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The dynamical response of systems with shape memory alloy (SMA) elements presents a rich behavior due to their intrinsic
nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and
huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in
several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated
with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior
and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of
freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of
this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

1. Introduction

Shape memory alloys (SMAs) have unique thermomechani-
cal properties responsible for their use in several applications.
These remarkable properties are attracting technological
interest in science and engineering fields [1–3]. In terms of
applied dynamics, SMAs are being used in order to explore
adaptive dissipation associated with hysteresis loop and the
mechanical property changes due to phase transformation
[4, 5]. Moreover, the dynamical response of systems with
SMA actuators presents a unique dynamical behavior due to
their intrinsic nonlinear characteristic, presenting periodic,
quasiperiodic, and chaotic responses [4, 6–8]. Recently, SMA
constraints have been used for vibration reduction since it is
expected that the high dissipation capacity of SMAs changes
the system response producing less complex behaviors [9–11].
Another important application of SMA related to dynamical
system is the adaptive tuned vibration absorbers. The main
idea related to tuned vibration absorbers is the use of a
secondary system connected to a main system in order
to dissipate energy. In general, this idea has been used in
electrical transmission lines and structural systems. Although
this is very effective in tuned frequencies, it is difficult to

be applied when frequency variations occur. SMA can be
employed in order to confer adaptive behavior to this tuned
system, allowing its application when frequency variations
are expected [12].

Although SMA systems have interesting behaviors to
be exploited in dynamical applications, some characteristics
may be critical for practical situations. In this regard, the
design of SMA system has a huge importance, being nec-
essary in a deep investigation of the dynamical aspects of
the system. Besides chaos and multistability aspects that are
present in SMAdynamical systems, an important aspect is the
dynamical jump. Basically, dynamical jumps are associated
with nonlinear resonant response, causing abrupt changes
in system behavior, introducing unstable regions on system
response.

Bernardini and Rega [8] presented several aspects related
to dynamical jumps in SMA systems. Basically, the authors
investigated a one degree of freedom oscillator considering
both isothermal and anisothermal systems. It is shown that
nonregular responses occur around the jumps. In general,
multicomponent harmonic-balance method, path-following
technique, and Adams-Moulton algorithm were employed to
investigate the system response.
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This paper revisits the dynamical jumps in a one degree
of freedom SMA oscillator harmonically excited. The resti-
tution force is provided by an SMA element described by a
constitutive model with internal constraints [13]. Numerical
simulations are carried out showing different aspects of the
dynamical response of the system.Conclusions of this investi-
gation establish a relationship between dynamical jumps and
stress-strain relation of the SMA element.

2. Constitutive Model

The thermomechanical description of shape memory alloys
is the objective of numerous research efforts that try to
contemplate all behavior details [1, 2]. Here, a constitutive
model that is built upon Fremond’smodel that was previously
presented in some studies [6, 13–17] is employed.This model
considers different material properties for each phase and
four macroscopic phases for the description of the SMA
behavior.

Therefore, besides the total strain, !, and temperature, ",
it is necessary to define four internal variables that represent
volume fraction of eachmacroscopic phase:#1 and#2, related
to detwinned martensites, respectively, associated with ten-
sion and compression; #3 that represents the austenitic
volume fraction; and#4 that represents the volume fraction of
twinnedmartensite. Since there is a constraint based on phase
coexistence,#1+#2+#3+#4 = 1, it is possible to use only three
volume fractions and the thermomechanical behavior of the
SMA is described by the following set of equations [13, 18]:$ = %! + [%'ℎ + '] (#2 − #1) − Ω (" − "0) ,̇#1 = 1.1 {'! + Λ 1 (") + (2''ℎ + %'2ℎ) (#2 − #1)+ 'ℎ [%! − Ω (" − "0)] − 3"14#} + 3 ̇"14%,̇#2 = 1.2 {−'! + Λ 2 (") − (2''ℎ + %'2ℎ) (#2 − #1)−'ℎ [%! − Ω (" − "0)] − 3"24#} + 3 ̇"24%,̇#3 = 1.3 {−12 (%& − %') [! + 'ℎ(#2 − #1)]2 + Λ 3 (")+ (Ω& − Ω') (" − "0) [! + 'ℎ (#2 − #1)]−3"34#} + 3 ̇"34%,

