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Abstract Rotating system dynamics are usually

related to the contact between rotor and stator, which

induces undesirable behaviors that may both compro-

mise endurance and prevent the system from working

properly. In this regard, aiming a better understanding

of this kind of occurrence, this work deals with the

nonlinear dynamics of a Jeffcott-based rotor–stator

system modeled as a four-degree of freedom sketch

enabling nonsmooth impact between them. The con-

tact between rotor and stator involves both normal

impact and tangential rubbing. Based on the contact

between rotor and stator, three kinds of motion are

classified: no contact, intermittent contact and full

contact. Numerical simulations are carried out map-

ping dynamical patterns and defining different kinds

of motion. A parametric analysis is developed and

results comprise parameter spaces varying three main

physical quantities: rotating speed, contact stiffness

and friction coefficient.

Keywords Jeffcott rotor � Rotordynamics �
Nonsmooth system � Rubbing � Nonlinear dynamics �
Chaos

1 Introduction

Rotating machines have been used in large scale since

the first industrial revolution. Accordingly, for more

than a 100 years, dynamical models have been

developed and refined in order to describe such system

behavior. Rotating systems may have complex assem-

bling characteristics, involving multiple components;

however, unfailingly, three of them are essential: the

rotor that accounts for the system rotational inertia; the

shaft that supports the rotor; and the supporting

bearings. The dynamical analysis of this kind of

system is not an easy task, not only due to intrinsic

effects such as asymmetry, unbalance, clearances,

among others, but also for components interaction,

especially impact and friction.
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The first attempts toward rotordynamics modeling

took place in the late nineteenth century with Rankine

in 1869, followed by some other contributions by De

Laval, Dunkerley and Föppl. In the beginning of the

twentieth century, Jeffcott proposed a simple planar

model, consisting of a symmetric rotor mounted on a

uniform shaft with equal distance from identical

bearings, with two decoupled degrees of freedom

(DOF). Despite its simplicity, the Jeffcott model

became very useful and is still employed in rotordy-

namics analyses. Since then, other complex effects

have been incorporated into these precursor models by

several authors, as reported in different classical books

[24, 28], 21, 37. In fact, new relevant scientific

contributions are identified in the literature after

computer evolution since the last quarter of the

twentieth century. Ahmad [1] elaborated a review

work concerning rotor–stator contact features. Besides

providing plentiful references on the subject, the

author discussed the following topics: frequency

rotation influence, friction effect, whirl occurrence,

different support stiffness, pre-loading importance,

torsional behavior, thermal problems, among others.

Concerning studies involving contact between rotor

and stator, there are numerous relevant works in the

literature. Choy and Padovan [12] developed one of

the pioneer works investigating rubbing effect over a

Jeffcott rotor system nonlinear dynamics. By means of

parametric analyses varying unbalance, stiffness,

damping and friction coefficient, they investigated

rotor orbits during successive rubs. Muszynska and

Goldman [29] conducted a numerical–experimental

study concerning the same previous mechanical

system. Both results were in agreement attesting that

higher damping values inhibit chaotic behaviors.

Popprath and Ecker [31] incorporated the stator inertia

into the original Jeffcott rotor–stator model and

formulated a model considering contact stiffness,

damping and friction. They carried out numerical

simulations investigating the system dynamical

response, through Poincare maps and bifurcation

diagrams, while varying parameters such as rotating

speed, stator inertia and stator supports damping. They

suggested that lower stator supports damping values

increase the system dynamical behavior complexity.

Chavez and Wiercigroch [10] conducted an ana-

lytical–numerical study focused on grazing phenom-

ena in a nonsmooth Jeffcott rotor system. The authors

adopted the path-following method, instead of time

integration over large intervals. Along results, they

distinguished contact from non-contact situations,

while varying the rotation frequency. Besides that,

they also identified stable and unstable regions in the

frequency domain, attesting their periodicity or even

chaotic behavior. Brandão et al. [7] investigated the

nonlinear dynamics of a nonsmooth Jeffcott rotor–

stator system subjected to impact and rubbing. The

authors explored different dynamical patterns through

bifurcation diagrams varying the rotation speed.

Mokhtar et al. [26] discarded the rubbing effect in

the formulation of a Jeffcott rotor–stator system and

compared their achievement with previous results

from the literature, which considered pure rubbing.

Their numerical results comprised frequency spectra

and closed orbits of the rotor geometrical center,

demonstrating that pure sticking and pure rubbing

provide similar results, despite of some quantitative

discrepancy.

Behzad and Alvandi [5] numerically explored the

rubbing effect of a Jeffcott rotor against a segmented

stator due to unbalance, in order to mitigate clear-

ances. The authors treated exclusively forward rub-

bing behaviors, while passing through critical rotation

speed. Two main parameters were varied: the number

of stator segments and their respective stiffness.

Results are able to capture some typical phenomena,

such as resonance speed, jump phenomena and chaotic

motion. Moreira and Paiva [27] exploited the numer-

ical response of friction influence over the nonlinear

dynamics of a Jeffcott rotor–stator that may undergo

contact. Their results included a space parameter

analysis involving rotating speed and contact stiffness

to classify the contact nature (intermittent/permanent)

and bifurcation diagrams varying friction coefficient.

As a conclusion, they pointed out critical range values

of these parameters that propitiate more complex

behaviors such chaos.

Chipato et al. [11] dealt with the friction influence

over rotor–stator nonlinear contact dynamics. They

incorporated a smoothed hyperbolic tangent friction

function into a 2-DOF model describing a rotor

supported by a cantilever shaft. Bifurcation diagrams

sweeping rotation frequency for different values of

friction coefficient and eccentricity are presented

together with trajectories of the rotor geometrical

center, frequency spectra and spectral intensity maps.

