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a b s t r a c t 

Shape Memory Alloy (SMA) dynamical systems may exhibit a rich response that can include periodic, 

quasi-periodic, chaotic and hyperchaotic behaviors. In this regard, diagnostic tools are important in or- 

der to identify the different types of behaviors. This paper aims to analyze systems with SMA elements 

through a nonlinear dynamics perspective with a specific focus on the use of 0–1 test to quantify the 

chaoticity of the dynamical response of SMA oscillators. The investigation includes different constitutive 

models for the restitution force on both single- and two-degree of freedom oscillators. Results of the 0–1 

test are compared with Lyapunov exponents calculated with different algorithms. The analyses show that 

the 0–1 test can be considered a reliable and computationally efficient alternative as a diagnostic tool of 

chaotic responses. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Shape Memory Alloys (SMAs) are being used in several applica-

ions due to their remarkable thermomechanical behavior. Applied

ynamics usually exploits SMA capacity to dissipate energy and to

hange properties due to solid phase transformations. Dynamical

esponses of SMA systems are very rich due to their strong nonlin-

arities. Because of that, the use of SMAs in dynamical applications

equires a deep understanding of the system response [29] . 

Nonlinear dynamics investigations of SMA systems started in

he 1990s [12,32] and since then, literature has several investiga-

ions treating their complex responses that include chaotic behav-

or. In general, numerical simulations are performed employing dif-

erent constitutive models. The thermomechanical description of

MAs can be done in different ways and there exists several re-

iews of the state of the art about constitutive modeling, see e.g.,

agoudas [22] and Paiva et al. [27] . In this regard, the nonlinear dy-

amics analysis of SMA systems have some effort s that should be
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ighlighted: Savi and Pacheco [31] employed the polynomial con-

titutive model treating both single and two-degree of freedom os-

illators; Bernardini and Rega [4] employed the Bernardini–Pence’s

odel; Savi et al. [30] employed the model with internal con-

traints [27] ; Machado et al. [26] employed Boyd–Lagoudas’ model.

esides, some experimental investigations attest the main conclu-

ions related to numerical simulations: Enemark et al. [8,9] ; Aguiar

t al. [1] ; Sitnikova et al. [33] ; Machado [25] . 

The use of SMA to vibration reduction may be strongly influ-

nced by the eventual presence of chaotic motions as they often

ccur in conjunction with strong jumps of response amplitude.

uch jumps as well as the unpredictability of the response may

rastically reduce, if not completely eliminate, the effectiveness of

uch devices. For this reason, reliable tools for chaos detection may

e very important also in the design of SMA-based devices 

Deterministic chaos is a possible response of SMA systems

nd a proper diagnose is one of the essential issues related to

he system investigation. Lyapunov exponents constitute a well-

stablished diagnostic tool for chaotic dynamical systems, and sev-

ral algorithms can be employed to evaluate the Lyapunov spec-

rum. Lyapunov exponent calculation can be performed either from

quations of motion or from time series. Concerning time series

nalysis, it is important to evaluate the robustness of each tech-

http://dx.doi.org/10.1016/j.chaos.2017.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.06.016&domain=pdf
mailto:savi@mecanica.ufrj.br
mailto:fmviola@gmail.com
mailto:alinedepaula@unb.br
mailto:davide.bernardini@uniroma1.it
mailto:g.litak@pollub.pl
mailto:giuseppe.rega@uniroma1.it
http://dx.doi.org/10.1016/j.chaos.2017.06.016


308 M.A. Savi et al. / Chaos, Solitons and Fractals 103 (2017) 307–324 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. SMA dynamical systems. (a) single and (b) two degree-of-freedom mass sys- 

tems. 
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nique due to noise contamination. In this regard, the algorithm

due to Kantz [20] is a classical approach to estimate maximum

Lyapunov exponent presenting low noise sensitivity. The algorithm

due to Wolf et al. [36] is a classical approach for systems gov-

erned by ordinary differential equations that can be linearized

around a reference trajectory. The hysteretic behavior of SMAs in-

troduces difficulties for the application of this method. Machado

et al. [26] proposed an approach to employ the algorithm due to

Wolf et al. [36] on hysteretic systems. 

The 0–1 test has been used as an interesting alternative to di-

agnose chaos in dynamical systems, being of special interest for

systems where the classical approaches are difficult to be applied.

In brief, this is a statistical approach based on the asymptotic

properties of a Brownian motion chain. Gottwald and Melbourne

[14,15] presented this procedure to distinguish chaotic from regu-

lar behavior in deterministic systems. The test provides, as a result,

a number that lies between 0 and 1. If the dynamical behavior of

the tested system is chaotic, the result is close to 1, or close to

0 if the system exhibits non-chaotic or regular behavior. Gottwald

and Melbourne [18] and Bernardini and Litak [2] presented general

overviews of the theoretical background and the use of 0–1 test for

chaos diagnose. 

The 0–1 test can be applied directly to time series and therefore

is independent on the nature of the underlying dynamical system

[16,17] . Litak et al. [23] and Bernardini et al. [7] applied the 0–

1 test to SMA systems considering time series obtained from nu-

merical simulations of equations of motion. Different applications

of the test can be found in several research effort s. Falconer et al.

[10] applied the test to an experimental time series from a bipolar

motor. Webel [35] employed this method for testing chaos in the

return time series from the German stock market. Other interest-

ing applications of the 0–1 test can be found on Krese and Govekar

[21] and Yuan et al. [38] . 

This paper discusses the application of the 0–1 test to SMA sys-

tems and investigates its effectiveness in the detection of chaotic

responses establishing a comparison with the Lyapunov exponents.

Moreover, since SMA exhibits a complex thermomechanical re-

sponse and several constitutive models have been proposed in the

literature, the analysis includes the performances of the diagnos-

tic tools on three different SMA models: polynomial model [11,31] ;

model with internal constraints [27,30] , Bernardini–Pence’s model

[3–6] . Moreover, single- and two-degree of freedom systems are

analyzed allowing one to obtain a proper comprehension of the

general behavior of SMA systems, investigating different system di-

mensions. It is beyond the scope of this contribution the compari-

son of the SMA models. Time series are generated from the equa-

tions of motion and results obtained with the 0–1 test are com-

pared with Lyapunov exponents. Basically, the algorithms due to

Wolf et al. [36] and Kantz [20] are employed for the estimation of

the exponents. The main goal is to evaluate the 0–1 test capacity

to diagnose different kinds of response. 