(1)

where $ is the stress and % = %' + #3(%& − %') is the
elastic modulus while Ω = Ω' + #3(Ω& − Ω') is related
to thermal expansion coefficient. Note that subscript8 refers
to austenitic phase, while9 refers to martensite. ParametersΛ 1 = Λ 2 = Λ = Λ(") and Λ 3 = Λ 3(") are associated with
phase transformation stress levels. Parameter 'ℎ defines the
horizontal width of the stress-strain hysteresis loop, while '
controls the height of the same hysteresis loop.The terms 3(4#
(: = #1,#2,#3) are subdifferentials of the indicator function4# with respect to :. This indicator function is related to a
convex set ;, which provides the internal constraints related

to the phase coexistence. With respect to evolution equations
of volume fractions, .1 = .2 = . and .3 represent the internal
dissipation related to phase transformations. Moreover 3(4%
(: = #1,#2,#3) are subdifferentials of the indicator function4% with respect to :.This indicator function is associated with
the convex set <, which establishes conditions for the correct
description of internal subloops due to incomplete phase
transformations. These subdifferentials may be replaced by
Lagrange multipliers associated with the mentioned con-
straints [19].

Concerning parameter definitions, temperature-
dependent relations are adopted for Λ and Λ 3 as follows:

Λ = {{{−@0 + @"' (" − "') , if " > "'−@0, if " ≤ "';
Λ 3 = {{{{{−@&0 + @

&"' (" − "') , if " > "'−@&0 , if " ≤ "',
(2)

where "' is the temperature below where the martensitic
phase becomes stable. Usually, experimental tests provide
information of 9) and 9*, temperatures of the start and
finish of the martensitic formation.This model uses only one
temperature that could be an average value or, alternatively,
the 9* value. Moreover, @0, @, @&0 , and @& are parameters
related to critical stress for phase transformation.

In order to describe the characteristics of phase transfor-
mation kinetics, different values of . and .3 might be con-
sidered during loading, .+ and .+3 , and unloading processes,., and .,3 . For more details about the constitutive model,
see [13, 16]. All constitutive parameters can be matched from
stress-strain tests.

As it is well known, SMA devices demonstrate time-
dependent characteristics whichmeans that their thermome-
chanical response depends on the loading rate; see, for exam-
ple, [20, 21]. The proper modeling of this time dependency
can be performed by considering the thermomechanical
coupling terms in the energy equation. Reference [22] dis-
cusses the thermomechanical coupling and rate dependency
in SMAs.

The considered constitutive model has viscous charac-
teristic that allows the description of the thermomechanical
coupling avoiding the integration of the energy equation,
presenting useful results [15]. Reference [22] explores the
same idea showing the difference between a viscous model
and a rate-independent model with thermomechanical cou-
pling. Both models have the ability to describe pseudoelastic
behavior in SMA wires. This time-dependent aspect can be
controlled by the proper choice of model parameters.

3. Single Degree of Freedom Shape
Memory Oscillator

The dynamical behavior of SMAs is analyzed by consid-
ering a single degree of freedom oscillator (1DOF) with
two different forcing possibilities. Initially, a harmonic base
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Figure 1: Single degree of freedom oscillator: (a) harmonic base excitation and (b) harmonic force applied to the mass.
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Figure 2: Maximum system amplitude with V = 0.025m/s and a sine sweep of the forcing frequency.

excitation with prescribed velocity ̇C(D) = V sin(ED), as shown
in Figure 1(a), is considered. Then, a harmonic excitationF0(D) = G cos(ED) applied directly to the oscillator mass,
as presented in Figure 1(b), is analyzed. The motivation of
studying these two situations is the development of SMA
vibration absorbers and isolators. The oscillator presented
in Figure 1(a), for example, can be used to analyze classical
dynamical absorbers, which are attached to a primary system
that presents a harmonic response thatmust have its response
amplitude reduced.The oscillator of Figure 1(b), on the other
hand, can be used to analyze vibration reduction of systems
harmonically excited, which occurs in rotating machines due
to unavoidable unbalance.Therefore, the dynamical analysis
of these systems is an important start for the design of SMA
devices.

The SMA oscillator consists of a mass H attached to a
shape memory element of length I and cross-sectional area8
and restitution force F- (Figure 1). A linear viscous damper,
characterized by a viscous coefficient J, is also considered in
order to represent dissipations different from the dissipation
associated with the SMA element.