Results characterized two types of bouncing solutions,

depending on friction level: asynchronous periodic
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bouncing and synchronization of frequency compo-

nents. Yang et al. [43] numerically investigated the

influence of different coating stiffness on the dynam-

ical response of a Jeffcott rotor subjected to rub-

impact forces. They used the Hertz model for impact

together with an interpolation method to evaluate the

contact stiffness. Their results suggested that a softer

coating stiffness may present simpler (periodic)

dynamical responses, compared to a harder coating

(chaotic) one.

Some other authors explored the unbalance in rotor-

alone systems, without considering contact with other

parts. Yao et al. [44] performed a numerical–exper-

imental investigation of the unbalance parameters

influence over the rotor dynamical response. Their

approach was based on a modal expansion methodol-

ogy combined with an optimization procedure that

enabled to identify the axial location of the unbalance,

its magnitude and phase. The analyses consider

trajectories of the rotor geometrical center in the state

space and frequency spectra. Tuckmantel and Cavalca

[38] established a comparison between two

approaches for modeling forces and moments gener-

ated by disc coupling under angular misalignment.

The system consisted of two shafts—each of them

supported by two journal bearings with a single

rotor—connected by a disc coupling. Each approach

displayed orbits described by the neutral line in some

discrete points of both axes, in contrast with a

reference orbit for an aligned axes condition, for

several rotation speeds.

Another possibility of contact in rotating machines

is between shaft and bearings, which may be a journal

bearing, a ball or roller bearing or even a magnetic

bearing, with different geometries and different lubri-

cating/contact conditions. Several authors dedicated

their effort toward this branch of knowledge. Chavez

et al. [9] studied a Jeffcott rotor subjected to impact

against a snubber ring with anisotropic support. The

authors adopted a rigorous derivation for the contact

forces, aiming a more realistic behavior to better fit

experimental results. They compared numerical and

experimental results, using bifurcation diagrams and

some periodic orbits in displacement state subspaces,

achieving a very good agreement between them.

Varney and Green [39] explored the nonlinear

dynamics of an asymmetrically supported rotor–stator

undergoing contact. The authors considered different

stiffness values for each planar direction, besides a

coupling stiffness between both directions. They

scrutinized the influence of support asymmetry level

on the nonlinear rotor response, using orbits/trajecto-

ries paths of the rotor geometrical center, frequency

spectra and bifurcation diagrams. Afterward, Ali

Hajnayeb and Sedighi [3] identified some inconsis-

tency in the original formulation of Varney and Green

[39], rebuilding some of the original results and

attesting changes in the rotor dynamical responses.

Boyaci [6] investigated the dynamical stability of a

Jeffcot rotor supported by semi-floating ring bearings

with inner and outer oil film, by means of bifurcation

diagrams and parameters space involving the unbal-

ance load and the rotor speed. Different types of

bifurcation are presented, characterizing specific

behaviors as a function of rotation frequency such as

stable/unstable, synchronous/subsynchronous, critical

limit cycle, among others.

Saint Martin et al. [33] developed an analytical–

numerical study concerning model reduction for a

rotor alone without contact. They revisited three

reduction methods present in the literature, with some

refinement incorporated to one of them. The modified

method was applied to two rotors examples with

different inertial gyroscopic effects, originally mod-

eled with a large number of DOFs. Numerical results

provided good agreement between reduced and com-

plete model responses, considering frequency

response functions and Campbell diagrams. Chasa-

levris [8] studied the bifurcation features and the

stability threshold of a Jeffcott rotor supported by two

bearing types. Sophisticated bearings models included

the foundation properties of their pedestals. The author

focused on both classifying the type of bifurcation—

subcritical or supercritical—and identifying the sta-

bility of limit cycles. He concluded that subcritical

bifurcation can be more harmful in practical applica-

tions since the system may lose stability in rotating

speeds lower than the threshold speed of instability.

Wang [41] conducted a numerical analysis of the fit

looseness fault between outer ring and housing due to

lubrication film squeezing in a Jeffcott rotor. The

target was to verify the SFD (squeeze film damper)

capacity as a passive vibration reduction method. As a

conclusion, the author discussed details of the system

response near critical speed and their harmonics for

different contact situations (continuous versus discon-

tinuous). El-Sayed and Sayed [16] studied a flexible

Jeffcott rotor supported by two identical nonlinear
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bearings to investigate the system response. The

authors numerically investigated how the stiffness

and the applied load affect both the Hopf bifurcation

stability and the associated limit cycle.

Still regarding rotating system supports, a more

recent solution lies upon the use of smart materials

(such as shape memory alloy or magneto-rheological

fluid) to inhibit undesired behaviors. In this regard,

[19, 20] conducted a numerical–experimental work

embedding shape memory alloy (SMA) springs to

support usual ball bearings. Their idea was to tune up

the SMA stiffness through an active temperature

control to avoid resonance problems, while passing by

the critical speed. Experimental results attested the

feasibility of the original proposal. Silva et al. [35]

numerically investigated the nonlinear dynamics of a

Jeffcott rotor undergoing nonsmooth impact against a

stator supported by SMA restoring elements. Alves

et al. [4] performed a numerical–experimental dynam-

ical analysis of a rotor-bearing test rig suspended by

shape memory alloy wires. Their results show that

higher vibration amplitudes and higher SMA temper-

ature provides higher damping effect of the SMA

elements. Srinivas et al. [36] presented a state-of-the-

art review of active magnetic bearings applied to

rotordynamics systems. Rahman et al. [32] scrutinized

the synchronous versus asynchronous whirling

response of a Jeffcott rotor supported by a pseudoe-

lastic SMA shaft. Their results revealed that SMA

shaft caused resonance at a lower rotation speed

compared to that provided by the linear elastic shaft.

Another interesting analysis consists of including

the shaft torsion as a third DOF. Edwards et al. [14]

incorporated a new equation of motion for rotation

into the previous Jeffcott rotor formulation and

discussed resonant conditions by means of bifurcation

diagrams, varying the forcing frequency and the

torsional stiffness. Al-Bedoor [2] formulated a cou-

pled model considering torsional and lateral vibrations

for a rotor–stator system undergoing rubbing effect.