Two different archetypal systems are evaluated considering dis-

tinct dimensions: single-degree of freedom system, 1-dof ( Fig. 1 a);

two-degree of freedom system, 2-dof ( Fig. 1 b). Essentially, the

single-degree of freedom system is an oscillator with a mass, m ,

with a displacement u , connected to the support by an SMA ele-

ment and a linear viscous damper with coefficient c , and subjected

to a harmonic excitation F = F̄ sin ( �t ) . The two-degree of freedom

system consists of two coupled oscillators with masses, m i ( i = 1,2),

connected by SMA elements and linear dampers with coefficient c i 
(i = 1,2,3). Each mass has displacement u i ( i = 1,2) being harmoni-

cally excited by an external force F i = F̄ i sin ( �i t ) ( i = 1,2). 

After this introduction, the paper is organized as follows. Ini-

tially, a brief description of the diagnostic tools is presented, em-

phasizing Lyapunov exponents and 0–1 test. Numerical simulations

are then carried out for different models, starting with single-
egree of freedom systems. Polynomial, internal constraints and

ernardini–Pence models are treated. Afterwards, a two-degree of

reedom system described with polynomial model is investigated.

oncluding remarks are then discussed. 

. Diagnostic tools 

Nonlinear dynamics of SMA systems is very rich, being asso-

iated with complex responses. In this regard, periodic, quasiperi-

dic, chaotic and hyperchaotic solutions can arise and it is impor-

ant to employ suitable diagnostic tools that allow a proper identi-

cation of these behaviors. Usually, the estimation of some system

nvariant is adopted and the most widely used is the Lyapunov ex-

onents. 

The classical algorithm due to Wolf et al. [36] can be consid-

red a well-established procedure when equations of motion are

vailable. Nevertheless, its use needs the determination of a system

inearization that is not an easy task for hysteretic systems, where

omplex, generally non-smooth, constitutive equations are usually

mployed. In this regard, there is the alternative of a time series

nalysis where Kantz [20] algorithm is an interesting approach. The

–1 test proposed by Gottwald and Melbourne [14] is another in-

eresting alternative for time series analysis. 

.1. Lyapunov exponents 

The set of Lyapunov exponents is a system invariant that es-

imates its sensitivity to initial conditions by evaluating local di-

ergence of nearby orbits. It represents one of the most accepted

iagnostic tool for chaos. In brief, the divergence of nearby orbits

an be analyzed monitoring the distance between a reference orbit

nd its neighboring orbits while the system evolves through time.

f the measured distance increases, there is a local divergence that

haracterizes chaos. Chaotic response is, therefore, associated with

t least one positive value, representing a divergent direction. 

Usually, the reference orbit is evaluated from the equations of

otion and the nearby orbit evolution is monitored by an exten-

ion of the equations of motion. Wolf et al. [36] presented a proce-

ure where this extension is evaluated from a linearized version of

he dynamical system. Besides, new initial conditions are adopted

or each time step, avoiding an explosive behavior. 

The algorithm due to Kantz [20] employs a similar idea where

he distances between two orbits increase with a rate given by the
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a  
argest Lyapunov exponent. This algorithm establishes that the or-

its divergence rate fluctuates, with the fluctuation given by the

pectrum of effective Lyapunov exponents. This rate of divergence

scillates through time, as measured around the direction of insta-

ility. The determination of the largest Lyapunov exponent is re-

ated to the slope of the curve S ( τ ) that represents distances as a

unction of a relative time ( τ ) associated with local divergence. The

lope determination is calculated between the initial value and the

oint at which the curve S ( τ ) has a horizontal trend; a linear fit

sing least square method can be applied for this aim. Kantz algo-

ithm presents better results when applied to maps and therefore,

oincaré map time series is employed together with state space

econstruction. 

The basic idea of the state space reconstruction is that a system

bservation time series contains information about unobserved

tate variables. Hence, the observation of a single state variable

s enough to define the present state. Therefore, a scalar time se-

ies, s ( t ), may be used to build a vector time series that is equiv-

lent to the original dynamics from a topological point of view

34] . The state space reconstruction can be performed by differ-

nt techniques. Delayed coordinates is an interesting alternative to

apture the structure of orbits in state space using lagged variables,

 ( t + τ̄ ) , where τ̄ is the time delay. Hence, it is possible to use a

ollection of time delays to create a vector in a D e -dimensional

pace, 

 ( t ) = { s ( t ) , s ( t + τ̄ ) , ..., s ( t + [ D e − 1 ] ̄τ ) } (1) 

Delay parameters, time delay and embedding dimension, need

o be evaluated using proper procedures. Time delay is usually an-

lyzed using the method of average mutual information [13] . The

dea is to use the average mutual information to seek for delays

elated to minimum information between the two delayed vectors.

he smaller values makes the two vectors more independent and

herefore, more appropriate to represent state variables. Therefore,

he choice is usually related to the first global minimum of the

nformation-delay curve. False nearest neighbors can be employed

o evaluate embedding dimension [28] . The idea is to seek for false

eighbors by the increase of system dimension. The embedding di-

ension is found when false neighbors do not exist due to the di-

ension increase. 

In this work, Wolf et al. algorithm is employed together with

antz algorithm to evaluate Lyapunov exponents. It should be

ointed out that the Wolf et al. algorithm furnishes the whole

pectrum of exponents and needs the equations of motion. On the

ther hand, Kantz algorithm furnishes the maximum exponent, be-

ng calculated from time series obtained from equations of motion.

ince system dimension is known, embedding dimension is con-

idered to be the dimension of the equations of motion system.

isean package is employed to estimate time delay and Lyapunov

xponent due to Kantz [19] . Otherwise mentioned, default time de-

ay is employed. 

.2. 0–1 test 

The 0–1 test was originally proposed by Gottwald and Mel-

ourne [14,15] to distinguish chaotic and regular dynamics. In brief,

t is a statistical approach based on the asymptotic properties of

 Brownian motion chain. The 0–1 test can be directly applied

o time series and therefore does not require phase space recon-

truction since it is based on the analysis of the features of a sin-

le coordinate of the dynamical system. Hence, it is independent

n the nature of the underlying dynamical system evaluating the

ong-term system behavior that can be used as a diagnostic tool

or chaos [18] . 

The test can be performed by analyzing any observable quantity

 j ( j = 1, …, N ) related to the system evolution. Typically, the time
volution of one of the state components suffices but other quanti-

ies could be used as well. Poincaré map time series of some state

ariable is employed in this work. 

