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Abstract It is well known that dynamical systems

that include devices based on shape memory alloys

(SMA) can exhibit a wide spectrum of responses:

periodic, quasi-periodic and chaotic motions. In view

of the different types of possible applications, it is

important to recognize the qualitative features of the

system vibrations. To this end, various methods have

been proposed in the literature and evaluated in

different conditions. In this work, a comparison

between some of the available methods is proposed,

focusing attention on their ability to detect the

regular–chaotic and chaotic–regular transitions. The

specific system under consideration is a thermome-

chanical SMA oscillator with superelastic behavior

subject to harmonic excitation. The diagnostic meth-

ods compared are 0–1 test, maximum Lyapunov

exponent and the recurrence indicators. The obtained

results show that each method used is suitable for

distinguishing between the regular and non-regular

response of the SMA oscillator, so one of them can be

chosen, taking into account, for example, the length

and a sampling of the collected data.

Keywords Nonlinear analysis � SMA oscillators �
Chaotic vibrations

1 Introduction

Shape memory alloys (SMAs) are smart materials

whose macroscopic behavior is strongly influenced by

the occurrence, at the microscale, of various solid

phase transitions, the more typical being forward and

reverse Austenite–Martensite transformations [1].

Consequently, the dynamical response of oscillators

where the restoring force is provided by SMA-based

devices is characterized by thermomechanical

hysteresis.

The nonlinear dynamics of Shape Memory Alloys

oscillators has been studied by several authors, using

different constitutive models [2, 3] The occurrence of

chaotic responses under harmonic excitation has been
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systematically observed within various ranges of

excitation amplitude and frequency [4, 5].

Different nonlinear methods have been used to

analyze the regular features of the system responses,

including, among the others, standard frequency

analysis, the maximal Lyapunov exponent, the method

of wandering trajectories, the 0–1 test , and recurrence

statistics [4–9].

Unfortunately, the above mentioned analyses were

limited to detect the possible chaoticity of single

trajectories selected within suitable ranges of param-

eters [9]. The various methods proposed in the

literature are more or less effective in discerning

between regular and non-regular responses. However,

there are cases in which there is a complex transition

from the regions where regular and chaotic responses

are observed and the performances of the various

methods have not been tested in such conditions.

In this work, the bifurcations leading to transitions

from regular motion to chaos are studied in detail by

changing the chosen bifurcation parameter, several

diagnostic methods are compared in this context.

Among these methods, the largest Lyapunov exponent

and recurrence analysis are based on the study of the

distance between the trajectories of the phase space

[10, 11]

In the case of numerical simulations, all the

coordinates from the phase space are available.

Otherwise, a single coordinate has to be used to

reconstruct the remaining ones. By virtue of Takens’s

embedding theorem [12], the topological properties of

the reconstructed attractor will be the same as the

original one.

It should be noted that the method of the delay

embedding coordinate has been successfully applied

to experimental data if the level of noisiness is not too

high. In this work we use a single variable time series

for the 0–1 test [13], a two-dimensional projection of

the phase space for the maximum Lyapunov exponent

and an embedding D-dimensional reconstructed phase

space for recurrence quantification analysis.

2 System description

A thermomechanical SMA oscillator subjected to

harmonic excitation was considered in [4]. This is a

model inspired by a phenomenological approach to the

Martensite-Austenite structural phase transition using

an internal variable indicating a content of the

Martensite phase. We adopted that model for our

analysis and performed the calculations using Matlab

ode45 integration schema which enable determination

of higher order statistics [14]. The system of dynam-

ical equations that determine the motion and the

temperature evolution can be expressed in dimension-

less form as follows:

_x ¼ v;

_v ¼ � xþ signðxÞkn� fvþ A cosxs;
ð1Þ

_n ¼ H signðxÞv� Jh #e � #ð Þ½ �;

_# ¼ L
Kþ Jk#

Jk
H signðxÞv� Jh #e � #ð Þ½ � þ h #e � #ð Þ;

ð2Þ

where x, v are displacement and velocity, n the internal

variable that represents the fraction of Martensitic

phase and # the system temperature, while #e is the

environment dimensionless temperature. Besides the

equation of motion, the system (Eq. 1) includes an

equation of evolution for the fraction coordinate n and

a heat equation governing the evolution of the

temperature driven by the thermomechanical coupling

arising from the peculiarities of the solid phase

transformations by the constitutive functions K and

H, given by Eqs. 3–5 after [4]. The normalized

excitation amplitude and frequency are denoted by

A and x, whereas the remaining system parameters

determine the features of the hysteresis loop as well as

the evolution of temperature (Table 1).