The coupled model provided more complex rotor

dynamical responses compared with the original

Jeffcott model with only lateral vibration. Vlajic

et al. [40] also considered both torsional and lateral

effects in a rotor–stator system, subjected to impact.

Firstly, the authors discussed forward and backward

whirling conditions, besides that, they explored

parameter spaces involving the rotor angular fre-

quency and the friction coefficient to characterize the

contact nature. Three situations are observed, classi-

fied into no contact, pure stick and stick–slip.

The torsional response of flexible shafts is of

special interest for drill-string applications, for

instance, during torsional stick–slip phenomenon due

to bit-rock interaction, especially in non-vertical

wells. Kapitaniak et al. [23] conducted a numerical–

experimental study concerning the rotordynamics of a

coupled drill-string model exposed to contact. They

experimentally evaluated a parameters space involv-

ing weight on bit and rotation speed to distinguish

chaotic responses from periodic ones. Besides that,

they characterized whether the whirling is forward or

backward. Finally, they numerically investigated the

initial conditions influence over the system dynamical

response, classifying into periodic forward, periodic

backward and chaotic forward whirl. Xie et al. [42]

conducted the modeling and numerical simulation of a

drill-string for a horizontal well, comprising two

rotating inertias. The model included: longitudinal,

lateral and torsional vibrations, intermittent contact of

the drill-pipe with the borehole wall and a special

modeling of the cutting process to couple the axial and

torsional motions. The analyses were based upon

orbits/trajectories in displacement state subspaces,

focused on varying the rotation speed and the dynamic

friction coefficient. Nguyen et al. [30] studied the

nonlinear dynamics of a drill-string applied to curved

wells. They used a specific reduction model technique,

considering the well curvature and its implications to

model the interaction between the drill-string and the

bottom hole through finite element method. Results

identified bit-bounce and stick–slip occurrences.

Regarding experimental analyses, researchers

explored different contact phenomena related to

whirling, torsional (stick–slip) or axial (bit-bounce)

motion. Lahriri and Santos [22] developed an analyt-

ical–numerical–experimental study involving the non-

linear dynamics of rotor system with bearing impact

against housing. Results compared numerical and

experimental results, by means of trajectories of the

rotor geometrical center, time evolution for different

quantities and waterfall FFT spectra. They concluded

that numerical results overestimated the contact forces

values, while compared to experimental results.

Fonseca et al. [17] developed a numerical–exper-

imental study of a rotor system considering a backup

bearing, consisting of radial pins responsible for

constraining excessive vibration amplitudes of the
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shaft. They analyzed numerical and experimental

responses for orbits/trajectories paths of the rotor

geometrical center, for different input torque condi-

tions, with and without impact against the constraining

pins. Ehehalt et al. [15] provided a review of previous

experimental studies aiming to compile and discuss

several rotor–stator contact behaviors, such as syn-

chronous motions, forward/backward whirl, sub/su-

perharmonic motions, chaos, considering different

assembling configurations. Once again, results were

focused on orbits/trajectories of the rotor geometrical

center and frequency spectra. Fonseca et al. [18]

presented a theoretical–experimental study, compar-

ing the rotor response while supported by two different

backup bearings: a pinned and a ball bearing. They

presented orbits/trajectories of the geometrical rotor

center for both cases and concluded that the pinned

bearing provided a more effective backup constraint.

Zhang et al. [45] conducted a numerical–experi-

mental study of the coupling effects between loose-

ness and a cubic nonlinear supporting stiffness for a

two-disc rotor. Numerical simulations involved bifur-

cation diagrams, time histories, frequency spectra,

phase portraits and Poincaré maps. At last, the authors

proposed an experimental test rig to verify the main

numerical conclusions about the dynamical response

for different rotation speed ranges.

The present work focuses on a multiparametric

numerical analysis of a Jeffcott rotor surrounded by a

stator, undergoing nonsmooth impact. The system

consists of a four-degree of freedom, corresponding to

planar displacements of each part—rotor and stator.

The stator inner surface is subjected to contact, being

coated with a wear layer, which may undergo an

elastic restitution (normal direction) and Coulomb

friction (tangential direction). Numerical simulations

are carried out and results consider steady-state

responses, discarding the transient regimes. Dynam-

ical pattern identification is based upon the evaluation

of the converged values of the Lyapunov exponents.

Besides that, a brute force algorithm is developed to

classify selected periodicities, by real time monitoring

of the state variable time evolution. Parametric

analysis is developed showing parameter spaces

varying three quantities: rotating speed, contact stiff-

ness and friction coefficient. Initially, the maps

classify the rotor–stator contact nature into no contact,

intermittent contact or full contact; then, new maps

classify the dynamical patterns into different

periodicities and chaotic/hyperchaotic motions. Non-

linear tools as bifurcation diagrams, Lyapunov expo-

nents, Poincaré sections and orbits/trajectories in state

subspaces provide a proper comprehension of the map

results.

2 Mathematical model

This section is devoted to the formulation of the

dynamical equations of motion for the rotor–stator

system. Rotordynamics is related to several complex

phenomena such as gyroscopic effects, shaft torsional

vibration or sub/superharmonics resonance. Multiple

degrees of freedom are needed to encompass all these

aspects, which usually employs finite element analy-

sis. Reduced-order models are interesting to describe

the essential aspects of the rotordynamics, including

critical behaviors promoted by the system unbalance

and the contact between rotor and stator. Complex

behaviors are expected due to nonsmooth nonlinear-

ities, including chaos.

In this regard, a four-degrees of freedom nons-

mooth Jeffcott rotor, being two associated with the

rotor and two related to the stator, is of concern to

represent the rotordynamical system. The rotor–stator

physical model is presented in Fig. 1, where the rotor

has mass mr and rotating speed X, which center of

mass (point G) has an eccentricity e from its geometric

Fig. 1 Rotor–stator physical model
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center (point O), due to unbalance. The stator with

mass ms encloses the rotor with a constant radial gap c,

measured in a rest position of rotor and stator,

considering their respective weight forces. Both rotor

and stator have linear supports with respective equiv-

alent stiffness and damping kr, cr and ks, cs. The inner

surface of the stator is coated with an elastic wear

layer, which may undergo impact and friction with the

rotor, with stiffness kC and friction coefficient l.