The basic idea of 0–1 test hinges on the definition of a dynam-

cal system extension characterized by two additional variables,

p = p( n, c ) and q = q ( n, c ) , which are driven by the system dynam-

cs [2] . Specifically, Gottwald and Melbourne [16] proposed the fol-

owing definition: 

p ( n ) = 

n ∑ 

j=1 

x j cos ( jc ) 

q ( n ) = 

n ∑ 

j=1 

x j sin ( jc ) 
(2) 

here n = 1, …, N and c ∈ [0, π ] is a constant. Different values of

 yields different p–q dynamics and for some values of c the latter

an show resonance-like phenomenon that has to be considered as

xceptional spurious outliers to be excluded from the analysis. In

rder to limit the occurrence of such resonances that can promote

istortion of the results, the constant c is limited to the interval

 π /5, 4 π /5] as suggested by Gottwald and Melbourne [16] . 

The variables p and q evolve in time as a consequence of the

volution of the observable x and therefore, they reflect informa-

ion about the system dynamical response. The theory underlying

he test ensures that if the system dynamics is regular, variables p

nd q exhibit a bounded evolution; on the other hand, if the un-

erlying dynamics is chaotic these variables exhibits asymptotically

nbounded growth with features reminiscent of Brownian motion

2,14,16] . Fig. 2 shows p–q space considering regular and irregu-

ar motions where it is clearly identified the different evolution of

oth situations. 

The identification of chaos by means of 0–1 test requires to find

 synthetic indicator of the unboundedness of the p–q dynamics.

he mean-square displacement (MSD) can be employed for this

im, 

 c = lim 

N→∞ 

1 

N 

N ∑ 

j=1 

[
( p c ( j + n ) − p c ( j ) ) 

2 + ( q c ( j + n ) − q c ( j ) ) 
2 
]

(3) 

here N is the signal total number of points and n is the size of

ime-lags over which the displacements are evaluated. In fact, the

racketed term in the sum represents the square of the displace-

ent in the p–q -plane from the time j to the time j + n so that M c 

xpresses the mean of all such squared displacements evaluated

or all possible time lags over the whole trajectory. 

The theory behind the 0–1 test assures that if the dynamics is

egular, M c is a bounded function of time. On the other hand, if

he dynamics is chaotic, M c scales linearly with time. 

Alternatively, the test can be based on a modified least square

isplacement, D c =D c ( n ), which exhibits the same asymptotic

rowth of M c but with better convergence properties [16] : 

 c = M c −
( 

lim 

N→∞ 

1 

N 

N ∑ 

j=1 

x j 

) 2 

1 − cos ( nc ) 

1 − cos (c) 
(4) 

After the calculation of M c or D c , the sought indicators are pro-

ided by any measure K of their asymptotic growth rate. To this

nd, two different methods can be employed: regression and cor-

elation methods. Therefore, 0–1 test can be implemented by using

our possible chaos indicators combining M c and D c with regres-

ion and correlation methods, named K -metrics that are summa-

ized in Table 1 . 

The regression method defines a straight line fitted to the log-

rithmic graph of the MSD against n , minimizing the square devi-

tions. This estimation employs the least square method to mini-
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Fig. 2. General plot of p–q dynamics. Regular (a) and irregular (b) responses. 

Table 1 

Different approaches for K estimation. 

K-metrics Name Employed method MSD metric 

K r M -Regression Regression M c ( n ) 

K c M -Correlation Correlation M c ( n ) 

K r 
∗ D -Regression Regression D c ( n ) 

K c 
∗ D -Correlation Correlation D c ( n ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Parameters of the single-dof polyno- 

mial model. 

ϖ ξ φ γ

1.0 0.1 1.3 ×103 4.7 ×105 
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o  
mize the residuals of the linear model. Therefore, the two possibil-

ities are: 

K r = lim 

n →∞ 

log [ M c ] 

log [ n ] 
(5)

K 

∗
r = lim 

n →∞ 

log [ D c ] 

log [ n ] 
(6)

The second approach considers a correlation method, defining

the chaos indicator K as the correlation between the MSD and lin-

ear growth defined as ratio between the covariance, cov( x,y ), and

the product of the standard deviations or variance, var( x ), 

K c = corr ( ζ , M ) = 

cov ( ζ , M ) √ 

var ( ζ ) var (M ) 
(7)

K 

∗
c = corr ( ζ , D ) = 

cov ( ζ , D ) √ 

var ( ζ ) var (D ) 
(8)

where ζ = 1, 2, . . ., n; M = ( M c (1), M c (2), . . ., M c ( n )) and D = ( D c (1),

D c (2), . . ., D c ( n )). Although correlation measurements belong to

[ −1, + 1], Gottwald and Melbourne [17] presented a proof that this

type of correlation is actually in [0, 1]. 

The indicators K provide information about the asymptotic be-

havior of the p–q dynamics that is driven by the system dynamics

through the definition, Eq. (2) . However, as anticipated before, the

relation between p–q dynamics and the system dynamics depends

on the parameter c that enters definition. Therefore, different val-

ues of c produce different values for K and eventual resonance-like

phenomenon associated with exceptional values of c can produce

spurious values of K . In order to neutralize this effect, Gottwald

and Melbourne [16] suggested to repeat the evaluation of K sev-

eral times with different values of c (experience then shows that

N c = 100 is sufficient to get reliable results) and take, as final indi-

cator for chaos, the median of all outcomes of K . 

Gottwald and Melbourne [16] have shown that the application

of the 0–1 test for continuous system needs to be associated to

a proper sampling, with sampling rate smaller than the Nyquist
ate. In this regard, these authors suggested the use of the mutual

nformation to determine a satisfactory sampling rate [37] . 

. SMA polynomial model 

The polynomial model proposed by Falk [11] is based on De-

onshire’s theory and considers a polynomial free energy density

s a function of strain, ε, and temperature, T , and does not con-

ider any other internal variable. The form of the free energy is

hosen in such a way that the minima and maxima points re-

pectively represent stability and instability of each macroscopic

hase of the SMA. The polynomial is proposed in order to rep-

esent three macroscopic phases: austenite ( A ) and two variants

f martensite ( M + , M −). Hence, the free energy is chosen such

hat for high temperatures it has only one minimum at vanishing

train, representing the equilibrium of the austenitic phase. At low

emperatures, martensite is stable, and the free energy must have

wo minima at non-vanishing strains. At intermediate tempera-

ures, the free energy must have equilibrium points correspond-

ng to both phases. Therefore, the stress-strain-temperature rela-

ion is a fifth-order polynomial that represents the general behav-

or of SMAs. Under these assumptions, force-displacement relation

s a nonlinear elastic curve that represents the thermomechanical

quilibrium. An equivalent linear viscous damper is employed to

epresent hysteretic dissipation aspects. Despite its simplicity, this

odel furnishes a good qualitative description of SMA dynamical

esponse. 

