/m)

15 0.15 0.002 0.055 3.92

L.C. Silva et al. / Journal of Sound and Vibration 332 (2013) 608–621612
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the one with elastic support, highlighting their differences. This approach allows one to obtain a general qualitative
comprehension about the rotor system dynamics, defining some potential situations where SMA employment may avoid
undesirable behaviors for control purposes.

The constitutive properties of the SMA element are presented in Table 1. Table 2 presents the rotor–bearing parameters.
Both sets of parameters apply for all simulations throughout the paper, as well as the velocity initial conditions
ð _u 0 ¼ _v 0 ¼ 0Þ. All other information is addressed during each specific simulation.

In order to furnish a better comprehension of the restitution force provided by the SMA element, Table 3 presents the
data of an equivalent spring that would correspond to the SMA bar presenting the same stiffness according to the
constitutive parameters of Table 1. In Table 3, D represents the diameter of the SMA spring, d represents the wire diameter,
N is the number of active coils, dshaft represents the shaft diameter that helps the estimation of the equivalent stiffness for
the bearing support and JP represents the area moment of inertia. These parameters provide an equivalent stiffness
ks¼2.867 N/m for the SMA element in the austenitic phase.
3.1. Free vibration

This section deals with the free vibration analysis of the rotor system and its main goal is to observe the general
thermomechanical behavior of the SMA element promoting the model verification. This simulation is performed without
the external excitation, vanishing the unbalanced mass (m¼0 kg). Furthermore, it is assumed initial conditions in such a
way that the offset for both directions must be greater than the gap between the rotor and bearing (u0¼v0¼0.004 m),
ensuring contact.

Basically, the free vibration analysis establishes a comparison between two different systems: elastic and SMA
supports. Concerning the SMA system, three different temperatures are investigated: T¼298 K; T¼320 K and T¼373 K.
The change in temperature alters the position of the hysteresis loop in the force–displacement space, changing the amount
of dissipated energy. This analysis illustrates the adaptive behavior of SMA system related to temperature dependence.
Fig. 4. Phase space orbits. (a)u� _u; (b) v� _v.

Fig. 5. Force–displacement curves for the support element. (a) x-direction; (b) y-direction.
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Fig. 3 shows the time history of horizontal (u) and vertical (v) rotor displacement for these four situations (elastic
compared with three different SMA temperatures). It is noticeable that, for the SMA system, there is a transient where the
displacement amplitude decays until the steady state is reached. This transient is related to hysteretic dissipation of the
SMA element, while the steady state is associated with its elastic response. Fig. 3b and d highlight the time-response
showing the differences in the amplitude of the steady state movement. Phase space plots of the steady state responses are
shown in Fig. 4.

The hysteretic behavior of the SMA element is now observed through the force–displacement diagrams showed in
Fig. 5, for x and y directions. It is worthwhile to observe that the displacements, u and v, in Figs. 3 and 4 refer to the rotor
Fig. 6. Phase transformation analysis. (a) Displacement evolution for x-direction; (b) displacement evolution for y-direction; (c) force–displacement

diagram for x-direction; (d) force–displacement diagram for y-direction; (e) volume fractions evolution for x-direction; (f) volume fractions evolution for

y-direction.
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displacement, while, in Fig. 5, u and v are related to the displacement of the bearing support. Note that temperature
variation promotes a change in the position of the hysteresis loop, and the increase in temperature increases the distance
from the horizontal axis with null force. Therefore, this temperature variation changes the energy dissipation related to the
hysteretic response.
3.2. Forced vibration

This section deals with numerical simulations of the forced response of the rotor–bearing system with SMA supports.
Three situations are treated: the first one evaluates the system behavior highlighting phase transformation evolution; the
second one emphasizes the SMA temperature influence on system dynamics; finally, the third one discusses the SMA
potential to perform dynamical changes in rotor systems.