The thermomechanical coupling (in Eqs. 1, 2) is

defined by the constitutive functions KF;R and HF;R [4]

where the subscripts F and R indicate, respectively, the

expressions relative to the Forward (Austenite !
Martensite), upper plateaus, and Reverse (Martensite

! Austenite), lower plateaus, transformations. The

first function couple KF;R depends on the martensitic

fraction n

Table 1 Dimensionless model parameters (Eqs. 2–5)

q1 q2 q3 k L h J b

0.98 1.2 0.98 8.125 0.001 0.08 3.1742 0.03
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KF ¼ k
ðJ � 1Þðq2 � 1Þ

2
þ kðJ � 1Þð1 � q1ÞWF;

KR ¼ �k
ðJ � 1Þðq2 � 1Þ

2
� kðJ � 1Þq2ð1 � q3ÞWR;

ð3Þ

completed by the WR;F functions that are directly

dependent on n

WF ¼ 12 1 þ 1

b
ln

1 � nþ ebðn� n0Þ
n� n0 þ ebð1 � nÞ

� �
;

WR ¼ 12 �1 þ 1

b
ln

n� n0 þ ebn
�nþ ebðn� n0Þ

� �
;

ð4Þ

where n0 is the martensitic fraction n at the beginning

of the last phase transformation that occurred before

current time s.

Furthermore, HF;R depend on n and # variables

HF;R ¼ 1

kþ JL#þ LkKF;R þ 1
k
oKF;R

on

: ð5Þ

3 Numerical simulations

To set up the stage for the comparison of different

methods for the analysis of the response, a set of 17

simulations with non-dimensional excitation ampli-

tude A ¼ 1 at different frequencies is considered.

Signals are composed of 200000 points sampled at 200

points per period. Using the Runge–Kutta method of

the fourth order (ode45 in Matlab), we adopted a small

integration step, obtaining a relatively large number of

points for the excitation period, while for our analysis

the sampling was changed. Being a thermomechanical

system, besides displacement there is also a temper-

ature variable and the simulations are carried out in

non-isothermal conditions. In the following, results

relative to both the displacement and the temperature

evolutions are presented. The comparison between

displacement and temperature response is interesting

since temperature oscillated at double frequency

(Fig. 1).

Note that the basic system, uncoupled to internal

variables, has a resonance at dimensionless frequency

x0 ¼ 1 (see Eq. 1). The trajectories to be analyzed

have an excitation frequency belonging to the sequen-

tial values from the interval x 2 ð0:147; 0:307Þ, (close

to x0=4) chosen in such a way to illustrate a typical

transition from regular to chaotic and then a reverse

transition back to regular motion. Analyzing this

diagram one can observe periodic motion for

x 2 ð0:147; 0:167Þ, near the bifurcation solution for

x ¼ 0:177, chaotic motions in the range

x 2 ð0:187; 0:247Þ, another solution close to the

bifurcation point at x ¼ 0:257 and, finally, again

periodic solutions in the interval x 2 ð0:267; 0:307Þ.
To give qualitative characterization of the different

system responses, four cases are presented in Figs. 2,

3, 4 and 5 with phase portraits, Poincaré sections and

corresponding power spectra. Note that a periodic

motion is identified, being represented by a single

point on the Poincaré map. It is noticeable that one of

the chosen cases (Fig. 4) represents non-regular

solutions by a large number of Poincaré points and

additional continuous frequency background in the

power spectrum renormalized by excitation fre-

quency. In all the cases, apart of the excitation

renormalized frequency, one can observe a few odd

superharmonics. The nonregular solution of x ¼
0:237 presented in Fig. 4 shows a fairly large ampli-

tude in terms of displacement. Interestingly, the

corresponding frequency is close to the subharmonic

resonance 1/4. Such proximity of frequencies in

nonlinear systems may favor bifurcations and an

occurrence of a chaotic solution.