Based on that, assuming dimensionless variable y 0 , related to

isplacement, and y 1 , associated with velocity, the dimensionless

quations of motion is given by [31] , 

˙ 
 0 = y 1 

˙ 
 1 = δsin ( � t ) − ξy 1 − ( θ − 1 ) y 0 + φy 3 0 − γ y 5 0 

(9)

here dot represents time derivative, δ and ϖ are excitation pa-

ameters; ξ is related to dissipation; θ represents the temperature;

and γ are SMA constitutive parameters. Table 2 presents the pa-

ameters employed for all simulations [24] . 

Numerical simulations are performed by employing a fourth-

rder Runge-Kutta scheme with time steps smaller than
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Fig. 3. Polynomial model - periodic motion ( δ = 0.038 and θ = 0.7). (a) Phase space; (b) Poincaré section; (c) Lyapunov spectrum using the algorithm due to Wolf et al. [36] ; 

(d) Lyapunov exponent using the algorithm due to Kantz [20] ; (e) 0–1 test: K -metrics; (f) 0–1 test: p–q dynamics. 
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T  
t = 2 π /200. Two different simulations are performed consid-

ring θ = 0.7 and different forcing amplitudes: periodic ( δ= 0.038)

nd chaotic ( δ = 0.06). Fig. 3 shows results related to periodic

otion while Fig. 4 presents results of chaotic behavior. Basically,

hase space, Poincare map, Lyapunov exponents evaluated with

he algorithms due to Wolf et al. [36] and due to Kantz [20] , and

esults of the 0–1 test considering K metrics for different values of

 and the p–q space are shown in these pictures. 

Periodic behavior ( Fig. 3 ) has a closed curve on phase space and

 Poincaré section with three points. Lyapunov exponent estima-

ion using Wolf et al. algorithm shows that all values are negative.

y employing the Kantz algorithm, a null slope is obtained con-

idering a time delay 9.3 and embedding dimension 3. The 0–1
est shows that each metric has different behavior that is depen-

ent to the value of c ( Fig. 3 e). This shows the importance to eval-

ate different values of c to obtain a proper median value of K .

t is also noticeable the resonant-like phenomenon for some val-

es of c . Besides, K c and K 

∗
c , both calculated from the correlation

ethod, present less influence with smaller variation under this

esonant condition. The median value of K is close to zero charac-

erizing a regular dynamics. The analysis of p–q dynamics shows

losed curves with different am plitudes depending on the value

f c . 

Chaotic behavior ( Fig. 4 ) shows a typical open orbit on phase

pace and a Poincaré section with strange attractor characteristic.

he calculation of Lyapunov exponents using both the Wolf et al.
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Fig. 4. Polynomial model - chaotic motion ( δ = 0.06 and θ = 0.7). (a) Phase space; (b) Poincaré section; (c) Lyapunov spectrum using the algorithm due to Wolf et al. [36] ; 

(d) Lyapunov exponent using the algorithm due to Kantz [20] ; (e) 0–1 test: K -metrics; (f) 0–1 test: p–q dynamics. 
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∈  
and the Kantz algorithms presents positive values. The estimation

of the Lyapunov exponent using Kantz algorithm needs to define

the region related to horizontal trend. Fig. 4 d shows a dashed line

that represents this region. The estimation of the exponent is done

by establishing the slope of the initial region considering a linear

fit by least square method. In addition, the following parameters

are adopted: time delay 9.3, embedding dimension 3 and length

scale to search neighbors varies from 10 −2 to 10 −3 . The 0–1 test

presents a distribution without resonant-like region and, in gen-

eral, all metrics are similar for different values of c , except for K r 

that shows a larger dispersion around the median value. The me-

dian value of K is close to 1 characterizing chaos. The p–q dynamics

has an irregular unbounded behavior as observed in Fig. 4 f. Table 3

l  
ummarizes the main results related to periodic and chaotic re-

ponses. 

. SMA model with internal constraints 

The constitutive model with internal constraints was proposed

y Paiva et al. [27] being able to capture the general thermo-

echanical behavior of SMAs, matching experimental data. This

odel considers different material properties and four macroscopic

hases for the description of the SMA behavior. Besides strain, ε,

nd temperature, T , the model considers four more state variables

ssociated with the volume fraction of each macroscopic phase, β i 

 [0,1]: β1 , associated with tensile detwinned martensite; β2 , re-

ated to compressive detwinned martensite; β , represents austen-
3 
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Table 3 

Comparative analysis of diagnostic tools for 1-dof polynomial model. 

Behavior Lyapunov spectrum Wolf et al. [36] Lyapunov exponent Kantz [20] 0–1 Test median values 

K r K c K r 
∗ K c 

∗

Periodic (0, −0.07, −0.07) 0.00 –0.0085 –0.0027 –0.0085 –0.0023 

Chaotic ( + 0.28, 0, −0.42) 0.26 0.9827 0.9981 0.9873 0.9981 
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Table 4 

Parameters of the internal constraints model. 