For the first case, consider the following parameters: T¼298 K; m¼0.15 kg; O¼0.5112 rad/s; f¼0 rad and
u0¼v0¼0.0001 m as initial conditions. After a transient response, steady state is reached and Fig. 6 highlights the system
behavior establishing the relation among displacements, forces and volume fractions. Fig. 6a and b present one cycle of the
steady state displacement response in both x and y directions. Fig. 6c and d show force–displacement curves of the SMA
support elements for directions x and y. Fig. 6e and f show the time history of the volume fractions of the macroscopic
phases. Note that some time instants are highlighted with letters, allowing the analysis of the evolution of each variable for
the whole dynamical process.

Considering the x-direction (Fig. 6a, c and e), the initial state is represented by the point A, where the SMA element is in
detwinned martensite state (variant Mþ). From point A to point B, the system presents an elastic recovery according to
phase Mþ . Between the points B and C, the SMA undergoes a reverse transformation (Mþ)A), such that, in point C

(tffi4943,96 s), the structure is totally austenitic. After that, the system presents an elastic response according to phase A

passing through point D (where there is no displacement) towards point E (tffi4944,59 s), where it starts an A)M�

martensitic transformation (between points E and F). From point F on (tffi4945,37 s), the SMA support presents an elastic
response according to phase M� , until it reaches the maximum negative point G. Afterward, from point G to point H

(tffi4949,34 s), another elastic recovery according to phase M� occurs. Between the points H and I, the SMA element
Fig. 7. Phase space orbits. (a) u� _u; (b) v� _v; (c) u�v; (d) R� _R .
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undergoes another reverse transformation (M�)A), such that, in point I (tffi4950,04 s), the structure is again totally
austenitic. Then, there is a new elastic response according to phase A, passing again through point J (where there is no
displacement), until it reaches point K, where it starts another martensitic transformation (A)Mþ) that lasts until point
L. At this point, the SMA structure is fully Mþ again and, from this point on, there is an elastic response according to phase
Mþ , completing the cycle. A similar analysis can be done by considering the y-direction (Fig. 6b, d and f). It is interesting to
note that the displacements in x and y directions are not synchronized (as they are in the simulation for free vibrations).

Fig. 7 shows the phase space orbits for the same situation, highlighting the same points. Fig. 7a and b show the orbits
u� _u and v � _v, respectively. These orbits show that the system oscillates around the equilibrium points: ðu, _uÞ ¼ ð0,0Þ and
ðv, _vÞ ¼ ð0,0Þ. Fig. 7c shows the phase space that represents the center of the rotor displacement, taking into account that
the rotor touches the bearing during the spin trajectory. Fig. 7d shows the behavior of rotor radial trajectory. This
trajectory is represented by R and shows the behavior in terms of the center of the rotor displacement. Both Fig. 7c and d
present some noticeable points (A–A0, D–D0, G–G0 and J–J0) that denote the null displacement for either u or v.

At this moment, one considers a simulation with the same parameters of the previous one, i.e., m¼0.15 kg;
O¼0.5112 rad/s; f¼0 rad and u0¼v0¼0.0001 m. A comparison with the case with elastic support is now in focus for
different temperatures of the SMA element. The SMA system can exploit temperature variation to avoid undesirable
behaviors. This temperature dependence is related to an adaptive characteristic of the SMA system that can be used for
control purposes. In order to illustrate such capacity, consider a situation where the system presents the beating
phenomenon by assuming that the rotor–bearing system is excited by a frequency close to the system natural frequency.

The developed analysis establishes a comparison among three different cases: elastic system and SMA system with two
distinct temperatures (T¼298 K and T¼493 K). Fig. 8 presents displacement time history, while Fig. 9 shows the same
responses in the form of steady state phase space orbits (u�v) and the respective time history of R. Fig. 10 presents the
Fig. 9. (a) Phase space orbits u� v, (b) radial displacement evolution.

Fig. 8. Displacement evolution. (a) x-direction; (b) y-direction.



Fig. 11. Phase space orbits for the system with elastic element. (a) u� _u; (b) v� _v; (c) u�v; (d) _u � _v.