0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
Frequency

0

2

4

6

8

10

12

Te
m
pe

ra
tu
re

Fig. 1 The bifurcation diagram of the SMA oscillator for

different values of dimensionless frequency
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4 Data preparation

The methods of the largest Lyapunov exponent and the

recurrence analysis are based on the study of the

distance between the trajectories in the phase space. In

the case of numerical simulations, one has all the

coordinates from the phase space available. Other-

wise, one can typically use a single coordinate and use

it to reconstruct the remaining ones. By virtue of

Takens’s embedding theorem [12], the topological

properties of the reconstructed attractor will be the

same as the original one, provided the system is

smooth enough. It should be noted that the method of

delay-embedding coordinates has been successfully

applied to experimental data if the level of noise is not

too high. Let x(t) be a single-time series, then the

reconstructed vector u(t) will have form:

uðtÞ ¼ fxðtÞ; xðt þ sÞ; :::; xðt þ ðD� 1Þsg; ð6Þ

where s denotes the time delay and D denotes the

embedding dimension. The values of the embedding

parameters should be properly selected. In the case of
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P
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Power spectra  = 0.147

(a) (b)

Fig. 2 a The phase plane plot with Poincaré sections, b the power spectrum (for the renormalized frequency) of the displacement x,

calculated for A ¼ 1 and x ¼ 0:147
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Fig. 3 a The phase plane plot with Poincaré sections, b the power spectrum for the renormalized frequency) of the displacement x,

calculated for A ¼ 1 and x ¼ 0:177
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a time delay, one can use the autocorrelation function

and choose its zero, but keep in mind that it only takes

into account linear correlations. To take into account

nonlinearities that occur in the system, the mutual

information function (MI) [15] is used more often and

the s value is chosen as its first minimum. This choice

avoids too strong correlations between nearby points

when s is too small, as well as too weak correlations

between points when s is too large. The embedding

dimension m can be determined empirically by

visualizing the attractor in increasing dimensions, so

that its structure is preserved. More often, however,

the function of the false nearest neighbors (FNN) is

used, which examines whether nearby points in a fixed

space remain neighbors in the space of an increased

dimension. Zero of the FNN function corresponds to

the embedding dimension, because all false neighbors

disappear and no further increase of the dimension is

necessary [16].

In this work we use a one-dimensional time series

for the 0–1 test, a two-dimensional projection of the

phase space for the maximal Lyapunov exponent and a
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Fig. 4 a The phase plane plot with Poincaré sections, b the power spectrum for the renormalized frequency) of the displacement x,

calculated for A ¼ 1 and x ¼ 0:237
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Fig. 5 a The phase plane plot with Poincaré sections, b the power spectrum (for the renormalized frequency) of the displacement x,

calculated for A ¼ 1 and x ¼ 0:297
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D-dimensional reconstructed phase space for the

recurrence quantification analysis. More details on

individual methods will be presented in the following

chapters. Such a procedure will allow us to check

different scenarios depending on the method of data

availability, both from numerical simulations as well

as from experience. The above methods have been

checked many times in the literature and successfully

used to identify the type of dynamic response of

nonlinear systems [6].