Parameter Value Parameter Value 

μE A 1.2857 L 0 3 . 57 × 10 −6 

μ�A 
4.3529 L 988 × 10 −6 

μω 0 96 . 61 × 10 −9 L A 0 15 × 10 −6 

ᾱ 3 . 57 × 10 −3 L A 4 . 4 × 10 −3 

αh 0.0519 �̄A 5 . 13 × 10 −3 

ηL = ηL 
3 1.0 × 10 7 �̄M 1 . 18 × 10 −3 

ηU = ηU 
3 2.7 × 10 7 
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te; and β4 corresponds to twinned martensite. Since there are re-

trictions related to phase coexistence, it is possible to use only

hree volume fractions: β4 = 1– β1 –β2 –β3 . Savi et al. [30] de-

cribes an SMA oscillator where the restitution force is described

y this model. The dimensionless equations of motion has the fol-

owing form: 

˙ 
 0 = y 1 (10) 

˙ 
 1 = δsin ( � t ) − ξy 1 − μE y 0 − ( ̄α + μE αh ) ( β2 − β1 ) 

+ μ��̄M 

( θ − θ0 ) (11) 

˙ 
1 = 

1 

μω 0 η

{
ᾱy 0 + �̄ + 

(
2 ̄ααh + μE α

2 
h 

)
( β2 − β1 ) 

+ αh 

[
μE y 0 − μ��̄M 

( θ − θ0 ) 
]

− κπ1 

}
+ κx 1 (12) 

˙ 
2 = 

1 

μω 0 η
{−ᾱy 0 + �̄ + ( 2 ̄ααh + μE α

2 
h )( β2 − β1 ) 

−αh [ μE y 0 − μ��̄M 

( θ − θ0 ) ] − κπ2 } + κx 2 (13) 

˙ 
3 = 

1 

μω 0 η3 

{ 

−1 

2 

( μE A − 1 ) [ y 0 + αh ( β2 − β1 ) ] 
2 + �̄3 

+( ̄�A − �̄M 

)( θ − θ0 )[ y 0 + αh ( β2 − β1 ) ] − κπ3 

} 

+ κx 3 (14) 

here δ and ϖ are excitation parameters; ξ is related to dissipa-

ion; θ represents the temperature; ᾱ, αh , �̄A , �̄M 

, μE , μE A 
, μ�,

ω , η, η3 , �̄, �̄3 are SMA parameters. It is important to observe

hat: 

μE = 

E 

E M 

= 1 + β3 

(
μE A − 1 

)
; μE A = 

E A 
E M 

μ� = 

�

�M 

= 1 + β3 

(
μ�A 

− 1 

)
; μ�A 

= 

�A 

�M 

(15) 

ω 0 = 

ω 0 

E M 

; ω 0 = 

√ 

E M 

A 

ml 

And that these parameters are related to constitutive parame-

ers presented in Paiva et al. [27] as follows: 

ᾱ = 

α

E M 

¯
M 

= 

�M 

T M 

E M 

; �̄A = 

�A T M 

E M 

(16) 

�̄ = 

�( T ) 

E M 

; �̄3 = 

�3 ( T ) 

E M 

Concerning the phase transformation stress definitions, temper-

ture dependent relations are adopted: 

¯ = 

{
−L 0 + L ( θ − 1 ) , i f θ > 1 

−L 0 , i f θ ≤ 1 

(17) 

¯
3 = 

{
−L A 0 + L A ( θ − 1 ) , i f θ > 1 

−L A 0 , i f θ ≤ 1 

(18) 
In addition, it is important to observe internal constraints

hat establish proper phase transformation descriptions. In gen-

ral, this is controlled by indicator functions related to convex sets.

he terms κπ = ( κπ1 , κπ2 , κπ3 ) and κχ = ( κχ1 , κχ2 , κχ3 ) represent

rojections to the respective convex set. They can be understood as

ub-differentials of the indicator function or Lagrange multipliers.

or more details, please refer to Paiva et al. [27] and Savi et al.

30] . 

Numerical simulations are carried out considering the operator

plit technique allowing one to treat the coupled system as decou-

led problems where classical procedures can be used for numeri-

al integration. An iterative procedure combines the fourth order

unge-Kutta method, related to dynamical space (displacement-

elocity), with the projection algorithm [27] , associated with the

onstitutive equations. For βn ( n = 1 , 2 , 3 ) calculation, the evolution

quations are solved using an iterative implicit Euler method. Time

teps smaller than 2 π /20 0 0 ϖ are adopted. Typical dynamical pa-

ameters are considered: ξ = 5 × 10 −6 and � = 1 . Besides, forc-

ng amplitude, δ is varied in order to define the system behavior.

n all simulations, it is assumed the value θ = θ0 = 0 . 99 . Table 4

resents other physical properties related to SMA. It is important

o observe that dissipation parameters, η and η3 , are adopted with

ifferent values for loading ( ηL and ηL 
3 
) and unloading ( ηU and ηU 

3 
). 

Two kinds of behaviors are of concern considering different

orcing amplitudes: periodic ( δ = 3 × 10 −3 ) and chaotic ( δ = 6 ×
0 −3 ). Fig. 5 shows the periodic behavior while Fig. 6 shows

haotic behavior. 

Fig. 5 presents phase space with a closed curve and a Poincaré

ection associated with a single point, characterizing a period-1

esponse. Kantz algorithm has a null slope using a time delay

 × 10 −3 and embedding dimension 3. Once again, it is noticeable

he influence of c value on the K estimation, which the median

alue is close to zero. Besides, the p–q dynamics are related to

losed curves associated with different amplitudes. Two values of

 are presented: c = 2.308 (appropriate value); c = 1.582 (resonant-

ike region). Note that, in essence, both behaviors are similar since

hey are associated with closed curves. 

Fig. 6 shows the same set of curves for the chaotic behavior.

hase space and Poincaré section present typical chaotic character-

stics. Results related to Lyapunov exponents and 0–1 test are also

ssuring the chaotic response. Kantz algorithm presents a curve

ith a slope associated with λ= 0.24. This result is obtained using

 time delay 8 × 10 −3 and an embedding dimension 3. The 0–1 test

resents a value close to 1 being associated with an irregular p–q
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Fig. 5. Model with internal constraints - periodic motion. (a) Phase space; (b) Poincaré section; (c) Lyapunov exponent using the algorithm due to Kantz [20] ; (d) 0–1 test: 

K -metrics; (e) 0–1 test: p–q dynamics ( c = 2.308); (f) 0–1 test: p–q dynamics ( c = 1.582). 

Table 5 

Comparative analysis of diagnostic tools for the model with internal constraints. 

Behavior Lyapunov exponent Kantz 0–1 test median values 

K r K c K r 
∗ K c 

∗

Periodic 0.00 –0.0511 –0.0059 0.0 0 02 –0.0128 

Chaotic 0.19 0.8127 0.9947 0.9491 0.9981 

 

 

 

 

5

 

f  

f  
dynamics. The analysis of different values of parameter c shows

that K- metrics does not show the resonant-like phenomenon but

shows a dispersion of the regression metrics, K r 
∗ and K r , around

the median value. Results of both periodic and chaotic motions are

summarized in Table 5 . 
. SMA Bernardini–Pence’s model 

The Bernardini–Pence’s thermomechanical constitutive model

or SMAs has been adapted in Bernardini and Rega [4] as a model

or the restoring force of SMA devices suitable for the use in the
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Fig. 6. Model with internal constraints - chaotic motion. (a) Phase space; (b) Poincaré section; (c) Lyapunov exponent using the algorithm due to Kantz [20] ; (d) 0–1 test: 

K -metrics; (e) 0–1 test: p–q dynamics. 
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nalysis of nonlinear dynamics of Shape Memory Oscillators (SMO)

3] . 