The equation of motion of this oscillator may be formu-
lated by considering the balance of forces acting on the mass
as follows: HL̈ + JL̇ + F- = F0 cos (ED) , (3)

where F- = $8, L = (M − C), F0 = −HVE in the case
of base excitation and F0 = G when the force is applied
directly to the oscillator.The restitution force of the oscillator
is provided by an SMA element described by the constitutive
equations presented in the previous section [13]. Therefore,
the following equation of motion is obtained [4]:

HL̈ + JL̇ + %8I L + (8' + %8'ℎ) (#2 − #1)− Ω8 (" − "0) = F0 cos (ED) , (4)

where volume fractions of evolution #1 and #2 are described
by the constitutive model presented in the preceding section
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Figure 3: Up-sweep jumps with V = 0.025m/s: comparison between frequency response and stress-strain curves.
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Figure 5: Maximum system amplitude with V = 0.075m/s and increasing the forcing frequency.
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Figure 6: Up-sweep jumps with V = 0.075m/s: comparison between frequency response and stress-strain curves.

and ! = L/I. In order to obtain a dimensionless equation of
motion, the system’s parameters are defined as follows:Ω = Ω-8"-HIE20 = Ω-"-%- ; ' = '8HIE20 = '%- ;'ℎ = 'ℎ%-8HIE20 ; E20 = %-8HI ;N = JJE0 ; O. = %%- ;P = VE0I ; OΩ = ΩΩ- ; E = EE0 .

(5)

Note that dimensionless parameters and variables are
defined considering some reference values for temperature-
dependent parameters. This is done by assuming a refer-
ence temperature, "-, where these parameters are evaluated.
Therefore, parameters with subscript Q are evaluated at this
reference temperature. These definitions allow one to define
the following dimensionless variables, respectively, related to
mass displacement (R), temperature (S), and time (T):

R = LI ; S = ""- ; T = E0D. (6)
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Figure 7: Down-sweep jumps with V = 0.075m/s: comparison between frequency response and stress-strain curves.

Therefore, the dimensionless equation of motion has the
following form:R00 + NR0 + O.R + (' + O.'ℎ) (#2 − #1)− OΩΩ(S − S0) = U cos (ED) ,#01 = 1.1 {'! + Λ 1 (") + (2''ℎ + %'2ℎ) (#2 − #1)+'ℎ [%! − Ω (" − "0)] − 3"14#} + 3 ̇"14%,#02 = 1.2 {−'! + Λ 2 (") − (2''ℎ + %'2ℎ) (#2 − #1)−'ℎ [%! − Ω (" − "0)] − 3"24#} + 3 ̇"24%,#03 = 1.3 {−12 (%& − %') [! + 'ℎ(#2 − #1)]2 + Λ 3 (")+ (Ω& − Ω') (" − "0) [! + 'ℎ (#2 − #1)]− 3"34# } + 3 ̇"3 ,

(7)

where derivatives with respect to dimensionless time are
represented by ()0 = V()/VT, .1 = .1/E0, and U =−HVE/HIE20 = −HVE/%-8 in the case of base excitation andU = G/HIE20 = G/%-8 when the force is applied directly to
the oscillator.

4. Numerical Simulation

This section presents a numerical investigation of the 1DOF
SMA oscillator. In order to deal with nonlinearities of the
SMA oscillator equations of motion, an iterative procedure
based on the operator split technique [23] is employed. Under
this assumption, the fourth-order Runge-Kutta method is
used together with the projection algorithm proposed in [6]
to solve the constitutive equations. The solution of the con-
stitutive equations also employs the operator split technique
together with an implicit Euler method.The calculation of #(
(: = 1, 2, 3) considers that the evolution equations are solved
in a decoupled way. At first, the equations (except for the
subdifferentials) are solved using an iterative implicit Euler
method. If the estimated results obtained for #( do not satisfy
the imposed constraints, an orthogonal projection algorithm
pulls their value to the nearest point on the domain’s surface
[19]. On the other hand, the numerical integration of the
dynamical system uses the classical Runge-Kutta method.

Parameters used in the numerical simulations, presented
in Table 1, are the same used by Savi et al. [4]. These param-
eters are obtained by calibrating the model to experimental
results of a NiTi alloy. Simulations are carried out at a
temperature of 372K, where only austenitic phase is stable at
stress-free state.

