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Abstract

In this paper we make a detailed numerical comparison between three algorithms for the computation of the full Lyapunov
spectrum as well as the associated eigenvectors of general dynamical systems. They are: (a) the standard method, (b) a differ-
ential formulation of the standard method, and (c) a new algorithm which does not require rescaling and reorthogonalization.
We also bring out the relations among these methods. Moreover, we give a simplified formulation of the new algorithm when
the dimensionality of the system is 4. We find that there is reasonable agreement among the Lyapunov spectra obtained using
the three algorithms in most cases. However the standard method seems to be the most efficient followed by the new method
and the differential version of the standard method (in that order), as far as the CPU time for the computation of the Lyapunov
spectrais concerned. The new method is hardly suitable for finding the eigenvectors, whereas the other procedures give nearly
identical numerical results. ©2000 Elsevier Science B.V. All rights reserved.

PACS:05.45+b; 02.20.Qs

Keywords:Lyapunov spectra; CPU time; Dyanamical system

1. Introduction

Extreme sensitivity to initial conditions is the commonly accepted defining property of chaos in nonlinear systems.
Lyapunov exponents which determine the exponential rates at which nearby trajectories diverge on an average, are the
guantitative characteristics of a chaotic orbit. A dynamical system of dimengiasn Lyapunov exponents and
principal directions or eigenvectors, corresponding to a set of nearby trajectories [1]. One of the standard and popular
methods to compute the Lyapunov spectrum of a dynamical system involves a Gram—Schmidt Reorthonormalizaton
(GSR) ofthe ‘tangent vectors’[2,15,16]. A differential version of this method has been formulated which corresponds
to a continuous GSR of the tangent vectors [3]. A modification of this method with the introduction of a stability
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parameter makes it dynamically stable, applicable to systems with degenerate spectra, and reliable for computations
[4]. Recently, a new algorithm for the computation of Lyapunov exponents has been proposed, which has been
claimed to be valid even for evaluating partial Lyapunov spectra [5]. This is based on the ‘QR’ method for the
decomposition of the tangent map (wh€¥és an orthogonal matrix anidis an upper triangular matrix) which has

been studied by several authors [6]. It utilizes representations of orthogonal matrices applied to the tangent map,
and does not require the GSR procedure. It has also been claimed that it has several advantages over the existing
methods, as it involves a minimum number of equations. In this paper we have made a detailed comparison of
the three algorithms as regards accuracy and efficiency, by computing the full Lyapunov spectra of some typical
nonlinear systems with 2, 3 and 4 variables. We also compare the performance of the standard method with its
differential version, in computing the Lyapunov eigenvectors.

In Section 2, we outline the three methods with necessary details. We bring out the relation between the differential
version of the standard method and the new procedure, by deriving the differential equations of the latter from those
of the former. It is difficult to use the new method with a standard representation of orthogonal matrices when
the number of dimensions of the system is greater than 3. In Section 3, we give a convenient representation for
them forn = 4, by making use of the well-known fact th&0D(4) ~ SO(3) x SO(3) [7]. This simplifies the
calculations considerably. In Section 4, we make a comparative study of the three algorithms for the computation of
Lyapunov spectra by taking up some typical 2, 3 and 4 dimensional systems. We have considered both dissipative
and Hamiltonian systems of some physical interest, for comparison. In Section 5, we compare the computation
of the Lyapunov eigenvectors (which are local properties), using these algorithms. In Section 6, we make a few
concluding remarks.

2. Computation of Lyapunov exponents

Consider am-dimensional continuous-time dynamical system

dz
o F(Z, 1), (1)

whereZ andF aren-dimensional vector fields. To determine thieyapunov exponents of the system, corresponding
to some initial conditiorZ (0), we have to find the long term evolution of the axes of an infinitesimal sphere of states
aroundZ(0). For this, consider the tangent map given by the set of equations,

dsz
— =J8Z, 2
& (2
wherel is then x n Jacobian matrix with
JoF;
J: = ) 3
=z ®3)

A solution of Eq. (2) can be formally written as

8Z(t) = M(Z(1),1)8Z(0), 4)
whereM (Z(t), t) is the tangent map whose evolution equation is easily seen to be
dM
— =JM. 5
o ®)

In the following, we give a brief description of the procedures for computing:thgapunov exponents of the
system using (a) the standard method, (b) the differential version of the standard method and (c) the new method
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based on the ‘QR’ decomposition &f, which dispenses with the tangent vectdZs and in a sense, computes the
exponents directly.

