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a b s t r a c t

Smart material systems and structures have remarkable properties responsible for their application in
different fields of human knowledge. Shape memory alloys, piezoelectric ceramics, magnetorheological
fluids, and magnetostritive materials constitute the most important materials that belong to the smart
materials category. Shape memory alloys (SMAs) are metallic alloys usually employed when large forces
and displacements are required. Applications in aerospace structures, rotordynamics and several
bioengineering devices are investigated nowadays. In terms of applied dynamics, SMAs are being used
in order to exploit adaptive dissipation associated with hysteresis loop and the mechanical property
changes due to phase transformations. This paper presents a general overview of nonlinear dynamics
and chaos of smart material systems built with SMAs. Oscillators, vibration absorbers, impact systems
and structural systems are of concern. Results show several possibilities where SMAs can be employed
for dynamical applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nature should be the essential inspiration for researchers and
engineers that try to develop systems and structures. The main
inspirational point is certainly the adaptive behavior that provides
the self-regulation ability. Through the history, human technology
is always related to different materials and it is possible to
recognize ages defined by some material invention: stone and
metal, for instance. Recently, smart materials should be identified
as the stimulus of a new age. Basically, smart materials have a
coupling between mechanical and non-mechanical fields that
confers the material a special kind of behavior. In this regard, it
is possible to imagine numerous applications due to the coupling
of fields that usually are not connected. The smart material age
tries to exploit the idea to construct systems and structures with
adaptive behavior that have the ability to change properties due to
environmental changes and repairing themselves when necessary.

Among many possibilities, smart materials can be classified
according to the different field couplings. Nowadays, the most
used materials are the shape memory alloys, the piezoelectric
materials, the magnetostrictive materials and the electro- and
magneto-rheological fluids. These materials have the ability of
changing their shape, stiffness, among other properties, through
the imposition of temperature or stress, electrical or electro-
magnetic fields. Smart materials are usually employed as sensors
and actuators in smart structures. The choice of proper material
for each application depends on many factors and two design

drivers need to be highlighted [32]: the actuation energy density;
and the actuation frequency.

Shape memory alloys (SMAs) present a mechanical-temperature
coupling in such a way that they have the ability to recover a shape
previously defined, when subjected to an appropriate thermome-
chanical loading process. SMA application is usually associated with
high force–displacement and low frequency. The remarkable prop-
erties of SMAs are related to phase transformations responsible for
different thermomechanical behaviors of these alloys. Basically, two
different phases are possible in SMAs: austenite and martensite.
Austenitic phase is stable at high temperatures and stress-free state
presenting a single variant. On the other hand, martensitic phase is
stable at low temperature in a stress-free state, being related to
numerous variants. Phase transformation may be induced either by
stress or by temperature. SMA thermomechanical behavior is very
complex being represented by different phenomena. Pseudoelasti-
city, shape memory effect, two-way shape memory effect, transfor-
mation induced plasticity are some examples of important aspects
of the thermomechanical behavior of SMAs.

The macroscopic behavior of SMAs can be expressed by stress–
strain curves, Fig. 1. Pseudoelasticity happens at high tempera-
tures, where the austenitic phase is stable for a stress-free state.
Fig. 1a shows a typical stress–strain curve of the pseudoelastic
behavior. A mechanical loading causes an elastic response until a
critical stress value is reached, point A, when the martensitic
transformation (austenite-detwinned martensite) arises, finish-
ing at point B. For higher stress values, SMA presents a linear
elastic response. During unloading process, the sample presents an
elastic recovery (B-C). From point C to D one can note the reverse
martensitic transformation (detwinned martensite-austenite).
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Afterward, the sample presents an elastic discharge. When the
loading–unloading process is finished, SMA has no residual strain,
however, there is an energy dissipation represented by the
hysteresis loop.

The position of this hysteresis loop is temperature dependent
and, since the temperature goes down, the hysteresis loop moves
down as well. For low temperature behavior, the hysteresis
position can be such that there is a residual strain after the
loading–unloading process. Fig. 1b shows the stress–strain curve
related to the shape memory effect. Basically, the martensitic
phase is the only stable phase under this condition. When the
sample is subjected to a mechanical loading, the stress reaches a
critical value, point A, beginning the reorientation from the
twinned into the detwinned martensite, ending at point B. During
the unloading process, the SMA sample presents a linear elastic
response, resulting in a residual strain (Point C). This residual
strain can be recovered through a sample's heating, which induces
the martensite–austenite phase transformation.

The description of SMA thermomechanical behavior is the
objective of several research efforts. The constitutive modeling is
related to phenomenological features to take into account the
changes in the microstructure due to phase transformation
[46,45]. Paiva and Savi [45] and Lagoudas [32] presented a general
overview of the SMA modeling, with the emphasis on the
phenomenological constitutive models.

The remarkable properties of SMAs are attracting technological
interest in several fields of sciences and engineering. Machado and
Savi [35] presented an overview of the most relevant SMA
applications within biomedical field. The success of SMA biome-
dical applications is due to the non-invasive characteristic of SMA
devices and also due to their excellent biocompatibility. SMAs are
usually employed in surgical instruments, cardio-vascular, ortho-
pedic and orthodontic devices, among other applications. Self-
expansive structures constitute one of the main applications of
SMAs, as the Simon filters and stents.

Besides biomedical applications, SMAs have been investigated to
applications in engineering fields. Paiva and Savi [45] and Lagoudas
[32] discussed some of the most important engineering applications.
Self-expanded structures are employed to promote deployments
and to establish connections. Another interesting application is
related to multi-actuated flexible structures that can be applied in
hydrofoils or wings. Robotic applications are also exploiting SMA
characteristics, trying to mimic the continuous movement of mus-
cles that is important for the construction of members as hands,
arms and legs. Besides, automotive applications are also considering
the use of SMAs for different purposes [17].