The dynamical analysis of the SMA oscillator is mainly
focused on the investigation of the dynamical jumps.The idea
is to investigate numerical simulations related to sine-sweep
tests of the forcing frequency. In this test, system response
is investigated when the forcing frequency is increased
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Table 1: SMA parameters.%- (GPa) %' (GPa) ' (MPa) 'ℎ @0 (MPa) @ (MPa) @0& (MPa) @& (MPa)
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Figure 8: Maximum system amplitude with U = 0.012 and
increasing the forcing frequency.

(up-sweep) or decreased (down-sweep) by some increment
value. For each forcing frequency, the system is numerically
integrated and the maximum amplitude in steady state is
considered. When the frequency is changed, the last state
at the previous forcing frequency is considered as the initial
condition for the new frequency. This brute-force procedure
is enough to identify dynamical jumps although it does not
allow the identification of unstable paths related to the system
response.

4.1. Harmonic Base Excitation. Initially, the SMA oscillator
subjected to base excitation is of concern with N = 0.05.
Figure 2 presents the system response considering the sine-
sweep test of the frequency for V = 0.025m/s. It is noticeable
that there is one jump during the up-sweep while the down-
sweep presents two jumps.This behavior is caused by system
nonlinearities, specifically, hysteretic behavior. During the
up-sweep, dynamical jump occurs around E = 0.77. During
the down-sweep, the first one occurs around E = 0.59 and
the second one occurs around E = 0.43. Bernardini and Rega
[8] identified similar situations with different approaches and
a different constitutive model.

In order to have a better understanding about the dynam-
ical jumps, an investigation is carried out establishing a
relation between jumps and phase transformations. Figure 3
shows up-sweep frequency response curves highlighting the
stress-strain curves for different forcing frequencies. It can be
observed that the jump occurs when phase transformations

start to occur.Therefore, linear stress-strain curve is changed
to a hysteretic behavior associated with incomplete phase
transformations. Note that, for frequencies smaller than E =0.76, the system has a linear behavior. By slightly increasing
the forcing frequency, the system presents a hysteretic behav-
ior. The hysteresis loop causes a significant increase of the
strain, which produces a dynamical jump. By continuing to
increase the forcing frequency the hysteresis loop starts to
become smaller until it disappears and the system presents
a linear behavior again.

Figure 4 shows the same analysis related to down-sweep
test. The first jump occurs when the system changes from
a situation where incomplete phase transformations are in
course to a new one where complete phase transformations
are occurring. This is noticeable by observing the presence
of the elastic response related to martensitic phase in the
stress-strain curve. Note that a very slight change aroundE = 0.6 changes the stress level promoting complete
phase transformations, presenting an elastic response on the
martensitic phase. The second jump, on the other hand,
occurswhere phase transformation is not occurring anymore.
Note that, near E = 0.44, phase transformations are not
occurring anymore causing an abrupt change from full loop
to linear case.

It should be pointed out that, for the analyzed range,
Figures 2–4 present a linear evolution of the frequency
responsewhen systemhas a linear response, without reaching
the hysteretic behavior. Afterward, when the system presents
a hysteretic response related to incomplete phase transforma-
tion, the response is associated with a nonlinear curve. The
transition between one behavior and the other modifies the
frequency response.

Now, the same analysis is carried out with a higher
velocity V = 0.075m/s. Figure 5 shows sine-sweep maximum
amplitudes of the SMA oscillator. Under this new condition,
the system presents two jumps during the up-sweep while
the down-sweep presents three jumps. During the up-sweep
(Figure 6), the first jump occurs when the response shifts
from a linear behavior to a nonlinear behavior with the
complete hysteresis loop. The second jump is related to
the transition from the complete phase transformations to
incomplete ones. Although the jumps are being caused by
changes in stress-strain curves, it should be highlighted
that the first jump, where the system goes from a complete
hysteresis loop to a linear behavior, is different from the
previous case.

Figure 7 establishes the comparison between jumps and
phase transformation for the down-sweep case.The first one
occurs around E = 1.66, where the maximum amplitude
decreases slightly. It is noticeable that incomplete phase
transformation changes from a situation where internal
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Figure 9: Up-sweep jumps with U = 0.012: comparison between frequency response and stress-strain curves.

subloops appear in stress-strain curves to a behavior without
internal subloops. The second jump takes place at E = 0.8,
where no transition in stress-strain curve is observed. The
last dynamical jump occurs when the material shifts from
nonlinear behavior related to an incomplete hysteresis loop
to a linear behavior.