5 0–1 test

The first approach to the evaluation of the dynamic

character of the system’s response considered in this

comparison is the so-called 0–1 test. The method,

developed by Gottwald and Melbourne [13, 17, 18], is

based on the statistical and spectral properties of a

single time series and can be used to analyze the non-

linear dynamics of both model dynamic and experi-

mental systems [19]. As a first step, the considered

one-dimensional time series is mapped to an auxiliary

two-dimensional space (p, q) by means of

transformation:

pcðnÞ ¼
Xn
j¼1

xðjÞ cos ðjcÞ; qcðnÞ ¼
Xn
j¼1

xðjÞ sin ðjcÞ;

ð7Þ

where x is a time series and c 2 0; pð Þ is a constant

corresponds to fixed frequency in Fourier decompo-

sition of the time series x. In the present case, as the

input data for the 0–1 test we used the x coordinate

from the phase space sampled with the s ¼ 10 as the

time delay. This allowed us to avoid the problem of

oversampling due to the small numerical integration

step [6]. In a similar way, Poincaré points or any other

mapping can be used. Exemplary representation of the

auxiliary trajectory in (p, q) plane are shown in Fig. 6.

Comparing the corresponding figures for individual

x values, one can notice their periodic character for

x 2 0:147; 0:177; 0:297f g and similarity to random

walk for x ¼ 0:237. In other words, the auxiliary

trajectory in new coordinates can be bounded (peri-

odic motion) or unbounded (non-periodic motion).

This fact can be examined using the value of the mean

square displacement function MSD :

McðnÞ¼ lim
N!1

1

N

XN
j¼1

½pcðjþnÞ�pcðjÞ�2 þ½qcðjþnÞ�qcðjÞ�2;

ð8Þ

where n corresponds to the total number of points (in

practice the above limit is assumed by taking n¼ nmax)

and nmax\\N (usually N¼ n=10). The values of this

function can increase asymptotically over time in case

of chaotic motion or be limited in time for regular

motions and it can be quantified by means of the

parameter :

KcðnÞ ¼ lim
n!1

logMcðnÞ
log n

: ð9Þ

which thus plays the role of measureing of the

regularity of motion. Alternatively, the correlation

method can be used to determine another estimate of

the parameter K:

KcðnÞ ¼
covðX;McÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðXÞvarðMcÞ

p ; ð10Þ

where X ¼ 1; ::; nmaxf g, Mc ¼ Mcð1Þ; ::;McðnmaxÞf g.

In the above, the covariance covðX;YÞ and variance

varðXÞ, for vectors X and Y of nmax elements, and the

corresponding mean values X̂ and Ŷ , respectively, are

defined as

covðX;YÞ ¼ 1

nmax

Xnmax

n¼1

ðX(n) � X̂ÞðY(n) � ŶÞ;

varðXÞ ¼ covðX;XÞ:
ð11Þ

As we have noticed before, the values of Kc depend on

the choice of the value of c. If the parameter c would

take values that are multiple of the resonant frequency

incorrect results are obtained regardless of the dynam-

ics of the system. In the practical implementation of

the 0–1 test, to overcome this issue the test is repeated

for a large number of values of c, typically 100 chosen

within the interval c 2 ð0; pÞ, and the final value of the

parameter K is given by the median of the corre-

sponding values obtained in this way. If K � 0 then

the dynamics of the system is periodic, and if K � 1

then the dynamics of the system is regular.

The test has then been applied for all the trajectories

in the chosen set and Fig. 7 shows the variation of the

parameter K in terms of the bifurcation parameter x.

The results show that the test is able to detect properly

both the forward and reverse transition from regular to
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chaotic motions. The transition is detected in a rather

sharp way although there are points where the test

gives intermediate values of the parameter K corre-

sponding to zones close to the bifurcation points.

Figure 7 shows clear differences in the dynamic

response characteristics of the SMA oscillator. We see

that for x ¼ 0:147; . . .; 0:177; 0:257; . . .; 0:307f g the

dynamics of the system are periodic, and for x ¼
0:187; ::; 0:247f g are chaotic. The solution obtained

for x ¼ 0:187 is not identified clearly, but it is located

near the bifurcation point and corresponds to the so-

called weak chaos. It should be noted that values

closer to unity are obtained in the limit n ! 1, and in

our case n ¼ 4000 points.