Dynamical systems with SMA elements constitute another
important field of potential application being associated with both

the adaptive dissipation of energy related to their hysteretic
behavior and large changes in their mechanical properties caused
by phase transformations. These aspects can be exploited both in
the adaptive–passive and the active control, and a limiting factor is
the slow rate of response. SMA is also being used in impact
systems where it is expected that the high dissipation capacity due
to hysteresis loop results in less complex behaviors. This can
dramatically changes the system response when compared to
those obtained with an equivalent linear elastic impact [48,62,61].

The dynamical response of SMA systems has complex dynami-
cal responses including chaos and hyperchaos. The investigation
of SMA oscillators is treated in different studies showing the
general complexity of the nonlinear dynamics of SMA systems
[49,50,36,37,38,30,31,10,11,12,9,54]. Aguiar et al. [3] presented an
experimental investigation of SMA oscillators showing some of
these complex behaviors. Doaré et al. [23] discussed torsional
behavior of SMA systems. Besides, it is important to mention some
efforts related to the characterization of chaos using either
Lyapunov exponents [38] or 0–1 test [34].

SMA structures have been investigated by different approaches.
The finite element method is an important tool to this aim.
Concerning dynamical applications, Gholampour et al. [25] dis-
cussed some aspects of smart structures with SMA members.
Collet et al. [16] analyzed the dynamical response of SMA beams,
as well as Auricchio and Sacco [5]. De Paula et al. [19] treated an
SMA grid employed for aerospace applications. Savi and Nogueira
[57] and Savi et al. [51] discussed two-bar trusses with SMA
elements.

Hybrid composites with SMA actuators are another application
for shape and buckling control and also to change natural frequen-
cies. Hajianmaleki and Qatu [26] presented a general review about
vibration of composite beams, including the ones with SMA
members. Nonlinear dynamic response of sandwich beams with
SMAs is treated in Khalili et al. [29] using the finite element
method. Shariyat et al. [58] presented the nonlinear dynamics
analysis of rectangular composite plates with SMA wires.

The use of SMAs for control purposes is vast. The tuned
vibration absorber (TVA) is a passive vibration control device for
achieving reduction in the vibration of a primary system subject to
external excitation. The TVA consists of a secondary oscillatory
system that once attached to the primary system is capable
of absorbing vibration energy from the primary system. An
alternative for systems where the forcing frequency varies or has
a kind of uncertainty is the concept of an adaptive tuned vibration
absorber. This device is similar to a TVA but with adaptive
elements that can be used to change the tuned condition
[1,63,27,14]. Savi et al. [56] discussed the use of SMAs in
tuned vibration absorber and Williams et al. [65] investigated a

B

C

A

D

O

A
B

O C

Fig. 1. SMA macroscopic behavior represented by stress–strain curves: (a) pseudoelasticity and (b) shape memory effect.
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prototype of this device. Adaptive–passive vibration control has
been applied on bridges [22,64] and other civil structures sub-
jected to earthquakes [15,47]. Amarante dos Santos et al. [4]
treated semi-active vibration control using a device with SMA
wires. Bessa et al. [13] and De Paula et al. [21] presented different
approaches of nonlinear control to the SMA two-bar truss.

This paper presents a general overview of applied dynamics
involving shape memory alloy systems. SMA oscillators, vibration
absorbers, impact and structural systems are of concern. A collec-
tion of results is chosen in order to show the general aspects of the
dynamical behavior of SMA systems. Some experimental results
are presented confirming the main conclusions.

2. Mathematical modeling and constitutive models

The modeling and simulation of the thermomechanical beha-
vior of SMAs is the objective of numerous research efforts being a
complex subject. The constitutive modeling is related to phenom-
enological features to take into account the changes in the
microstructure due to phase transformation [46,45]. Paiva and
Savi [45] and Lagoudas [32] presented a general overview of the
SMA modeling, with the emphasis on the phenomenological
constitutive models. The SMA modeling becomes even more
complex when three-dimensional media is of concern. Although
many constitutive models are developed for a three-dimensional
description, their verification is difficult due to the lack of experi-
mental data. Oliveira et al. [41] proposed a constitutive model for
three-dimensional media, presenting a literature review about the
subject.

Among many alternatives of SMA constitutive models, there is
a class of models in literature known as models with assumed
phase transformation kinetics that, probably are the most popular
in the literature, playing an important role within the SMA's
modeling. Another possibility is a model with internal constraints,
originally based on Fremond [24]. This model was the objective of
several improvements reported in the following references: Paiva
et al. [44], Savi and Paiva [53], Baêta-Neves et al. [7], Savi et al.
[52], Aguiar et al. [2] and Monteiro et al. [39].

Constitutive equations should be developed within a proper
formalism. A remarkable procedure is the framework of conti-
nuum mechanics employing the generalized standard material
approach [33]. On this basis, the thermomechanical behavior of a
continuum may be modeled from the Helmholtz free energy
density, Ψ , and the pseudo-potential of dissipation, Φ in order to
satisfy the second law of thermodynamics. A brief discussion
about this procedure is now presented. Consider the local form
of the Clausius–Duhem inequality:

σ_ε�ρð _Ψþs _TÞ�qgZ0 ð1Þ

where the dot means time derivative, ρ is the density, s is the
specific entropy, T is the temperature, σ is the stress, ε is the total
strain, q is the heat flux and g ¼ 1

T
∂T
∂x , where x represents the spatial

coordinate.
As a first hypothesis concerning the constitutive modeling, it is

assumed that the Helmholtz free energy density is a function of a
finite set of variables:

Ψ ¼Ψ ðε; T ; βÞ ð2Þ

where β represents a set of internal variables.
Since _Ψ ¼ ∂Ψ

∂εij
_εþ ∂Ψ

∂T
_Tþ ∂Ψ

∂β
_β, the Clausius–Duhen inequality is

rewritten as follows:

σ�ρ
∂Ψ
∂ε

� �
_ε�ρ sþ∂Ψ

∂T

� �
_T�ρ

∂Ψ
∂β

_β�qgZ0 ð3Þ

This form motivates the following definitions of the thermodyna-
mical forces, related to reversible part of the process.