Concerning the contact hypotheses, the following

assumptions are adopted: The rotating motion of the

stator is neglected; the contact between the rotor and

the stator is assumed to be punctual, rather than a

surface contact and therefore, the wear layer under-

goes only normal radial strain.

Figure 2 presents a disturbed condition for the

rotor–stator system, aiming the model kinematical

analysis. Note that points Or and Os denote the

disturbed position of rotor and stator geometric

centers, respectively; vectors rr and rs represent the

absolute position of points Or and Os, with respect to

the original geometric center rest position (point O);

the vector rsr concerns the relative displacement

between rotor and stator; a is the angle between the

vector rsr and the inertial x axis, measured anti-

clockwise; xr and yr are the planar rotor displacement

components of rr in x and y directions, respectively;

analogously, xs and ys the planar stator displacement

components of rs and xsr and ysr are the relative

displacement components of rs r. Some useful geo-

metrical relations are given in Eq. (1).

rsrj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xr � xsð Þ 2þ yr � ysð Þ 2
q

xs r ¼ xr � xs ¼ rs rj j cos a ) cos a ¼ xr � xs

rs rj j
ys r ¼ yr � ys ¼ rs rj j sin a ) sin a ¼ yr � ys

rs rj j
ð1Þ

The contact occurs when the modulus of the

relative displacement between rotor and stator rsrj j
exceeds the gap c. Hence, if rsrj j\c, the system

operates on no contact mode. If rsrj j � c, the contact

takes place. It is worthwhile to notice that, when there

is no contact, the system behaves like two independent

2-DOF linear systems, with the rotor subjected to a

forcing excitation.

Kinetic analysis is now of concern considering the

free-body diagram for the rotor and for the stator,

presented in Fig. 3. Frx and Fry are the rotor support

reaction forces in the x and y directions, respectively;

analogously, Fsx and Fsy are the stator support

reactions forces; FC n
and FCt

are the normal and

tangential components of the contact force; FGx
and

FGy
are the centrifugal force components in the x and

y directions, respectively. Finally, Pr and Ps are the

Fig. 2 Disturbed condition for the rotor–stator system. a Physical sketch; b detail of vector representation
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rotor and stator weight forces, respectively, while g is

the acceleration due to gravity.

In order to incorporate the contact force into the

equations of motion, the normal and tangential

components FC n
and FC t

acting upon rotor should be

decomposed in the x and y directions (FCx
and FCy

,

respectively), as follows:

FCx
¼ �FCn

cos aþ FCt
sin a and

FCy
¼ �FCn

sin a� FCt
cos a

ð2Þ

By applying the Newton’s second law for both x

and y directions, the following equations of motion for

both the rotor and the stator are obtained:

Rotor :
�Frx þ FGx

þ FCx
¼ mr €xr

�Fry þ FGy
þ FCy

� Pr ¼ mr €yr

(

Stator :
�Fsx � FCx

¼ ms €xs

�Fsy � FCy
� Ps ¼ ms €ys

( ð3Þ

where �ð Þ denotes the time derivative
�ð Þ ¼ d ð Þ = d t.

The rotor and stator reaction forces components are

given by:

Rotor : Frx ¼ cr _xr þ kr xr and Fry ¼ cr _yr þ kr yr

Stator : Fsx ¼ cs _xs þ ks xs and Fsy ¼ cs _ys þ ks ys

ð4Þ

The centrifugal force components in the x and y

directions are given by:

FGx
¼ mr e X

2 cos X t þ /ð Þ and

FGy
¼ mr e X

2 sin X t þ /ð Þ
ð5Þ

where u is the initial phase angle, defining the angular

position of the center of mass (point G) at t = 0 s,

measured anti-clockwise from the inertial x axis.

Recalling that the normal component FC n
results

from coating wear layer indentation, given by

d ¼ rsrj j � cð Þ; and the tangential component FC t

arises from friction between rotor and stator, these

components of the contact force are, respectively,

given by:

FCn
¼ kC d ¼ kC rsrj j � cð Þ

FCt
¼ signð v tÞ l FC n

¼ signð v tÞ l kC rsrj j � cð Þ
ð6Þ

where signðvtÞ ¼
�1 if vt\0

0 if vt ¼ 0

1 if vt [ 0

8

<

:

and v t is the total

tangential velocity component at the contact point,

given by:

vt ¼ XRr � _xsr sin a þ _ys r cos a ð7Þ

Since R r is the rotor radius, the term XR r represents

the tangential velocity component of a point located at

Fig. 3 Rotor free-body diagram for: a rotor and b stator
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the rotor surface due to spin velocity X while the two

last remaining terms correspond to the tangential

component of the relative velocity between rotor and

stator. As a matter of fact, these terms evaluate

whether the rotor precession angular velocity ( _a) is

backward (v t\0) or forward (v t [ 0). The quantities

_xsr and _ysr may be obtained through either analytical

derivation of Eqs. (1) for xs r and ys r or numerical

estimation. The function signð v tÞ defines the direction

of the tangential contact force component FC t
.

Combining Eqs. (1), (2) and (6), it is possible to

obtain the components FCx
and FCy

of the contact

forces:

Under these assumptions, all forces are evaluated

allowing to write the equations of motion in their final

form:

mr €xr þ cr _xr þ krxE ¼ mreX
2 cos Xt þ /ð Þ þ FCx

mr €yr þ cr _yr þ kryr ¼ mreX
2 sin Xt þ /ð Þ þ FCy

� mrg

ms €xs þ cs _xs þ ksxs ¼ � FCx

ms €ys þ cs _ys þ ksys ¼ � FCy
� msg

ð9Þ

where the coupling contact forces FCx
and FCy

are

defined according to Eq. (8).