6 Maximal Lyapunov exponent

The second method considered in this comparison is

based on the computation of the Maximal Lapunov

exponent LMAX , which is the most commonly used

measure of non-periodicity, based on the divergence

of nearby trajectories in the phase space. Each

dynamical system has Lyapunov’s exponents corre-

sponding to the number of phase coordinates, but the

sign of the largest of them unambiguously distin-

guishes the regular dynamics from chaos. In this work,

we analyze the dynamics of the non-linear system of

SMA oscillators using the 2d projection of the space

from higher dimension (due to the hysteretic effects).

To calculate the maximal Lyapunov exponent, we
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Fig. 6 Phase portraits in (p, q) coordinates for x sampled with s ¼ 10 time delay. Red points correspond to the first and the last point
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used the method of Kantz [20] and Rosenstein [21],

which developed it at the same time.

The method is based on the analysis of the

geometric properties of the trajectories. Let Y(t) be a

reference point on the trajectory. For each point Y(t) it

is necessary to determine first the nearest points that

are located as close as the average period that has to be

determined before, for example by means of a Fourier

transform:

Yðt1Þ; . . .; YðtuÞ such as jYðtÞ � YðtjÞj\�; j ¼ 1. . .u:

ð12Þ

Then, it is possible to define the average distance

between the reference point and its nearest neighbors

in a certain trajectory segment s via:

sðt; sÞ ¼ 1

u

Xu
j¼1

jYðt þ sÞ � Yðtj þ sÞj: ð13Þ

Finally, the distances defined as above are averaged

over a suitable interval hence determining the value of

a function S, whose linear increase corresponds to the

value of LMAX:

SðsÞ ¼ 1

n

Xn
j¼1

sðj; sÞ: ð14Þ

Figure 8 show the SðsÞ function and the corresponding

values of LMAX for the same interval of linear fitting

relatively to four sample trajectories.

Comparing the graphs of the S function, it is

possible to observe the different slopes that it takes for

different trajectories. Such slopes are correlated with

the regularity level of the motion. For example, for

x ¼ 0:237 and x ¼ 0:177 the lines have a slight slope

whereas, on the contrary, the trajectories associated

with x ¼ 0:147 and x ¼ 0:297 have almost zero

slope.

This type of analysis has been carried out for all the

trajectories in the considered set and Fig. 9 shows all

values of LMAX in chosen range of the bifurcation

parameter.

From Fig. 9 it follows that the method is able to

discern between periodic and non-periodic dynamics,

but the differences in values are not very large,

especially in consideration of the scale of the plot. This

may be caused by either discontinuities in the system

or the procedure for determining the final value of

LMAX as the slope of the linear section of the SðsÞ plot,

which was based on sections of equal length.

7 Recurrence plots

The third method considered in this comparison is

based on recurrence plots (RP). The method was

originally proposed by Eckmann [22] and it is also

based on testing the distance between points on

trajectories in the phase space. If the distance is small

enough then two points of nearby trajectories are

marked as recurrence points. This can be applied to

0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
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0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
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0.6

0.8

1

K
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)

Test 0-1

Fig. 7 The K values calculated for x 2 ½0:147; . . .; 0:307� both the displacement (left) and the temperature (right) time series
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Fig. 8 SðsÞ values calculated trajectories in 2d state space and approximation of linear segments corresponding to the maximal

Lyapunov exponents
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Fig. 9 The LMAX values calculated for x 2 ½0:147; . . .; 0:307� both the displacement (left) and the temperature (right) time series
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either numerical solutions of a system or signals

recorded in experimental stands. In the second case, it

is necessary to make a proper reconstruction of the

phase space coordinates [12]. By means of these

methods, we determined the embedding dimension

m ¼ 4 and the time delay s ¼ 10 for the x coordinate

of the system. The recurrence plot is constructed from

the distance matrix R with its element R�
ij given by

[22]:

R�
ij ¼ Hð�� jjYi � YjjjÞ; ð15Þ

where � is the threshold value. Norm jj � jj can be

Euclidean, maximal or any other ( here we choose

Euclidean distance norm). In a RP, the elements 0 and

1 of the matrix R are represented by white and black

dots. It is assumed that periodic systems are charac-

terized by points forming long lines parallel to the

main diagonal, non-periodic systems i.e. points form-

ing short diagonal lines with isolated single recurrence

points.