σR ¼ ρ
∂Ψ
∂ε

; B¼ � ρ
∂Ψ
∂β

; sR ¼ �∂Ψ
∂T

ð4Þ

In order to describe irreversible processes, complementary
laws are defined from a pseudo-potential of dissipation that is a
function of internal variables:

Φ¼Φð_ε; _β; _T ; qÞ ð5Þ
The thermodynamical formalism establishes thermodynamics

fluxes as follows [33,24]:

σI ¼ ∂Φ
∂_ε

; B¼ ∂Φ
∂ _β

; sI ¼ ∂Φ
∂ _T

; g ¼ ∂Φ
∂q

ð6Þ

Alternatively, these thermodynamic fluxes may be obtained from
the dual of the potential of dissipation ΦnðσI ;B; sI ; gÞ allowing the
definitions:

_εI ¼ ∂Φn

∂σI
; _β¼ ∂Φn

∂B
; _T ¼ ∂Φn

∂sI
; q¼ ∂Φn

∂g
ð7Þ

where εI is the irreversible strain.
On this basis, a complete set of constitutive equations is

defined:

σ ¼ ρ
∂Ψ
∂ε

þ∂Φ
∂_ε

ð8Þ

B¼ � ρ
∂Ψ
∂β

¼ ∂Φ
∂ _β

ð9Þ

s¼ �∂Ψ
∂T

�∂Φ
∂T

ð10Þ

g¼ ∂Φ
∂q

ð11Þ

In general, if the pseudo-potential Φ is a positive convex function
that vanishes at the origin, the Clausius–Duhen inequality is
automatically satisfied.

In order to consider thermomechanical couplings, it is neces-
sary to establish the energy conservation equation given by the
first law of thermodynamics:

ρ _Ψ ¼ σ_ε�∂q
∂x

�ρT _s�ρ _Ts ð12Þ

By considering a single point description, spatial variations are
neglected. Besides, a convection boundary condition is assumed.
Therefore, the first law of thermodynamics has the following form:

ρcp _T ¼ �hðT�T1Þþσ_εIþB_βþT
∂σ
∂T

ð_ε� _εIÞ�∂B
∂T

_β

� �
ð13Þ

where cp is the specific heat at constant pressure, h is the
convection coefficient, T1 is the environmental temperature. The
first term on the equation right side is the convection term
whereas the others are associated with the thermomechanical
couplings.

Specifically, SMA description using the model with internal
constraints assumes as variables the total strain, ε, the tempera-
ture, T, and four internal variables that represent volume fraction
of each macroscopic phase: βþ and β� , related to detwinned
martensites, respectively associated with tension and compres-
sion; βA that represents the austenitic volume fraction; and βM that
represents the volume fraction of twinned martensite. Since there
is a constraint based on phase coexistence, βþþβ�þβAþβM¼1, it
is possible to use only three volume fractions and the thermo-
mechanical behavior of the SMA is described by the following set
of equations:

σ ¼ Eεþ½Eαhþα�ðβ� �βþ Þ�ΩðT�T0Þ ð14Þ
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_β
þ ¼ ð1=ηþ ÞfαεþΛþ ðTÞþð2ααhþEα2hÞðβ� �βþ Þ

þαh½Eε�ΩðT�T0Þ��∂βþ Jπgþ∂ _βþ Jχ ð15Þ

_β
� ¼ ð1=η� Þf�αεþΛ� ðTÞ�ð2ααhþEα2hÞðβ� �βþ Þ

�αh½Eε�ΩðT�T0Þ��∂β� Jπgþ∂ _β� Jχ ð16Þ

_β
A ¼ ð1=ηAÞ �ð1=2ÞðEA�EMÞ½εþαhðβ� �βþ Þ�2þΛAðTÞþ

n
þðΩA�ΩMÞðT�T0Þ½εþαhðβ� �βþ Þ��∂βA Jπ

o
þ∂ _βA Jχ ð17Þ

where E¼ EMþβA ðEA�EMÞ is the elastic modulus while Ω¼ΩMþ
βAðΩA�ΩMÞ is related to thermal expansion coefficient. Note that
subscript A refers to austenitic phase, while M refers to martensite.
Parameters Λþ ¼ Λ� ¼ Λ¼ ΛðTÞ and ΛA ¼ ΛAðTÞ are associated with
phase transformation stress levels. Parameter αh defines the
horizontal width of the stress–strain hysteresis loop, while α
controls the height of the same hysteresis loop. The terms ∂nJπ
(n¼βþ , β� , βA) are sub-differentials of the indicator function Jπ
with respect to n. This indicator function is related to a convex set
π, which provides the internal constraints related to the phase
coexistence. With respect to evolution equations of volume
fractions, ηþ ¼ η� ¼ η and ηA represent the internal dissipation
related to phase transformations. Moreover ∂nJχ (n¼βþ , β� , βA) are
sub-differentials of the indicator function Jχ with respect to n. This
indicator function is associated with the convex set χ, which
establishes conditions for the correct description of internal sub-
loops due to incomplete phase transformations. These sub-
differentials may be replaced by Lagrange multipliers associated
with the mentioned constraints.