Fig. 10. Force–displacement curves. (a) x-direction; (b) y-direction.
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force–displacement curves associated with these responses. According to them, the higher temperature behavior
(T¼493 K) is related to a situation where the SMA element does not present phase transformation; thus, its response is
likewise the elastic system. Nevertheless, for a lower temperature (T¼298 K), there is a change in the response and the
beating does not occur anymore. The hysteretic behavior is responsible for this change.
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The nonlinear dynamical behavior of the rotor–bearing system is very rich, presenting periodic, quasi-periodic and
chaotic responses. From now on, the interest is to evaluate if the SMA support is able to avoid some undesirable responses.
Therefore, consider a situation where the elastic system presents a chaotic response by assuming the following
parameters: T¼298 K; m¼0.15 kg; ks¼350 N/m; O¼1.8 rad/s; f¼0 rad and u0¼v0¼0.001 m.

Fig. 11 shows the elastic system response by presenting the phase space. It is noticeable the chaotic-like response of the
system. Fig. 12, as well, suggests this chaotic behavior by evaluating the initial conditions sensitivity. Note that two
different but very close initial conditions cause, after some time, completely different responses.
Fig. 12. Initial conditions sensitivity. Displacement evolution for x-direction; (b) displacement evolution for y-direction.

Fig. 13. Phase space orbits and Poincare section for the system with SMA element. (a) u� _u; (b) v� _v; (c) u�v; (d) _u � _v .



L.C. Silva et al. / Journal of Sound and Vibration 332 (2013) 608–621 619
The inclusion of the SMA element can change this kind of behavior. Fig. 13 shows the phase space and the Poincare
section for the system with SMA elements. Through these diagrams, it can be observed that the use of SMA elements
changes the system response to a period-1 behavior. Therefore, the hysteretic behavior of the SMA element can
dramatically change the system response.

Fig. 14 compares the time evolution of displacement and velocity for both systems. Once again it is possible to compare
the chaotic-like response of the elastic system with the period-1 response of the SMA system.

In order to assure that chaotic-like response of the elastic system is really chaotic, frequency analysis is focused on for
both systems. Fig. 15 shows the frequency spectrum of each system for each direction. Note that the energy is spread over
Fig. 14. Time evolutions for chaotic elastic motion and period-1 SMA motion. (a) Displacement for x-direction; (b) displacement for y-direction; (c)

velocity for x-direction; (d) velocity for y-direction; (e) displacement for radial direction; (f) velocity for radial direction.



Fig. 15. Frequency spectra. (a) Elastic system in x-direction; (b) SMA system in x-direction; (c) elastic system in y-direction; (d) SMA system in y-

direction.
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a range for the chaotic elastic signal while it is restrict to a main discrete frequency for the SMA periodic response. This
analysis confirms the possibility of the use of SMA elements to avoid undesirable responses of rotordynamical systems.
4. Conclusions

This work presents the nonlinear dynamical analysis of a Jeffcott rotor system, considering a shape memory alloy
restitution element on the bearing support. The mathematical model introduces the SMA constitutive equations into the
well-known Jeffcott dynamic formulation. Numerical simulations are conducted in order to establish a qualitative
comparison between elastic and SMA systems, emphasizing the intrinsic dissipation due to hysteretic behavior of the SMA
response and temperature dependent behavior. Initially, free vibration analysis is carried out for the model verification.
This behavior attests the amplitude decay, related to hysteretic dissipation of the SMA element, leading to a steady state
response associated with its austenitic elastic behavior. The forced vibration is then focused on, showing that SMAs can be
used not only to reduce vibration amplitudes due to their intrinsic dissipation, but also to change the system dynamics.
Moreover, SMA offers different possibilities for control purposes. Passive control can be exploited substituting an elastic
support that produces undesirable responses for an SMA element. Temperature dependence of the SMA element can be
exploited in order to develop passive-adaptive control since temperature variations can change the qualitative dynamic
pattern.
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