Sample plots of the recurrence matrix for different

dynamic responses of the SMA system are shown in

Fig. 10. As one would expect, qualitative analysis

using RP matrix visualization differs significantly for

periodic and non-periodic vibrations. For x 2
f0:147; 0:177; 0:297g long diagonal lines are present,

whereas they are not present for the RP calculated for

x ¼ 0:237.

Later, Webber and Zbilut [23] and Marwan et al.

[11, 24] extended the concept of recurrence plots and

on the basis of it proposed certain measures whose

values identify the dynamics of the system in a

quantitative way, calling it Recurrence Quantification

Analysis (RQA). This method was successfully used

for failure diagnosis [25, 26]. Its application to a

dynamical system with a SMA element was also

proposed by Iwaniec et al. [8]. Unfortunately, these

preliminary studies did not make any general

conclusions.

First of all the RQA analysis includes RR which

describes the ability of the system to visit the

neighborhood of previous states, ie. measuring the

number of recurrence points according to the formula

RR ¼ 1

N2

XN
i;j 6¼i

R�
ij: ð16Þ

The quantifiers of the recurrence are calculated using

the probability of occurrence of diagonal p(l) or

vertical p(v) lines (in this work we will only focus on

those based on statistics of diagonal lines):

pðlÞ ¼ P�ðlÞPN
x¼xmin

P�ðlÞ
; ð17Þ

P�ðlÞ denotes the histogram of l lengths for a fixed

threshold �. Based on the probability p(l) subsequently

the determinism DET can be calculated:

DET ¼
PN

l¼lmin
lP�ðlÞPN

l¼1 lP
�ðlÞ

ð18Þ

where lmin denotes the minimal value which should be

chosen for a specific dynamical system. The next

measures based on diagonal line statistics are the mean

diagonal line (L) and the longest diagonal line

(LMAX):

L ¼
PN

l¼lmin
lP�ðlÞPN

l¼lmin
P�ðlÞ

; ð19Þ

LMAX ¼ maxðfLi; i ¼ 1; . . .;NlgÞ; ð20Þ

where Nl denotes the number of diagonal lines in the

RP. To exclude the main diagonal from the statistics,

we have used lmin ¼ 4. The determinism, DET, is a

measure of the system’s predictability and determines

the ratio of the recurrence points forming diagonal

lines to all recurrence points. It is worth noting that in

the case of complex periodic systems all points will be

included in diagonal lines. L refers to the predictability

time of the dynamical system and LMAX to the longest

diagonal line, respectively. It should be emphasized

that the key parameter in RP analysis is �, which has to

be chosen carefully. On the one hand, the threshold

value should be small enough to capture the dynamics

of the system in a short time scale, and the reverse side

can not be too big, because then all of the points on the

trajectory would be identified as recurrences. One way

to choose � is to select it so that the number of

recurrence points RR is a few percent of all the points

in the RR matrix.

As before, each time series has been sampled every

five displacement points As the RP method can be
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used for short time series, we have divided the entire

time series with a length of 200000 points into 50

series with a length of 4000 points each. We calculated

the final values of the RQA discriminators as the

median of all 50 values and summarized them in

Figs. 11 and 12 respectively.

By comparing the values of the RQA measures

based on the diagonal line statistics, you can see that

the biggest differences in changes in the periodicity of

the system are visible in the values L (only for

displacement—Fig. 11) and LMAX (for both displace-

ment and temperature—Figs. 11 and 12, respec-

tively). However, the RR and DET indicators can be

useful for identifying mainly the same periodic

attractors. To sum up, the transition from regular to

chaotic and regular vibrations can be identified with

RQA discriminants for the displacement and the

temperature time series.

8 Discussion and final conclusion

In this paper, the regularity features of the nonlinear

oscillations of a pseudoelastic shape memory alloy

oscillator have been studied by means of three

methods. Firstly, numerical simulations correspond-

ing to regular–chaotic and chaotic–regular transitions

were carried out (Fig. 1). In the case of the 0–1 test, the

statistical and spectral properties of a single time series

were examined asymptotically. In this regard, several

aspects should be noted: oversampling may be a

problem, which, due to strong correlation over short

intervals, may give ambiguously interpretable results.