Concerning parameter definitions, temperature dependent
relations are adopted for Λ and ΛA as follows:

Λ¼
�L0þ L

TM
ðT�TMÞ; if T4TM

�L0; if TrTM

(
; ΛA ¼

�LA0þ LA
TM
ðT�TMÞ; if T4TM

�LA0 ; if TrTM

8<
:

ð18Þ

where TM is the temperature below where the martensitic phase
becomes stable. Usually, experimental tests provide information of
Ms and Mf, temperatures of the start and finish of the martensitic
formation. This model uses only one temperature that could be
an average value or alternatively, the Ms value. Moreover, L0, L, L

A
0

and LA are parameters related to critical stress for phase
transformation.

In order to describe the characteristics of phase transformation
kinetics, different values of η and ηA can be considered during
loading, ηL and ηAL , and unloading processes, ηU and ηAU .

As it is well-known, SMA devices demonstrate time-dependent
characteristics which means that their thermomechanical
response depends on the loading rate, see e.g., Shaw and Kyr-
iakides [59] and Yoon [66]. The adequate modeling of this time-
dependency can be performed by considering the thermomecha-
nical coupling terms in the energy equation. Monteiro Jr. et al. [39]
discussed this approach in SMAs. Monteiro et al. [40] presented
some experimental results related to the rate dependent behavior
of SMA actuators. The considered constitutive model has viscous
characteristics that allow the description of the thermomechanical
coupling avoiding the integration of the energy equation, present-
ing useful results [2]. This rate dependent aspect can be controlled
by the proper choice of model parameters. Auricchio et al. [6]
explored this idea showing the difference between a viscous
model and a rate-independent model with thermomechanical
coupling. Both models have the ability to describe pseudoelastic
and shape memory behavior in SMA wires. For more details about
the constitutive model see Paiva et al. [44].

2.1. Numerical procedure

In order to deal with nonlinearities of the constitutive model
formulation, a numerical procedure based on operator split
technique is developed [43]. The basic idea is to split the state
space in order to treat the set of governing equations in a
decoupled way. Therefore, the constitutive equations are solved
by assuming a predictor–corrector approach. The predictor step is
defined by assuming a trial state where phase transformation does
not take place. If the constraints are satisfied, this trial state is the
actual one. Otherwise, a projection algorithm is employed calcu-
lating the sub-differentials of the constitutive equations. This
sequence is repeated until a prescribed tolerance is reached [52].

In terms of more general systems, the operator split technique
can be employed together with other numerical procedures,
promoting a new split of the state space. In dynamical systems,
for instance, it is defined a subspace with the dynamical variables
(position and velocity for a single degree of freedom oscillator),
and constitutive variables define another subspace. They can be
solved in a separate form and an iterative procedure assures the
system convergence [54]. Any classical procedure can be employed
to perform the integration of a specific subspace. The fourth order
Runge-Kutta method is a good alternative for the dynamical
subspace. The projection algorithm is the proper alternative for
the constitutive model subspace. Fig. 2 presents a schematic
picture of the operator split approach. The dynamical box repre-
sents the dynamical subspace that can be solved using the Runge-
Kutta method, for instance, assuming that other state variables
remain constant. Afterward, this result is used as an input for the
constitutive model subspace, represented by the box constitutive
model. This procedure considers the projection algorithm
employed for quasi-static situations. Note that the constitutive
model box is related to a new operator split.

In general, this constitutive model can capture the general
thermomechanical behavior of SMAs, presenting a close agree-
ment with experimental data. Fig. 3 shows a collection of results

Fig. 2. Numerical procedure.
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showing the comparison between numerical simulations and
experimental data reported in literature [44,53].

3. SMA oscillator

The dynamical analysis of SMA systems starts with a single-
degree of freedom oscillator (Fig. 4), where the restitution force,
FR, is provided by an SMA element. This is an archetypal model of
several engineering systems. The non-dimensional equations of
motion is given by Savi et al. [54], where the volume fractions
are calculated from the constitutive equations presented in the
previous section.

U″þξU0 þμEUþðαþμEαhÞðβ� �βþ Þ�μΩΩðθ�θ0Þ ¼ δ sin ðϖτÞ ð19Þ

where μE, μΩ, ξ, δ, ϖ are system parameters; θ¼T/TM represents a
non-dimensional temperature. The thermomechanical description
of the restitution force of the SMA element is modeled by the force
FR, representative of different SMA elements that can include bars
and springs, for instance. A bar element can be described by FR¼σA
where the stress is described by the constitutive equation pre-
sented in the previous section. Aguiar et al. [2] showed that the
spring force–displacement curve can be modeled by assuming that
both phase transformation and shear stress distributions are
homogeneous through the wire cross section. Although this
hypothesis is not completely realistic, its simplicity can be useful
for several purposes resulting in a force–displacement relation
that is equivalent to the stress–strain relation presented in the
previous section. This spring model has results that are in close
agreement with experimental data presented in Aguiar et al. [2].

Fig. 5 presents the SMA spring response for different tempera-
tures, establishing a comparison between numerical and experi-
mental results. Basically, pseudoelastic test is performed by
considering an applied electric current of 0.8 A, that increases
the SMA temperature, promoting a phase transformation from
twinned martensite to austenite. Afterward, mechanical loading–
unloading process is imposed to the spring by considering two
different maximum values: 7 N and 8 N. Shape memory effect test
is performed by imposing a mechanical loading that promotes the
formation of detwinned martensite. This phase remains after the
mechanical loading removal, causing a residual displacement. An
electric current of 1.2 A is then applied and the SMA helical spring
recovers part of the residual displacement developed during the
loading stage. A residual load with a magnitude of approximately
1 N is still present at the end of the unloading as a consequence of
the devices attached to the spring.