The model, as presented in this work, is expressed in terms of

imensionless variables and model parameters. Specifically, quan-

ities with the dimensions of temperature are normalized with re-

pect to a reference value θ ref , greater than the transformation

emperature A f , whereas those with the dimensions of length and

orce are normalized, respectively, to the displacement u Ms and

orce f Ms at the beginning of the forward A → M transformation at

he temperature θ ref . θ e is the environment dimensionless temper-
ture. 

y

The state of the SMO is described by dimensionless variables:

isplacement, y 0 , velocity, y 1 , temperature, θ , and martensitic vol-

me fraction, β ∈ [0,1]. Moreover, in order to model the complex

ysteretic behavior of SMA that produces internal subloops, the

tate of the device depends also the value β0 of the martensitic

raction β attained at the beginning of the last phase transforma-

ion occurred before time t . As discussed in Bernardini and Rega

4] , the generally non-isothermal, time evolution of the SMO is de-

cribed by the following system of differential equations: 

˙  0 = y 1 (19) 

˙  1 = δ sin ( � t ) − y 0 − ξy 1 − λsign ( y 0 ) β (20) 
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Table 6 

Parameters of the Bernardini–

Pence’s model. 

q 1 q 2 q 3 λ

0.98 1.2 0.98 8.125 

L H J b 

0.001 0.08 3.1742 0.03 

Table 7 

Comparative analysis of diagnostic tools for Bernardini–Pence’s model. 

Behavior Lyapunov exponent Kantz 0–1 test median values 

K r K c K r 
∗ K c 

∗

Periodic 0.00 –0.0064 0.0 0 0 0 0.0055 0.0092 

Chaotic 0.53 0.8668 0.9967 0. 9893 0.9981 
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˙ β = Z [ sign ( y 0 ) y 1 − JQ ] (21)

˙ θ = ZL 

(
�

Jλ
+ θ

)
[ sign ( y 0 ) y 1 − JQ ] + Q (22)

where sign( x ) = x /| x | and Q = h (θ − θe ) is the rate of heat ex-

changed with environment by convection, depending on the co-

efficient of heat transfer h. 

The constitutive functions � and Z take different expressions

depending on the fulfillment of suitable transformation criteria

that detect the occurrence of the two-phase transformations [4] .

Subscripts F and R indicate, respectively, the expressions relative

to the Forward (A → M), upper plateaus, and Reverse (M → A), lower

plateaus, transformations: 

�F ( β, β0 ) = λ
( J − 1 ) ( q 2 − 1 ) 

2 

+ λ( J − 1 ) ( 1 − q 1 ) �F ( β, β0 ) 

�R ( β, β0 ) = −λ
( J − 1 ) ( q 2 − 1 ) 

2 

−λ( J − 1 ) q 2 ( 1 − q 3 ) �R ( β, β0 ) (23)

Z F,R ( θ, β, β0 ) = 

1 

λ + JLϑ + 

L 
λ
�F,R + 

1 
λ

∂ �F,R 

∂β

where �F,R are constitutive functions that determine the shape of

the upper/lower pseudoelastic plateaus and q 1 , q 2 , q 3 and the other

quantities are model parameters. Whereas various choices at differ-

ent levels of refinement are possible the following one is adopted,

�F ( β, β0 ) = 

1 

2 

(
1 + 

1 

b 
ln 

1 − β + e b ( β − β0 ) 

β − β0 + e b ( 1 − β) 

)
(24)

�R ( β, β0 ) = 

1 

2 

(
−1 + 

1 

b 
ln 

β − β0 + e b β

−β + e b ( β − β0 ) 

)
(25)

Here b is a parameter that determines the smoothness of

the transition between the elastic branch and the transformation

plateaus. 

The second law of thermodynamics expresses the non-

negativity of the rate of energy dissipation �. In this framework,

� = � ˙ β . Since �= �F when 

˙ β > 0 and �= �R when 

˙ β < 0 the sec-

ond law requires: �F ≥ 0, �R ≤ 0. Such constraints impose limita-

tions on the range of variations of model parameters. For example,

evaluating �F at the beginning of the upper plateau the following

constraint among λ, J, q 2 is obtained: 

�F ( 0 , 0 ) = λ
( J − 1 ) ( q 2 − 1 ) 

2 

≥ 0 (26)

Taking into account Eqs. (20) and (21) , the system response de-

pends on seven model parameters ( q 1 , q 2 , q 3 , λ, L, h, J ), besides the

above mentioned b . 

The first four parameters determine the shape of the outer

pseudoelastic loop. In particular: q 1 and q 3 respectively influence

the slopes of the isothermal upper and lower plateaus. Physically

meaningful ranges of values may be identified with q 1 ∈ [0.7, 1.0]

and q 3 ∈ [1.0, 1.5]. On the other hand, q 2 determines the position of

the isothermal lower plateau with respect to the upper one hence

determines the size of the hysteresis loop. Finally, λ directly influ-

ences the length of both plateaus. The remaining three parameters

characterize the thermomechanical properties. 

In particular, the thermal parameters ( L, h ) determine how

much heat is produced or absorbed during mechanical loading ( L )

and the rate at which the involved heat can flow out from the

system to the environment by convection ( h ). Physically meaning-

ful ranges of values may be identified with L ∈ [0.0, 0.5] and h ∈
[0.0, 0.2]. The limit case L = 0 corresponds to SMAs whose transfor-

mations produce negligible amounts of heat, while the limit case
 = 0 models an adiabatic environment in which all the heat pro-

uced remains in the system. The thermo-mechanical parameter J

etermines the slope of the linear dependence of the transforma-

ion forces on the temperature. A physically meaningful range of

alues may be identified with J ∈ (1.0, 4.0] . 