3 Numerical simulations

Nonsmooth systems have a complex behavior and

their description is related to many mathematical and

numerical difficulties. In brief, they can be understood

as a finite number of continuous subspaces where each

subspace is governed by a set of differential equations,

which characterizes the general governing equations

as a switch model. These assumptions motivate the

description of nonsmooth systems by smoothed forms

[25, 34]. Divenyi et al. [13] employed a numerical

procedure where transition regions are defined to

govern the dynamical response during the transition

from one set of equations to another. Savi et al. [34]

employed the same method and provided an experi-

mental verification of the procedure. Therefore, each

subspace and each transition region have its own

ordinary differential equations set, smoothening the

system dynamics. Alternatively, variable time steps

can be employed to integrate these governing equa-

tions. One possible solution for the time step definition

is based on the seek to the transition exact moment.

The other possibility is to establish a comparison

between methods with different integration orders,

defining a proper time step based on a prescribed

tolerance.

Although these procedures allow one to use larger

time steps, a proper choice of a constant time step from

a convergence analysis can be employed to perform

numerical simulations. This section presents results

obtained through numerical simulations using the

fourth-order Runge–Kutta method considering con-

stant time steps smaller than 2p/1000X defined from a

convergence analysis. In essence, time steps are

defined by establishing a comparison with variable

time steps (MATLAB ODE-45 with tolerance of

10-8). The choice of this integrator aims to minimize

possible inaccuracies during the contact transition and

Table 1 Rotor–stator system parameters

mr (kg) kr (N/m) cr (Ns/m) e (m) u (rad)

50 980 9 103 280 0.001 0

ms (kg) ks (N/m) cs (Ns/m) c (mm)

50 14,580 9 103 2700 6

FCx
¼

0 if rs rj j\c

kC rsrj j � cð Þ 1

rsrj j � xr � xsð Þ þ signð v tÞ l yr � ysð Þ
� �

if rs rj j � c

8

<

:

FCy
¼

0 if rs rj j\c

kC rsrj j � cð Þ 1

rsrj j � yr � ysð Þ � signð v tÞ l xr � xsð Þ
� �

if rs rj j � c

8

<

:

ð8Þ
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at the same time, allows the use of some nonlinear

tools employed in this analysis.

Initially, the contact nature is mapped by means of

basins of attraction (parameter spaces), varying three

main system parameters: rotating speed, X; contact

stiffness, kC; and friction coefficient, l. Three condi-

tions are identified: no contact, intermittent contact

and full contact, associated with a full annular contact.

The dynamical response complexity of both rotor and

stator is investigated through bifurcation diagrams,

Lyapunov exponents and new basins mapping the

dynamical pattern (periodic, chaotic, hyperchaotic) in

parameter space.

Table 1 presents the rotor–stator system parameters

used throughout the simulations, except for those that

are varied: X, kC and l. All initial conditions are

considered null, unless for rotor and stator displace-

ments in the y-direction that correspond to the vertical

static deflection, due to their weight forces.

Parametric analysis starts by considering a basin of

attraction associated with a space composed by

contact stiffness versus rotating speed. Figure 4

Fig. 4 Basin of attraction mapping the contact nature evolution varying the friction coefficient. a l = 0; b l = 0.095; c l = 0.100;

d l = 0.105; e l = 0.110; f l = 0.120; g l = 0.150; h l = 0.200; i l = 0.300
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presents the evolution of this basin of attraction

varying the friction coefficient. All basins reveal non-

contact regions for low (X\ 130 rad/s) and high

(X[ 170 rad/s) rotating speed values, regardless of

both contact stiffness and friction coefficient values.

Within an intermediate range of rotating speed values

(130 rad/s\X\ 170 rad/s), intermittent contact and

full contact conditions coexists. Observing this range

during the basin of attraction evolution according to

friction coefficient increase, the full contact region

undergoes erosion and shrinks, at the expense of the

intermittent contact region enlargement, standing only

for very low values of the contact stiffness. It should

be highlighted that the linearized natural frequency for

the rotor alone is given by: k r=m r ¼ 140 rad =s. Note

that the vertical bound separating the intermittent

contact region from the full contact one relies around

this value. Therefore, it is expected to obtain interest-

ing results close to this rotating speed value.

The richest dynamical behavior should take place

for an intermittent contact condition; therefore, it is

possible to infer that higher friction coefficient values

should increase the system dynamics complexity.

Besides that, for low contact stiffness values, a

complexity loss is expected, regardless of the friction

coefficient value. These trends are deeper discussed in

the sequel.

The analysis of the influence of the friction

coefficient over the basin of attraction erosion is now

of concern. Figure 5a illustrates how the permanent

contact region shrinks, such that the contour lines

indicate the boundaries for different friction coeffi-

cients, according to the basins of Fig. 4. The intro-

duction of the friction coefficient nucleates an

intermittent contact region near the right upper bound,

within the range of interest (130 rad/s\X\ 165

rad/s) of the parameter space. As the friction coeffi-

cient increases, it grows left and downwards. Fig-

ure 5b shows vertical (varying kC) and horizontal

(varying X) routes for further bifurcation analyses for

the specific case of l = 0.1. Besides that, the dynam-

ical behavior of the intersection point between these

routes (kC = 100MN/m; X = 130 rad/s and l = 0.1) is

investigated by means of orbits/trajectories and Poin-

care sections in state subspaces.