The free vibration response of the SMA oscillator is character-
ized by different structures of equilibrium points depending on
temperature. The oscillator free response is illustrated analyzing a
system without viscous damping (ξ¼0). Results from simulations
are presented in the form of phase portraits. Fig. 6 presents the
free response of a system at different temperatures: θ¼1.28,
representing a high temperature where austenite is stable for a
stress-free state; and θ¼0.99, a low temperature where mar-
tensite is stable for a stress-free state. Between these two
temperatures, martensite and austenite may coexist and it
represents a transition region between the two cited situations
[50,36,37]. For high temperatures, there is only a single equili-
brium point. The system response presents dissipation for high
amplitudes, converging to an elastic orbit near the equilibrium
point, where phase transformations do not take place anymore.
This behavior is due to hysteresis loop and the absence of
energy dissipation in the linear-elastic region. For low tempera-
tures, the dissipation characteristics are similar to the high
temperature behavior but there is an increase of the number
of equilibrium points. By observing the phase portrait, it is
noticeable three stable equilibrium points, related to different
martensitic variants. This scenario suggests the existence of
unstable points among the stable ones.

The existence of different equilibrium points may be exploited
together with the temperature dependence in various applica-
tions. In order to illustrate this behavior, it is shown a simulation
where temperature varies as indicated in Fig. 7a, by increasing
system temperature between two levels. Figs. 7b and 7c show the
system response, presenting time history and phase space, respec-
tively. Notice that the system oscillates around one point at low
temperature, changing its oscillation position when temperature
increases. This simulation illustrates the potentiality of SMA to be
used as actuators for position control.

Aguiar et al. [3] presented experimental results that confirm
these numerical simulations. The experimental apparatus is a car
free to move over a rail and an electrical power provides energy

Fig. 3. SMA description using a constitutive model with internal constraints (a) Pseudoelasticity and (b) internal subloops [53].

Fig. 4. Single-degree of freedom SMA oscillator.
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for temperature variations. Fig. 8a shows a schematic picture of
the experimental apparatus. Free vibrations of this setup are
evaluated by considering perturbations to the system. Essentially,
the perturbation induces a change in displacement that repre-
sents initial conditions to the car at two different temperatures

(obtained by applying an electric current on the SMA helical
spring). After this, the car is free to move. Fig. 8b presents the
general analysis of free vibrations showing the application of
different initial conditions for two different temperatures and
the consequent system response. Initially, the system is at rest

Fig. 5. SMA spring description using a constitutive model with internal constraints and experimental data [2]. (a) Pseudoelasticity and (b) shape memory effect.

Fig. 6. SMA oscillator phase portraits at different temperatures [54]. (a) θ¼1.28 and (b) θ¼0.99.
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when a perturbation of 1 mm is imposed to the car. This perturba-
tion generates oscillations around the same equilibrium point that
decreases until the system returns to the rest. It should be
highlighted that the attenuation is caused by the system dissipa-
tion, mainly due to hysteretic behavior of the SMA spring.
A greater perturbation is then imposed to the system (7.3 mm)
and as a consequence, the system oscillates around a new position
(�1 mm). Note that the system presents the same qualitative
behavior, but oscillates around a different position. A temperature
increase is then imposed to the system by applying an electric
current of 1.8 A to the SMA spring. This temperature increase
changes the equilibrium position again inducing the martensite–
austenite phase transformation. Under this condition, new pertur-
bations are imposed to the system. Initially, a 3.2 mm displace-
ment is imposed that is followed by oscillations around this
position. Afterward, a 9.5 mm perturbation is imposed and the
system presents the same qualitative behavior, oscillating around
the same position.

Concerning forced vibrations of SMA systems, several situations
can be imagined. An important application related to SMA dyna-
mical behavior is the idea of the smart dissipation due to
hysteresis loop. A paradigmatic way to visualize this kind of
behavior is obtained by considering the system response under
resonant conditions. As it is well-known, a non-dissipative linear
system (where SMA element is replaced by a linear element) tends
to increase the response amplitude indefinitely under this condi-
tion (Fig. 9a). The shape memory alloy system, on the other hand,

tends to dissipate higher energy levels as the response amplitude
grows. This is due to phase transformation related to the hysteresis
loop and therefore, the amplitude tends to stabilize in lower
values, as shown in Fig. 9b. This behavior is interesting to be
exploited as a passive vibration control.

The SMA dynamical system can present complex behavior due
to its strong nonlinearities. At this point, low temperature beha-
vior (where martensite is stable for a stress-free state) is of
concern. In order to perform a global analysis, bifurcation dia-
grams are constructed, performing a stroboscopic sampling of the
position against the slow quasi-static variation of the forcing
amplitude parameter. Fig. 10 shows bifurcation diagrams obtained
using two different procedures. The first considers similar initial
conditions for each parameter value (Fig. 10a) while the second
procedure considers stabilized values of state variables as initial
conditions for the next parameter value (Fig. 10b). Bifurcation
diagrams presented in Fig. 10 show different clouds of points that
appear by the consideration of different employed procedures. It is
important to observe that, actually, there are three coexisting
steady state solutions related to this region (a symmetric cloud of
points can be obtained changing initial conditions of the bifurca-
tion diagram of Fig. 10a).

The forthcoming analysis exploits the multi-stability behavior
related to coexisting attractors by changing initial conditions.
Therefore, forcing parameter is considered in a region associated
with δ¼3�10�3 of the bifurcation diagram. Fig. 11 presents the
system response for three different situations with the same set of

Fig. 7. SMA oscillator free vibration due to temperature variations [54]. (a) Temperature loading; (b) displacement time history; and (c) phase space.
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parameters. Basically, phase space plots and Poincaré sections are
presented for each response. A period-1 response may be obtained
considering initial conditions near the steady state solution pre-
sented in Fig. 10b. Under this condition, the system oscillates
around the null equilibrium point (Fig. 11a). By assuming initial
conditions within the cloud of points presented in Fig. 10a, a
chaotic-like response occurs, being related to oscillations in the
positive part of the phase space (Fig. 11b). Finally, the third steady
state response may be obtained assuming initial conditions within
the symmetric cloud of point (not shown in Fig. 10a). Under this

condition, the system presents a chaotic-like response that occurs
in the negative part of the phase space (Fig. 10c).