On the other hand, nonlinear dynamical systems are

characterized by correlations in different time scales,

hence as part of preprocessing, one can resample the

time series so that the input data are not too weak or

too correlated. Autocorrelation (linear relationships)
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Fig. 10 RP matrix calculated for embedded trajectories with the same threshold value � ¼ 0:2
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or mutual information (non-linear relationships) func-

tions that help you select a sampling step can be

helpful. Furthermore, the value of c0 can be a multiple

of the system forcing frequency, which leads to

ambiguity, hence the repeated calculations for differ-

ent values of c0, whose statistics give the final value of

the indicator, were performed. In the case of the largest

Lapunov exponent determined from time series there

are several parameters to look out for. First of all, the

average orbital period of the time series, which we

consider as the distance of nearby points on the

trajectory.

In the case of regular vibrations, it is quite easily

determinable, but in the case of irregular vibrations,

this characteristic period does not exist but instabilities

of close trajectories can be still determined. Secondly,

the time to study the distance between adjacent points

also cannot be too long, because after a certain time of

evolution we will observe an exponential increase in

distance regardless of the type of dynamics (in this

case we adopted half the average orbital period),

which does not change the fact that this is not universal

value. Thirdly, using linear regression to determine the

value of the Lmax exponent, we need to select the

appropriate fit interval, which we have chosen sub-

jectively by analyzing the values of the function SðsÞ.
Like the 0–1 test, this is a symptomatic method, so the

input data must be long enough to reflect the dynamics

in both short and long time scales.

In the case of recurrence analysis, the most

important parameter (in addition to the embedding

parameters: time delay and space dimension) is the

0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
Frequency

0

0.005

0.01

0.015

0.02

0.025

0.03

R
R

Recurrence rate

0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
Frequency

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

D
E
T

Determinism

0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
Frequency

0

200

400

600

800

1000

1200

1400

1600

1800

2000

L

Mean diagonal line

0.147 0.167 0.187 0.207 0.227 0.247 0.267 0.287 0.307
Frequency

0

500

1000

1500

2000

2500

3000

3500

4000

LM
A
X

Longest diagonal line

Fig. 11 RQA measures based on the distribution of diagonal lines calculated for embedded space based on the delayed x (displacement)

coordinate with m ¼ 4; s ¼ 10 and � ¼ 0:2
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smallest value that marks points as recurrent. These

are reflected in diagonal line patterns including the

average length L, and the maximal length LMAX

indicators. It is worth noting that this method does not

require steady states and long time series, unlike the

other two methods: the 0–1 test and the maximal

Lyapunov exponent.

In final conclusion, we report that all three methods

gave consistent results. They were able to detect

bifurcations and different types of attractors (Test 0–1

(Fig. 7), Maximal Lyapunov Exponent (Fig. 9) and

Recurrence Quantification Analysis (Figs. 11 and 12).

The quantitative analyzes were also confirmed qual-

itatively by means of phase portraits, Poincaré sections

and power spectra. In this scope, one can choose an

appropriate method based on, for example, the length

of the time series: Recurrence Plots—short time series

with not so many cycles or Maximal Lyapunov

Exponent/0–1 Test for longer simulations. For the

studied cases, the 0–1 test gives a more precise

detection of the transition, whereas the maximal

Lyapunov exponent is less clear. This could be caused

by discontinuities in the mathematical description of

the system. On the other hand, the dynamical response

of the system is also affected by internal variables

which model the hysteretic material properties. It is

noteworthy that the results of the temperature time

series analysis correspond to the result obtained from

the displacement/velocity time series (Figs. 7, 9, 11,

12). This may be relevant in the context of an
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Fig. 12 RQA measures based on the distribution of diagonal lines calculated for embedded space based on the delayed h (temperature)

coordinate with m ¼ 4; s ¼ 10 and � ¼ 0:2
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experiment where measuring one quantity may be

easier to perform.
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