Numerical integration of the equations of motion is performed

ith fourth order Runge-Kutta algorithm with 40 0 0 steps per pe-

iod. The output is then sampled to get time series of 20 0,0 0 0

oints. Model parameters are fixed to the following values in

able 6 . This choice of parameters corresponds to a device with

 hysteresis loop of medium-high size and low hardening. The la-

ent heat of transformation is low so that thermal phenomenon is

mall and the resulting conditions are close to the isothermal ones

3,4] . 

Two distinct behaviors are treated in order to evaluate the 0–

 test: periodic ( δ = 1 ; � = 0 . 4) and chaotic ( δ = 1 ; � = 0 . 227) .

igs. 7 and 8 present the analysis showing phase space, Poincaré

ection, Lyapunov exponent, 0–1 test results in form of K -metrics

nd p–q dynamics. 

Fig. 7 presents periodic response showing a closed curve on

hase space and a Poincaré section related to a small region, es-

entially related to a single point. Lyapunov exponent is estimated

rom the Kantz algorithm using a time delay 1.2 × 10 −2 and an em-

edding dimension 5, presenting a null slope assuring the con-

lusion about periodicity. The 0–1 test presents a K -metrics dis-

ributed over the region close to zero for all values of c parame-

er. The p–q dynamics has a closed curve, characteristic of periodic

otion. 

Fig. 8 presents chaotic response. Typical phase space and

oincaré sections are identified. Lyapunov exponent is estimated

rom the Kantz algorithm using a time delay 1.2 × 10 −2 and an em-

edding dimension 5, being related to a positive slope confirming

he conclusion. The 0–1 test presents a K -metrics with sparse dis-

ribution of all K -metrics, except for K c 
∗ that is distributed close to

. The median values, however, are all close to 1. The p–q dynamics

s irregular and unbounded. Table 7 summarizes all results related

o both periodic and chaotic motions. 

. SMA polynomial model – two-degree of freedom system 

A two-degree of freedom oscillator (2-dof) presented in Fig. 1 b

s now analyzed in order to treat a dynamical system with higher

imension. Shape memory behavior is described by considering

 polynomial constitutive model. Dimensionless displacements ( y 0 
nd y 2 ) and velocities ( y 1 and y 3 ) are employed to obtain equa-

ions of motion [24,31] : 

˙ y 0 = y 1 

˙ 
 1 = δ1 sin ( � 1 τ ) − ( ξ1 + ξ2 ϑ 21 μ) y 1 + ξ2 ϑ 21 μy 3 
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Fig. 7. Bernardini–Pence’s model - periodic motion. (a) Phase space projections; (b) Poincaré section projections; (c) Lyapunov exponent using the algorithm due to Kantz 

[20] ; (d) 0–1 test: K -metrics; (e) 0–1 test: p–q dynamics. 
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δ  

δ  

θ1 2 3 1 2 1 3  
−[( θ1 − 1 ) + ϑ 

2 
21 μ( θ2 − 1 )] y 0 + ϑ 

2 
21 μ( θ2 − 1 ) y 2 

+ φ1 y 
3 
0 − γ1 y 

5 
0 − φ2 ϑ 

2 
21 μ( y 2 − y 0 ) 

3 + γ2 ϑ 

2 
21 μ( y 2 − y 0 ) 

5 

˙ 
 2 = y 3 

˙ 
 3 = α2 

21 δ2 sin ( � 2 τ ) + ξ2 ϑ 21 y 1 − ( ξ2 α21 + ξ3 ϑ 21 α32 ) y 3 

+ ϑ 

2 
21 ( θ2 − 1 ) y o −

[
ϑ 

2 
21 ( θ2 − 1 ) + ϑ 

2 
21 ϑ 

2 
32 ( θ3 − 1 ) 

]
y 2 

+ φ2 ϑ 

2 
21 ( y 2 − y 0 ) 

3 − γ2 ϑ 

2 
21 ( y 2 − y 0 ) 

5 + φ3 ϑ 

2 
21 ϑ 

2 
32 y 

3 
2 

−γ3 ϑ 

2 
21 ϑ 

2 
32 y 

5 
2 (27) 

here δ1 , δ2 , ϖ1 and ϖ1 are excitation parameters; ξ 1 , ξ 2 and ξ 3 

re the viscous dissipation parameters; μ is related to mass rela-
ion; ϑ21 , ϑ32 , φ1 , φ2 , φ3 , γ 1 , γ 2 and γ 3 are parameters related to

MA properties. 

Numerical simulations are performed by employing a fourth-

rder Runge-Kutta scheme with time steps smaller than t =
 π/ 200 . Table 8 presents the system parameters employed in all

imulations [24] . Besides, forcing amplitudes, δi , and temperature,

i , are varied in order to define the system behavior. 

Four distinct kinds of behaviors are of concern varying

orcing amplitudes and SMA temperatures: periodic ( δ1 = 0.06,

2 = 0; θ1 = θ3 = 0.7, θ2 = 3.5); quasi-periodic ( δ1 = 0.06,

2 = 0; θ1 = θ3 = 1.5, θ2 = 3.5); chaotic ( δ1 = 0.06, δ2 = 0;

= θ = θ = 0.7); hyperchaotic ( δ = 0.06, δ = 0; θ = θ = 0.7,
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Fig. 8. Bernardini–Pence’s model - chaotic motion. (a) Phase space projections; (b) Poincaré section projections; (c) Lyapunov exponent using the algorithm due to Kantz 

[20] ; (d) 0–1 test: K -metrics; (e) 0–1 test: p–q dynamics. 

Table 8 

Parameters of the 2-dof polynomial model. 

Parameter Value Parameter Value 

� 1 = � 2 1.0 γ1 = γ2 = γ3 4.7 ×105 

ξ1 = ξ2 = ξ3 0.2 ϑ 21 = ϑ 32 1.0 

φ1 = φ2 = φ3 1.3 ×103 μ 1.0 
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c  

t  

h  

d  
θ2 = 1.5). Figs. 9 to 12 present results related to the 2-dof SMA

system. Results are presented as subspaces of the original state

space, related to each one of the masses. 
Fig. 9 shows the periodic behavior associated with a closed

urve and a single point on Poincaré section. Lyapunov spectrum

oes not present positive values. Kantz algorithm has a null slope

sing a time delay 0.3 and embedding dimension 5. The 0–1 test

resents values close to zero. Concerning p–q dynamics, a closed

urve is obtained. 