4. SMA vibration absorber

The tuned vibration absorber (TVA) is a passive vibration control
device for achieving vibration reduction of a primary system sub-
jected to external excitation by connecting a secondary system. The
adaptive tuned vibration absorber (ATVA) is an adaptive–passive

Fig. 8. Experimental SMA oscillator free vibration due to temperature variations [3]. (a) Experimental apparatus and (b) system response.

Fig. 9. SMA oscillator passive control exploiting hysteresis dissipation [54,56]. (a) Linear element and (b) SMA element.
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vibration control device similar to a TVA but with adaptive elements
that can be used to change the ATVA tuned condition. The aim of
ATVAs with SMA elements (SMA–ATVA) is to attenuate primary
system vibration amplitudes, not only for one specific forcing
frequency, as occurs with the TVA, but for a range of frequencies
exploring the temperature dependent characteristic of the SMAs.
This section investigates the SMA–ATVA dynamics by establishing a
comparison between two different absorbers [56]: a TVA and an
SMA–ATVA. Fig. 12 presents a two-degree of freedom system that
represents a primary system, subsystem (m1,c1,k1), that is harmoni-
cally excited by an external force F¼F0 sin(ωt). The goal is to reduce
vibration amplitudes by using a secondary system that consists of a
concentrated mass, m2, attached to a viscous damper with coeffi-
cient, c2, and to an element with restoring force FR. This element
could be an SMA element with length l and transversal section area
A, defining an SMA–ATVA system or a linear elastic element defining
a classical TVA.

The SMA–ATVA systems may be described by the following
non-dimensional equations of motion equations together with
constitutive model previously discussed to define volume fractions
evolutions [56]:

U″1þðξ1þγmξ2ÞU0
1�γmξ2U

0
2þγωU1þγm½�μEðU2�U1Þ�ðαþμEαhÞðβ� �βþ Þþ

þμΩΩðθ�θ0Þ� ¼ δsinðϖτÞ
U″2�ξ2U

0
1þξ2U

0
2þμEðU2�U1ÞþðαþμEαhÞβ� �βþ Þ�μΩΩðθ�θ0Þ ¼ 0

8><
>:

ð20Þ
The TVA has a linear restitution force that results in the

following dynamical system expressed as dimensionless equations
as follows.
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where ω2

L1 ¼ k1=m1, ω2
01 ¼ k=m1 and ω2

L2 ¼ kL=m2, respectively
representing the isolated natural frequencies of primary and
secondary systems.

Fig. 13 presents a comparison between the TVA and the SMA–
TVA responses. Fig. 13a presents the response of the TVA primary
system showing the maximum amplitudes as a function of
the forcing frequency. These results are compared with the

single-degree of freedom oscillator (1DoF) response. It can be
observed that the absorber attenuates the critical resonant situa-
tion for the 1DoF oscillator. Nevertheless, the new degree of
freedom related to the secondary system introduces two resonant
frequencies. Fig. 13b shows the SMA–ATVA response by consider-
ing two different temperatures. Note that it is possible to change
the range of frequencies where the primary system amplitude
reduction is achieved by changing the temperature. This kind of
behavior increases the frequency range where the ATVA can be
efficiently used, which is an essential advantage when compared
to the elastic TVA.

Aguiar et al. [3] presented experimental results that confirm
these numerical simulations. The experimental apparatus is a two-
degrees of freedom system (2DoF) composed by cars free to move
over a rail and an electrical power provides energy for tempera-
ture variations. Besides, a shaker provides a sinusoidal excitation
of 0.25 g acceleration amplitude. The excitation frequency signal
changes linearly during the test from 6 to 18 Hz with 0.02 Hz/s.
Results for the 2Dof are compared with results for elastic one-
degree of freedom system in order to evaluate the performance of
the SMA absorber. Fig. 14 presents acceleration curves for the 1DoF
system and for the 2DoF system with two different electric
currents: 0.8 and 2.0 A. It should be highlighted that the tempera-
ture change alters the system response of the SMA system,
changing the tuned frequency of the SMA absorber. This confers
an adaptive characteristic for the SMA absorber.

Although temperature-induced phase transformations can pro-
vide flexibility to the SMA–ATVA behavior when compared to the
classical TVA, the system response should be better explored by
assuming large amplitudes of the SMA element that causes stress-
induced phase transformations related to hysteretic behavior. The
analysis of dynamical jumps is essential for a proper design of the
SMA–ATVA. This analysis is now of concern by considering the
influence of forcing frequency variation on system response.
Bernardini and Rega [9] and Oliveira et al. [42] presented discus-
sions related to these jumps in SMA one-degree of freedom
systems. Fig. 15 presents results associated with the SMA–ATVA
system subjected to sine-sweep tests, plotting together the 1DoF
and the TVA responses allowing a proper comparison among all
results. Note that dynamical jumps are close to the first natural
frequency of the TVA system. Besides, it should be highlighted that
the jump positions are altered by temperature variations.