Figure 6 presents the system response of both

parts—rotor and stator—as well as for the system as

whole. Figure 6a and b show the physical trajectories

for the rotor and for the stator, in the state subspaces

xr 9 yr and xs 9 ys, respectively. For the rotor

(Fig. 6a), a closed orbit can be identified, indicating

periodic behavior, while the respective Poincare

section displays a single point, attesting a period-1

behavior. For the stator (Fig. 6b), tangle trajectories

associated with a more complex behavior are obtained,

together with a dense cloud of points in the Poincare

section, characterizing a strange attractor related to the

stator chaotic behavior, which is confirmed through

Fig. 5 Bifurcation analysis based on the basin of attractions. a Friction coefficient influence over the basin of attraction erosion;

b Routes for bifurcation diagrams analysis for l = 0.1;
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the Lyapunov exponents’ spectrum (Fig. 6g), present-

ing one positive exponent, where: k i ð i ¼
1 ; 2; 3 ; ::::; 8 Þ holds for xr, _xr, y r, _yr, x s, _x s, y s and

_y s, respectively. Figure 6c, d shows the orbits with the

respective Poincare sections for the rotor and for the

stator subspaces x r � _x r and x s � _x s, related to the

x-direction, while Fig. 6e, f show analogous results for

the y-direction (y r � _y r and y s � _y s subspaces,

respectively). In both directions, it is possible to

identify period-1 responses for the rotor and, again, a

cloud of points for the stator with a typical chaotic

lamellar structure. Finally, Fig. 6h shows the trajec-

tories and the strange attractor in the state subspace

considering the relative displacement modulus

between rotor and stator rs rj j and its derivative. This

result provides a more accurate impression about the

system dynamics as a whole, since rs r involves xr, yr, xs

and ys, according to Eq. (1). It is interesting to notice

that the system as a whole incorporates the most

complex dynamical pattern between rotor and stator,

which means that the system follows the stator

dynamics.

This analysis enables two conclusions: Both rotor

and stator present the same qualitative dynamical

behavior for both x and y directions; and the stator has

a richer (chaotic) dynamical behavior, while compared

to the rotor (period-1). For these two reasons, from this

point on, only the x-direction of the stator is

investigated.

Bifurcation diagrams are built from a stroboscop-

ically sampled state variable under the slow quasi-

static increase in a system parameter. A brute force

method is employed and therefore, only

stable branches are observed. On this basis, bifurcation

diagrams provide a global picture of the system

dynamics, illustrating qualitative changes on system

responses. Since unstable branches are not evaluated,

bifurcations are not classified. Figure 7 shows bifur-

cation diagrams following both routes presented in

Fig. 5(b), for l = 0.1. Figure 7a shows the diagram

sweeping the contact stiffness parameter kC for a fixed

value of the rotating speed (X = 130 rad/s), super-

posed upon the converged values of the Lyapunov

exponents’ spectra. Figure 7b displays the bifurcation

diagram sweeping the rotating speed parameter X for a

fixed value of the contact stiffness (kC = 100 MN/m),

superposed upon both the Lyapunov spectra and the

resonant frequency response. Two different diagrams

are of concern. The upper part presents the maximum

values for up-sweep and down-sweep simulations,

showing the resonant conditions and dynamical

jumps. On the other hand, lower diagram considers

Poincaré sections, identifying the bifurcations. The

dot-dash lines (at kC = 100 MN/m in Fig. 7a and at

X = 130 rad/s in Fig. 7b) correspond to the case

analyzed in Fig. 6. These results confirm the chaotic

behavior for these parameter values. Note that dynam-

ical jumps are found either near the dashed boundaries

or at crisis breakpoints due to an abrupt change in the

dynamical behavior in both cases.

It is noticeable from Fig. 7a that the increase in the

contact stiffness kC for an intermittent contact region,

is related to a periodic behavior up to approximately

50 MN/m. Then, for higher values of kC, a predom-

inant chaotic behavior occurs, except for some peri-

odic windows identified for all negative Lyapunov

exponents’ values, which subtitles are the same

adopted for k i ð i ¼ 1 ; 2; 3 ; ::::; 8 Þ in Fig. 6g. In

Fig. 7b, the dashed lines indicate the transition

boundaries between permanent and intermittent con-

tact regions, according to Fig. 5b. The beginning and

finishing ranges of xs-null displacement correspond to

non-contact regions. In the leftward intermittent

contact region (130\X\ 140 rad/s, approxi-

mately), periodic (mostly, period-1) and chaotic

responses occur. In the full contact region

(140\X\ 160 rad/s, approximately), period-1 solu-

tion prevails, migrating to a chaotic behavior in the

rightward intermittent contact region

(160\X\ 165 rad/s, approximately). Near the right

boundary from full to intermittent contact region near

X = 160 rad/s, a quasi-periodic behavior takes place.

This feature may be inferred through the higher

Lyapunov exponent k1 crossing the null value from

negative to positive, together with slight scattered

points in the bifurcation diagram near this boundary.

Figure 8 presents new basins of attraction concern-

ing the same parameter space of Fig. 4 ðX � kC Þ,
again varying the friction coefficient from l = 0 up to

l = 0.3, but this time, mapping the kind of dynamical

bFig. 6 Rotor and stator dynamical analysis with fixed l = 0.1;

kC = 100 MN/m; X = 130 rad/s. a and b Physical trajectories

with Poincare sections; c, d, e and f Trajectories and Poincare

sections for x and y directions for the rotor and the stator,

respectively; g Lyapunov exponents’ spectrum; h Trajectories

in the state subspace rs rj j9 _rs rj j
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pattern (periodic, chaotic, hyperchaotic). In the

upcoming results, the frequency range is restricted to

the full/intermittent region of the contact nature maps

presented in Fig. 4: from X = 130 rad/s to

X = 165 rad/s—which is the actual range of interest.