Fig. 10 shows the quasi-periodic behavior characterized by a

losed curve on Poincaré section. The Lyapunov spectrum presents

wo null values and no other positive exponent. Kantz algorithm

as slope close to zero using a time delay 0.279 and embedding

imension 5. The 0–1 test has a typical behavior presenting two
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Fig. 9. Polynomial model with 2dof - periodic motion ( δ1 = 0.06, δ2 = 0; θ1 = θ3 = 0.7, θ2 = 3.5). (a) Phase space projections; (b) Poincaré section projections; (c) Lyapunov 

spectrum using the algorithm due to Wolf et al. [36] ; (d) Lyapunov exponent using the algorithm due to Kantz [20] ; (e) 0–1 test: K -metrics; (f) 0–1 test: p–q dynamics. 
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Fig. 10. Polynomial model with 2dof - quasi-periodic motion ( δ1 = 0.06, δ2 = 0; θ1 = θ3 = 1.5, θ2 = 3.5). (a,b) Phase space projections; (c,d) Poincaré section projections; (e) 

Lyapunov spectrum using the algorithm due to Wolf et al. [36] ; (f) Lyapunov exponent using the algorithm due to Kantz [20] ; (g) 0–1 test: K -metrics; (h) 0–1 test: p–q 

dynamics. 
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Fig. 11. Polynomial model with 2dof - chaotic motion ( δ1 = 0.06, δ2 = 0; θ1 = θ2 = θ3 = 0.7). (a,b) Phase space projections; (c,d) Poincaré section projections; (e) Lyapunov 

spectrum using the algorithm due to Wolf et al. [36] ; (f) Lyapunov exponent using the algorithm due to Kantz [20] ; (g) 0–1 test: K -metrics; (h) 0–1 test: p–q dynamics . 
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Fig. 12. Polynomial model with 2dof - hyperchaotic motion. δ1 = 0.06, δ2 = 0; θ1 = θ3 = 0.7, θ2 = 1. (a,b) Phase space projections; (c,d) Poincaré section projections; (e) Lya- 

punov spectrum using the algorithm due to Wolf et al. [36] ; (f) Lyapunov exponent using the algorithm due to (1994); (g) 0–1 test: K -metrics; (h) 0–1 test: p–q dynamics . 
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Table 9 

Comparative analysis of diagnostic tools for 2-dof system with polynomial model. 

Behavior Lyapunov spectrum Wolf et al. Lyapunov exponent Kantz 0–1 Test median values 

K r K c K r 
∗ K c 

∗

Periodic (0, −0.25, −0.27, −0.29, −0.32) 0.00 0.0011 −0.0061 0.0018 −0.0 0 03 

Quasi-Periodic (0, 0, −0.15, −0.40, −0.59) 0.00 −0.0079 −0.0014 −0.0014 −0.0027 

Chaotic ( + 0.19, 0, −0.02, −0.46, −0.86) 0.22 0.8906 0.9978 0.9729 0.9983 

Hyperchaotic ( + 0.36, + 0.04, 0, −0.55, −1.01) 0.31 0.9536 0.9982 0.9842 0.9982 
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[  
esonant points varying c parameter, but pointing for a value close

o zero. The p–q dynamics is related to a closed curve. It should

e pointed out that the difference between periodic and quasi-

eriodic motions can be defined only by the Lyapunov spectrum. 

Fig. 11 shows the chaotic behavior characterized by a strange

ttractor on Poincaré section. Lyapunov spectrum has one posi-

ive value confirming the chaotic behavior. Kantz algorithm clearly

resents a positive slope using a time delay 0.093 and embedding

imension 5. The 0–1 test gives a value close to 1, presenting a

istribution over this value without a clear resonant behavior for

 parameter. The p–q dynamics has an irregular distribution that

oints out a divergence towards an unbounded evolution, which is

n indication of the occurrence of chaotic behavior. 

Fig. 12 shows the hyperchaotic behavior. Lyapunov spectrum

resents more than one positive value, representing two unstable

irections. Kantz algorithm identify just the maximum value and

resents a positive slope using a time delay 0.062 and embedding

imension 5. The 0–1 test presents response similar to chaos, with

 value close to 1. The p–q dynamics has also the same charac-

eristic of the chaotic behavior. It should be highlighted that the

istinction between chaos and hyperchaos can only be done with

he Lyapunov spectrum. 

Table 9 summarizes results for the four kinds of behaviors. It

hows Lyapunov exponents evaluated with the algorithms due to

olf et al. [36] and due to Kantz [20] , and also results of the dif-

erent K -metrics of the 0–1 test. 

. Conclusions 

This paper deals with the application of the 0–1 test to diag-

ose chaos in shape memory alloy systems. Time series are gen-

rated from equations of motion of single and two-degree of free-

om oscillators where the restitution force is described by three

ifferent constitutive models. Basically, Poincaré map time series

s employed. Lyapunov exponents are estimated by considering

he algorithms due to Wolf et al. [36] and Kantz [20] . The 0–1

est is applied to all systems and compared with the Lyapunov

xponents. Four different metrics of the test are employed: M -

egression, M -Correlation, D -Regression and D -Correlation. Four

istinct kinds of behavior are discussed: periodic, quasi-periodic,

haotic and hyperchaotic. Results show that the 0–1 test is capable

o distinguish regular and irregular signals being compatible with

ther tools. In brief, p–q dynamics exhibits bounded behavior rep-

esented by closed curves associated with regular solutions (peri-

dic and quasi-periodic); and irregular unbounded behavior related

o irregular dynamics (chaos or hyperchaos). Only the estimation

f Lyapunov spectrum is capable to distinguish periodic and quasi-

eriodic behaviors or chaos and hyperchaos. In this sense, the 0–1

est is similar to the maximum Lyapunov exponents. Nevertheless,

t is easier to be applied and it is necessary neither to define algo-

ithm parameters nor to perform state space reconstruction. Con-

erning the different K -Metrics that can be implemented in the 0–

 test, the various possibilities give equivalent results in terms of

he final indicator of chaoticity. As a matter of fact, even if differ-

nt dependences on the parameter c may arise with the different

etrics, the final indicators given by the median values over all
alues of parameter c , agree to give the same diagnostic result ir-

espective of the chosen metric. Notwithstanding, the correlation

etrics are less c -dependent. On the basis of the numerical simu-

ations carried out with different constitutive models, different dy-

amical systems as well as different types of trajectories, the au-

hors believe that 0–1 test is an interesting, reliable and computa-

ionally efficient tool to diagnose chaotic behavior in SMA systems

here the calculation of Lyapunov exponents are difficult to be

mployed. 
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