Fig. 10. SMA oscillator bifurcation diagrams for ξ¼5�10�6 and ϖ¼1 [54]. (a) Similar initial conditions for each parameter and (b) stabilized values of state variables as an
initial condition for the next parameter value.
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5. SMA impact system

The use of SMAs in impact systems is now in focus by consider-
ing a single-degree of freedom system with an SMA discontinuous
support, shown in Fig. 16. The oscillator is composed by a mass m

connected by two linear springs with stiffness k. The dissipation
process may be modeled by a linear damping with coefficient c.
Moreover, the support is massless, having a linear damping with
coefficient cs and also an element that could be either linear elastic
or made by SMA. The mass displacement is denoted by x, relative to

Fig. 11. SMA oscillator multi-stability [54]: (a) Period-1 response; (b) positive chaotic-like response; and (c) negative chaotic-like response.
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the equilibrium position, and the distance between the mass and
the support is defined by a gap g. Therefore, the system has two
possible dynamical modes: with and without contact. Santos and
Savi [48] and Sitnikova et al. [62] treated the dynamical behavior of
this system. Sitnikova et al. [61] presented an experimental
investigation of an impact system with SMA. This system is
representative of the dynamical behavior of different applications.
For instance, it may be understood as a one-dimensional version ofFig. 12. Vibration absorber connected to a primary system [56].

Fig. 13. Maximum amplitudes response of the 1DoF linear oscillator and of the TVA primary system with δ¼0.01 [56]. (a) TVA response and (b) SMA–ATVA response for
different temperatures.

Fig. 14. Experimental SMA oscillator free vibration due to temperature variations Aguiar et al. [3]. (a) Experimental apparatus and (b) sine-sweep tests.
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the rotordynamics problem discussed in Silva et al. [60] and shown
in Fig. 17. An analogous systemwith elastic support was discussed in
Savi et al. [55] and the elastic rotordynamic systemwas discussed in
Karpenko et al. [28].

The equations of motion of the impact system can be written as
follows [48]:

m€xþ2kxþc_x¼ δcosðωtÞ; without contact:
m€xþ2kxþFRþðcþcsÞ_x¼ δcosðωtÞ; with contact:

(
ð22Þ

where FR¼FR(x�g) represents the restitution force of the support
element. By assuming an SMA support, its thermomechanical
behavior needs to be described by a proper constitutive equation.
Here, the one previously presented is employed. On the other
hand, the restitution force may be provided by a linear elastic
element described by FR¼ks(x�g).

The nonlinear dynamics analysis of the oscillator with discon-
tinuous support is performed by establishing a comparison with
the system with a linear elastic support, highlighting the major
differences between them. In order to obtain a global under-
standing of the system behavior, bifurcation diagrams are pre-
sented showing the stroboscopic sample of state variables
(displacement and velocity) under the slow quasi-static variation
of dissipation parameter c. This analysis shows the influence of
dissipation on system dynamics. Linear elastic and SMA support
system responses are plotted together in Fig. 18. The elastic
support system presents a complex behavior, presenting chaotic-
like response for low values of dissipation parameter. The more
this parameter is increased, the less complex is the system
response. On the other hand, the response of the system with
SMA support dissipates energy enough to obtain a less complex
behavior for all dissipation parameters.

A specific response is now in focus. Fig. 19 shows the system
response for c¼0.05 Nm/s, a value inside the cloud of points of the
bifurcation diagram. The elastic support system response is
chaotic-like, presenting a strange attractor with fractal-like struc-
ture. On the other hand, the SMA support system presents a
periodic response. This difference may be explained by the high
dissipation capacity of the SMA system due to hysteresis loop. It
should be pointed out that the SMA support introduces dissipation
to the system that dramatically changes its response when
compared to those obtained from the linear elastic support. Notice
that the increase of the system dissipation by changing the
dissipation parameter tends to homogenize the behaviors related
to both systems.

6. SMA structure

Adaptive structures with SMA actuators may be imagined in
several situations related to self-erectable systems, aerospace
systems, among others. An archetypal system associated with
this kind of structure is the two-bar truss. This kind of systems
allows one to analyze bifurcation scenarios related to stability
changes associated with different characteristics of buckling beha-
vior. Symmetric two-bar truss, known as the von Mises truss,

Fig. 15. SMA–ATVA primary system maximum amplitudes response for sine-sweep tests for δ¼0.01, ξ1¼ξ2¼0.2, and different temperatures [56].

Fig. 16. The SMA impact system [48].

Fig. 17. The rotordynamic nonsmooth system [60].
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Fig. 18. SMA impact system bifurcation diagrams varying dissipation parameter [48].

Fig. 19. SMA impact system response for c¼0.05 Nm/s compared with the elastic impact system [48].

M.A. Savi / International Journal of Non-Linear Mechanics 70 (2015) 2–1914



represents one of the most popular system related to stability
analysis, defining some of the most important characteristics of
framed structures as well as of flat arches and of many other
physical phenomena associated with bifurcation buckling.

Savi and Nogueira [57] and Savi et al. [51] discussed the main
aspects of the dynamical behavior of SMA two-bar truss by
considering two different constitutive models to describe the
thermomechanical behavior of SMAs. As depicted in Fig. 20, the
two-bar truss is a plane, framed structure, formed by two identical
bars, both making an angle φ with a horizontal line, and free to
rotate around their supports and at the joint. The structure's mass
is lumped at the node, and only vertical, symmetrical motions of
the truss are considered. Under these assumptions, the structure is
divided into segments without mass, connected by nodes with
lumped mass, m. The two identical bars are built with shape
memory alloys having length l and cross section area A. The critical
Euler load of each bar is assumed to be sufficiently large so that
buckling does not occur.

The non-dimensional equation of motion of this structural
system is given by the following equations together with consti-
tutive model previously discussed to define volume fractions
evolutions [57]:

x0 ¼ y

y0 ¼ δsinðϖτÞ�ξy�μE 1� 1

ðx2þb2Þ1=2

" #
x

�½ðα̂þμEαhÞðβ� �βþ Þ�Ω̂μΩðθ�θ0Þ�
x

ðx2þb2Þ1=2
ð23Þ

The elastic von Mises truss has three equilibrium points due to
geometrical nonlinearity. Of those, two are stable while the other
one is unstable [8]. In the case of an SMA two-bar truss,
constitutive nonlinearity introduces a different behavior. Savi
et al. [51] showed how constitutive nonlinearity represented by

the polynomial model changes the structure of equilibrium points.
The use of the constitutive model with internal constraints
previously discussed is more accurate and introduces more differ-
ences to the original structure of the two-bar truss related to the
geometrical nonlinearity.