The solid black lines represent the transition bound-

aries between full and intermittent contact regions,

according to Fig. 4, while dashed lines are used to

indicate the eroded boundary. Each parameter space

contains 35.024 mesh points (176 points for X versus

199 points for kC). For a null friction coefficient

condition (Fig. 8a, for l = 0), there are two distinct

regions: a predominant period-1 region rightward

from the linearized natural frequency (X = 140 rad/s),

related to a full contact condition; while, leftward from

this frequency, a messy colored intermittent contact

region takes place, with nearly vertical stripes of

different dynamical behaviors, including a blurry

hyperchaotic one. Since a non-null friction coefficient

is adopted (Fig. 8b, for l = 0.095), an intermittent

contact zone arises in the northeastern region of the

parameters space, presenting a chaotic behavior near

the upper right corner of the basin. Besides that, in the

left intermittent contact region, the former messy

colored region loses complexity and a thick period-1

vertical stripe emerges. With the friction coefficient

increment (Fig. 8c, d), the northeastern intermittent

contact zone increases and the accompanying chaotic

region increases as well, approaching the left transi-

tion boundary at the linearized natural frequency

(X = 140 rad/s). For higher friction coefficient values

(Fig. 8e, f and g), the left and right transition boundary

merges, such that the rightward growing chaotic

region meets the vertical chaotic stripe around the

linearized natural frequency. For even higher friction

coefficient values (Fig. 8h, i), complex dynamical

behaviors spread out over almost the whole basin, with

a pronounced hyperchaotic region rightward from the

linearized natural frequency.

In the sequel, the preeminence of each one of the

dynamical patterns classified for different friction

coefficients is considered. Figure 9 shows that for low

friction coefficient values (from l = 0 up to

l = 0.105), a period-1 response is predominant.

Nevertheless, when the northeastern intermittent con-

tact zone, associated with chaotic behavior, starts to

increase significantly (from l = 0.95 on), the period-1

response starts to decrease. For l % 0.11, these two

Fig. 7 Dynamical analysis considering the routes set in Fig. 5b

for l = 0.1. a Bifurcation diagram and Lyapunov exponents

varying kC with fixed X = 130 rad/s (vertical route of Fig. 5b);

b Resonant frequency response, bifurcation diagram and

Lyapunov exponents varying X with fixed kC = 100 MN/m

(horizontal route of Fig. 5b)
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behaviors share nearly equal proportions, summing

almost 100% of the basin. When l = 0.12, the chaotic

behavior reaches its maximum (around 60%), while

period-1 behavior continues to decrease. From

l = 0.12 on, scape region related to ‘‘other behaviors’’

starts to increase more significantly, reaching a

maximum around 10% for l = 0.15 and reducing the

chaotic fraction. From l = 0.15 on, the occurrence of

hyperchaotic behavior drastically increases, reducing

all other dynamical patterns, including the chaotic one.

All other behaviors (other than those discussed) do not

reach 10%. Among them, only period-2 behavior

deserves some attention, presenting 5 to 6%, for

Fig. 8 Basin of attraction mapping the dynamical pattern

evolution varying the friction coefficient. a l = 0; b l = 0.095;

c l = 0.100; d l = 0.105; e l = 0.110; f l = 0.120;

g l = 0.150; h l = 0.200; i l = 0.300. **The classification

‘‘other behaviors’’ refer to: period-5, period-7, higher periodic-

ities (more than 8) and quasi-periodicity
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intermediate friction coefficient values

(0.15\ l\ 0.2).

Figure 10 considers the same parameter space

(X 9 kC) of the preceding analyses, but computing

how many times each mesh point changes its dynam-

ical pattern, while the friction coefficient varies from

l = 0 up to l = 0.3 (discretization assumes 9 varia-

tions through this range). The legend colors represent

the number of different dynamical patterns (occur-

rences) each mesh point assumes. The solid black lines

represent the transition boundaries evolution between

full and intermittent contact regions, while l varies.

 Other behaviors  Hyperchaos

 Period – 4  Period – 8

 Period – 1

 Chaos

 Period – 6

 Period – 2  Period – 3

Fig. 9 Dynamical pattern fraction as a function of the friction coefficient l. a Full range; b detail to highlight low values

Fig. 10 Basin of attraction mapping the dynamical pattern variation through the variation of friction coefficient
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It is not an easy task to interpret the whole

parameter space; though, specific regions discussed

during Fig. 8 analysis allow some conclusions. With

this purpose, the next analysis is conducted for two

distinct regions: the left intermittent region and the

right region that undergoes erosion.

In the left intermittent region, the structure with

vertical stripes identified in Fig. 8 shows up again, as

follows: around X = 130 rad/s, a thin messy colored

vertical stripe indicates several occurrences; right after

that, there is a thin 2-occurrence stripe that is

associated with the transition from the period-1 stripe

observed in Fig. 8a up to Fig. 8h to chaotic behavior

present in Fig. 8i; around X = 135 rad/s, a thick

messy colored vertical stripe indicates several occur-

rences again. This region goes through several

changes, during the friction coefficient evolution

presented in Fig. 8; before X = 140 rad/s, a mainly

1-occurrence stripe is associated with chaotic behavior

near the rotor natural frequency; for low contact

stiffness values (kC\ 25 MN/m), an 1-occurrence

region is related to a period-1 response.

Concerning the right region that undergoes erosion,

it is possible to identify a kind of a predominant

3-occurrence matrix with some 4-occurrence lamellas.

This 3-occurrence matrix is associated with the

transition from period-1 response of the original

permanent contact region to the chaotic response of

the new intermittent contact region (after basin

erosion) that, eventually, gives rise to a hyperchaotic

behavior for high friction coefficients (l[ 0.15). For

intermediate contact stiffness values (kC\ 50 MN/

m), in this 3-occurrence matrix, the hyperchaotic

behavior is substituted for an ‘‘other behaviors’’

response. The well-defined 4-occurrence lamellas

may be associated with the thin slice containing

different periodic behaviors that limits the growing

chaotic zone boundaries, which arises together with

the intermittent contact region. Near the rotor natural

frequency, for high contact stiffness values (kC around

150 MN/m), these lamellas turn into sprayed 5-occur-

rence ones. The 2-ccurrence points (always near the

transition boundaries) experiment a single transition:

from period-1 (full contact) to either chaotic response

or ‘‘other behaviors’’ response (intermittent contact).

At last, the remaining permanent contact region (for

l = 0.3) is mainly associated with a period-1 response.