It is important to mention that when a dynamical jump
occurs, it is possible to have the transition between the
behaviors in stress-strain diagram immediately before the
dynamical jump. In Figure 7, for example, between the stress-
strain diagrams presented at E = 0.84 (incomplete hysteresis
loop) and E = 0.80 (complete hysteresis loop), there is a
complete hysteresis loop at E = 0.82, where the response
amplitude is still low. This happens because the frequency
variation is very small and the amount of the energy that
increases from E = 0.84 to E = 0.92 is only sufficient
to complete the hysteresis loop. After the loop is complete,
even a very small increase of energy is enough to lead to
the dynamical jump. Probably, this behavior occurs only in
numerical simulations where a quasistatic variation of the
forcing frequency is possible. In experimental tests, this subtle
transition is probably not possible to be reached and only the
response after the jump is captured.

4.2. Harmonic Force Applied to the Mass. At this point, the
case where harmonic excitation is applied directly to SMA
oscillator mass is analyzed, with N = 0.01.The main idea is to
establish a qualitative comparison between the responses of
both oscillators.The same order of magnitude for the forcing
parameters and viscous damping coefficient is considered.
Nevertheless, the forcing amplitude depends on the forcing
frequency in the case of base excitationwhile in the other case

the forcing amplitude is constant. Therefore, the qualitative
comparison tries to show different possibilities when each
forcing condition is considered.

Figure 8 presents system response considering the sine-
sweep of the frequency with U = 0.012. During the up-
sweep test two jumps are observed while in down-sweep
three jumps are observed. In the up-sweep, presented in
Figure 9, the first jump occurs when the response shifts
from an incomplete hysteresis to a complete one. This jump
consists in a different situation compared with the equivalent
base excitation cases, where the transition related to the
first dynamical jumps is from linear behavior to nonlinear
behavior with complete hysteresis loop. The second jump is
related to the inverse transition, from complete to incomplete
loop.

Figure 10 establishes the comparison between jumps and
phase transformation for the down-sweep case with U =0.012.The first dynamical jump, which happens around E =0.65, is similar to the first jump of the down-sweep with base
excitation with V = 0.025m/s, when the transition from
incomplete to complete hysteresis loop occurs. The second
one occurs around E = 0.36 in a transition from complete
to incomplete hysteresis loop. This situation is also verified
in the previous cases. The last dynamical jump, aroundE = 0.18, occurs when the system goes from incomplete
hysteresis loop to linear behavior.This jump, with a transition
from incomplete hysteresis loop to linear behavior, consists
in a different situation compared with the equivalent base
excitation case.

It is important to mention that all regions related to
dynamical jumps are associated with coexistence of attrac-
tors, due to the different possibilities of response when
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Figure 10: Up-sweep jumps with U = 0.012: comparison between frequency response and stress-strain curves.

increasing and decreasing the forcing frequency. This coex-
istence is associated with dynamical instability since small
perturbations can cause the system to jump from one behav-
ior to the other which is completely different. This kind of
behavior is critical to system response and is important to be
investigated.

5. Conclusions

This paper deals with the analysis of dynamical jumps in
a shape memory alloy system. Basically, a nonlinear one
degree of freedom oscillator with harmonic excitation is of
concern. Two different situations are treated: base excitation
and excitation applied directly to the oscillatormass.This sys-
tem presents several dynamical jumps and their occurrence
depends not only on the forcing amplitude—which depends
on the velocity in the case of base excitation—but also on the
way the forcing frequency ismodified.Numerical simulations
of the sine-sweep test are carried out showing that down-
sweep causes more dynamical jumps than up-sweep. These
jumps can be explained by phase transformation arguments,
observing stress-strain curves. In this regard, three possible
behaviors can be observed: linear behavior, minor hysteresis
loops related to incomplete phase transformation, and major
hysteresis loops related to complete phase transformation.
The transition between these three behaviors leads to changes
in system response, which can be a dynamical jump or a
modification in the frequency response of the system. It is
observed that the transition between linear and incomplete
hysteresis loops can lead to dynamical jumps ormodifications

in the frequency response of the system. All other transitions
lead to dynamical jumps.
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