Results from free vibration simulations are presented in the
form of phase portraits. Fig. 21 presents the free-response of the
SMA system. For high temperature (θ¼1.28), where there is only
austenitic phase for a stress-free state, the system has one
unstable and two stable equilibrium points (Fig. 21a). This
situation is similar to the geometrical nonlinear system in terms
of number of equilibrium points, however, it should be high-
lighted that the SMA system tends to dissipate energy due to the
hysteresis loop. On the other hand, at low temperatures (θ¼0.99),
where martensitic phase is stable in a stress-free state, the system
has 11 equilibrium points where six are stable and five are
unstable (Fig. 21b). Note that constitutive nonlinearity induces
the formation of five equilibrium points at the upper position of
the truss, and other five at the lower position. From each of those
sets, three are stable while the others are unstable. These char-
acteristics are related to the stability of martensitic variants.

Forced vibration analysis is now in focus by considering high
temperature behavior that is related to the pseudoelastic effect
where austenitic phase is stable in stress-free state. Initially,
the bifurcation diagram is of concern showing stroboscopically

Fig. 20. SMA two-bar truss [57,51].

Fig. 21. Free vibration of the SMA two-bar truss [57].

Fig. 22. SMA two-bar truss bifurcation diagram varying ϖ with δ¼0.01 [57].
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sampled displacement values under the slow quasi-static increase
of a system parameter. The driving frequency, ϖ, is of concern,
assuming a fixed forcing amplitude δ¼0.01. Fig. 22 presents this
bifurcation diagram showing regions related to cloud of points and
also regions represented by a discrete number of points associated
with periodic motions.

Different frequency values are now investigated in order to
analyze the system response. Phase space plots and Poincaré
sections are presented for each set of parameters. For this forcing
amplitude value, when frequency is ϖ¼0.382, a period-2 motion
occurs, oscillating around the truss lower position equilibrium
point (Fig. 23a). The Poincaré section presents two points. When
ϖ¼0.42, the system stills presenting a period-2 motion, however,
at a different position. Now, the system oscillates around the truss
upper position (Fig. 23b). A quasi-periodic motion also appears for
ϖ¼0.9418, presenting a closed curve at the Poincaré section [57].
All these possibilities represent the great complexity related to the
SMA two-bar truss dynamical behavior.

Chaotic motion is also a possibility related to the pseudoelastic
two-bar truss. By considering ϖ¼0.3347, it is noticeable a chaotic-
like motion related to a typical strange attractor observed in the
Poincaré section (Fig. 24a). Note that this motion is related to all
phase space, visiting all equilibrium points. A different chaotic
motion may be induced when ϖ¼0.475. Under this condition, the
system tends to oscillate only at the truss upper position and the

strange attractor is restricted to the positive part of the phase
plane (Fig. 24b). Since there is attractor coexistence, the position of
the chaotic attractor may be altered by considering proper initial
conditions. Fig. 24c presents the chaotic strange attractor visiting
the truss lower position.

Chaos control is an alternative to stabilize unstable periodic
orbits embedded in chaotic attractor, providing a way to track
desirable orbits with small power consumption. This approach can
be useful to confer flexibility to the system that can quickly react
to new situations. Besides, it can avoid undesirable situations
related to distinct bifurcation scenarios. De Paula and Savi [18]
provided a general overview of chaos control techniques, estab-
lishing a comparative analysis among them. De Paula et al. [20]
discussed their use to bifurcation control, which is useful for
structural systems. Bessa et al. [13] and De Paula et al. [21]
presented this strategy in the SMA two-bar truss.

7. Conclusions

This paper deals with nonlinear dynamics and chaos in the
shape memory alloy system, presenting a collection of results
related to different dynamical systems. Basically, single degree of
freedom oscillators, vibration absorbers, impact systems and two-
bar trusses are treated. In general, dynamical response is very rich,

Fig. 23. SMA two-bar truss [57]: (a) period-2 response for δ¼0.01 and ϖ¼0.382, oscillating around the truss lower position; (b) period-2 response for δ¼0.01 and ϖ¼0.42,
oscillating around the truss upper position.
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including periodic, quasi-periodic and chaotic behaviors. Multi-
stability is also present characterizing attractors coexistence.
Dynamical jumps are another important aspect of SMA system
response. In general, the SMA system presents several equilibrium
points, and the number and characteristics are defined by tem-
perature. Therefore, it is possible to imagine position actuation
with SMA elements. Property alterations due to phase transforma-
tion are another remarkable characteristic of the SMA dynamical

system. Essentially, it can be exploited changing resonant condi-
tions. The hysteretic behavior may be also exploited generating a
smart dissipation that actuates only for high amplitudes. It should
be pointed out that there is a competition between property
changes and hysteretic behavior, defining the system response.
All these aspects can be exploited to generate smart adaptive
systems. Vibration absorbers, for instance, is capable of reducing
the system response amplitudes not only on the initially chosen

Fig. 24. SMA two-bar truss chaotic like responses [57]: (a) δ¼0.01 and ϖ¼0.3347 visiting the whole space; (b) δ¼0.01 and ϖ¼0.475 visiting the truss upper position; and (c)
δ¼0.01 and ϖ¼0.475 visiting the truss lower position.
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forcing frequency but in distinct situations considering tempera-
ture variations. Nevertheless, SMAs may introduce unusual, com-
plex dynamical responses that should be investigated during the
design of the application. Experimental results confirm the general
aspects discussed in this paper.
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