Figure 11 quantifies the absolute amount of mesh

points and the respective percentage for each number

of occurrences for the parameter space of Fig. 10.

Note that there are more 3-occurrence points, followed

by 4-occurrence points, 2-occurrence points and

1-occurrence points. Other numbers of occurrences

are almost negligible. An interesting issue is that the

greatest number of occurrences (7 occurrences) only

happens for 1 point in the whole mesh. This point is

assigned in the depicted detail of Fig. 10 and takes

place for X = 138.4 rad/s and kC = 64 MN/m.

Figure 12 considers the dynamical behaviors

related to these specific values of X and kC for the

nine friction coefficient values (l = 0 up to l = 0.3)

covered during the previous parameter space analysis,

showing that, in fact, seven different dynamical

patterns occur. Results comprise stator orbits for the

x-direction with their Poincare sections in the state

subspace xs � _xs and the respective Lyapunov

exponents’ spectra, following the same definition

adopted for k i ð i ¼ 1 ; 2; 3 ; ::::; 8 Þ in Fig. 6g. The

depicted details of state subspaces help to identify the

behaviors’ periodicity, while depicted details of

Lyapunov spectra settle possible doubts about near-

zero exponents. Figure 12a shows (l = 0) that there

are tangle trajectories in the state subspace with a

strange attractor in the Poincare section. A single

positive Lyapunov exponent attests the chaotic behav-

ior. Figure 12b (l = 0.095) shows similar results

compared to those obtained in Fig. 12a. Again, a

single positive Lyapunov exponent attests the chaotic

behavior. In Fig. 12c (l = 0.1), a closed orbit suggests

a periodic behavior and the depicted Poincare section

Fig. 11 Dynamical pattern variation based on the occurrence

analysis
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reveals a period-8 response. All negative Lyapunov

exponents ensure the periodic behavior. Figure 12d

(l = 0.105) shows an apparent closed orbit, but the

zoom in the depicted detail reveals a slight shift in the

trajectories for different cycles, suggesting a quasi-

periodic behavior. The zoom in the Poincare section

provides several close points, confirming this insight.

The higher Lyapunov exponent tending to zero in the

depicted detail also attests the quasi-periodic behavior.

Figure 12e (l = 0.11) shows a closed orbit that

indicates a periodic behavior, and the Poincare section

reveals a period-4 response. All negative Lyapunov

exponents ensure the periodic behavior. Figure 12f

(l = 0.12) and Fig. 12g (l = 0.15) show periodic

behaviors as well; however, this time, period-2 and

period-1 behaviors take place, respectively, both with

negative Lyapunov exponents. Figure 12h (l = 0.2)

tangle trajectories reappear in the state subspace and

the Poincare section still preserves some lamellar

structure characterizing a strange attractor. The single

positive Lyapunov exponent attests this chaotic

behavior. Figure 12i (l = 0.3) the tangle trajectories

remain in the state subspace presenting a Poincare

section characterized by a collection of points with no

apparent structure, which is a hyperchaotic character-

istic. Two positive Lyapunov exponents ratify the

hyperchaotic behavior.

4 Concluding remarks

This paper presents a numerical investigation of the

nonlinear dynamics of a four-degree of freedom

Jeffcott rotor–stator, considering nonsmooth impact

between them. The stator inner coating surface

propitiates elastic restitution (normal impact) and

Coulomb friction (tangential rubbing). A multipara-

metric analysis shows different parameter spaces,

varying rotating speed, contact stiffness and friction

coefficient. Based on the contact between rotor and

stator, the contact nature is classified into three

dynamical modes: no contact, intermittent contact or

full contact. After that, parameter spaces classify the

dynamical response into periodic (considering differ-

ent periodicities) or chaotic/hyperchaotic. At last, a

parameter space accounts for dynamical pattern

changes as a function of the friction coefficient.

During the contact nature analysis, for a no friction

condition, the contact stiffness revealed no influence;

however, while varying the rotating speed, there are no

contact regions for low and high values (compared to

the rotor-alone natural frequency) and an intermediate

frequency range around this natural frequency where

near leftward from it, an intermittent contact region

takes place; and rightward from it, a full contact region

occurs. While increasing the friction coefficient, the

only region affected is the full permanent contact

region that undergoes an erosion, giving rise to an

intermittent contact region. It is possible to infer that,

lower values of contact stiffness (which implies low

values of tangential contact force, which means

friction), inhibit intermittent contact behavior, while

increasing the friction coefficient.

Regarding the dynamical response, intermittent

contact condition is the most interesting one, present-

ing rich and complex behaviors. Within the full

contact region, period-1 behavior prevails; besides

that, low contact stiffness values also present period-1

behavior. During the full contact region erosion, the

growing nucleated intermittent contact region always

presents complex behavior, migrating from chaotic to

hyperchaotic (for high values of friction coefficient).

Moreover, chaotic behavior is found near the rotor-

alone natural frequency, regardless of the friction

coefficient. Undoubtedly, the increase in the friction

coefficient turns the system response more complex.

The parameter space concerning the dynamical

pattern change clearly shows that the intermittent

contact region leftward from the rotor-alone natural

frequency is the richest zone, undergoing several

changes while varying the friction coefficient. The full

contact eroded region presents a main 3-occurence

response, migrating from period-1 (for a no friction

condition and full contact) to chaos (for intermediate

values of friction coefficient and intermittent contact),

ending up hyperchaotic (for high values of friction

coefficient still with intermittent contact). A 1-occur-

rence lamella near the rotor-alone natural frequency

attests the chaotic behavior, regardless of the friction

coefficient.

bFig. 12 Stator trajectories and respective Lyapunov exponents’

spectra with fixed X = 138.4 rad/s and kC = 64 MN/m, varying

the friction coefficient. a l = 0; b l = 0.095; c l = 0.100;

d l = 0.105; e l = 0.110; f l = 0.120; g l = 0.150; h l 0.200;

i l = 0.300
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