2.1. Standard method

LetA1, A2, ..., A, bethen Lyapunov exponents of the system in a decreasing sequencej, > --- > A,. In
the standard method [2,15,16] one first choosesthogonal tangent vectors as initial conditions for Eq. (2). The
standard choice i&;(0) = (1,0,0,...); &(0) = (0,1,0,0, ...), etc. Eq. (2) is then solved up to timefor each
of the initial conditions yielding vectong (), v2(t), ... , V,(t). These vectors are orthonormalized using a GSR
procedure to yield

R i . V2 — (V2, 81(7))é (1)
er)=—-, e(t) = p ~ , 6
Ivall V2 — (v2, &1(t))e1 ()| ©)
and so on. The norms in the denominators, denoted{1{), N2(1), ... , N,(1), are stored for the computation

of Lyapunov exponents. The procedure is repeated for a subsequent tifniategration usingg () as initial
conditions for Eq. (2). The resulting vectors2t), are again orthonormalized using a GSR procedure to yield

orthonormal tangent vectoés(2r), i = 1,...,n and the norm¥v1(2), N2(2), ... , N,(2). After r iterations, we
get the orthonomal set of vecta&srt),i = 1, ... ,n attimer = rz. The Lyapunov exponents are
) " _logN;
A = lim M (7)
r—00 rt

This is due to the following reason. Since GSR never affects the direction of the first vector in a system, this vector
tends to seek out the direction in the tangent space, which is most rapidly growing and its norm is proportional to
e’ for larget. The second vector has its component along the direction of the first vector removed and its norm
would be proportional to’é’ for larger and so on.

Itis to be noted that we have to integrate + 1) coupled equations in this method, as therenagguations for
the fiducial trajectory in (1) and copies of the tangent map equations in (2).

2.2. Differential version of the standard method

In this method [3], the orthonormal set of vect@é) are obtained by solving differential equations set up for
them, instead of resorting to the GSR at discrete steps. Rather, GSR is incorporated in the procedure itself. It can
be shown that

i-1
%éi (1) =G& — G;;i§ — Z(Gij +G;ej, 8)
j=1
whereG=J is the Jacobian matrix introduced in Eq. (2) and
Gij = (&(1), I(Z(1))&;(1)), 9)
that is,G;; are the matrix elements of the Jacobian in the basi3. Now let&; (0) evolve toe; ():
&) = M(Z(1), )& (0), (10)
In fact, & (¢) is the orthonormalized set correspondingt@) i = 1, ..., n. Define

dij = (e(1), &(1)). (11)
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The GSR procedure ensures thatid a lower triangular matrix
d,'j =0, i<j. (12)

It can be shown that

dii = Gudii, i=1,...,n, (13)
and that,

di; = ! (14)
for larget. That is,

A= limoo% logd;;. (15)

The Lyapunov exponents are computed by solving the coupled Egs. (1), (8) and (13), in this method. As there are
n? equations for the components each of the orthonormal vecgsts) in Eq. (8),n equations foe;; in Eq. (13),

apart from the: equations for the fiducial trajectory in (1), we have to integrdie+ 2) coupled equations in this
method.

In practice, this procedure is not numerically ‘stable’, as thé&sget may not remain orthonormal under the time
evolution. In particularA;; defined byA;; = (& (1), &; (1)) — &;;, 1 < i, j < n may not all vanish. Moreover, the
method is not applicable to systems with degenerate exponents. These are remedied by a modification of the method,
using a stability parametgr[4]. We replaceG;; by G;; + 8((&, &) — 1) andG;; by G;; + B(&, &;),i # j in Egs.

(8) and (13). Though it has been shown that the method is strongly stablegvkena,,, wherea,, is the lowest
exponent, itis found in certain problems, tigatas to be significantly larger tham.,, in practice. Moreover, it may
be pointed out that this method requires prior knowledge of the lowest Lyapunov expgrfenthe computation
of the complete spectrumny. If an arbitrarily high value is assigned & one ends up with an arithmetic overflow
problem during computations.

2.3. New method based on a ‘QR’ decomposition of M

The new algorithm [5] is based on a ‘QR’ decompositiorMyfwhereQ is an orthogonal matrix ang is an
upper triangular matrix. This results in a set of coupled differential equations for the Lyapunov exponents along
with the various angles parametrizing the orthogonal matrices. In this subsection, we derive these equations from
the differential version of the standard method considered in the previous subsection.

Consider the tangent map mathk. From Eq. (10),

M;; = (&(0), M&;(0)) = (&(0), €;(1)). (16)
As &; () form an orthonormal set of vectors, we have from Eq. (11),
ej() =Y &t)dji. a
Hence,
Mij = (&(0), &(t)d. a8)
k

Define the matrice® andR by
Qi = (&(0), &) = (&), (19)
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and

Rij =dj;. (20)
Hence,

M = OR. (21)

Clearly the columns o are the orthonormal vectoés(r), andQ an orthogonal matrix. Ad is a lower triangular
matrix, R an upper triangular matrix.

Now G;; andJ;; are the matrix elements of the Jacobian in the orthonormal Bagesandé; (0), respectively,
and related by a rotation transformation represente@® by

Introducing complete sets of states at the appropriate places, we have

Gij = &(1).38;(1) = Y (@), &(0)(@&(0). I&(0)@(0). & (1) = Y OutuQyj = (0 Q)ij.  (22)

k!l k!
Taking the scalar product of Eq. (8) wi#(0) and making appropriate changes of indices, we have

k=1

d d . N N . N . N N
ank = E(ej (0), & () = (&j(0), I& (1)) — Gk (&;(0), & (1)) — Z(sz + Gi)(8;(0), &(1))
=1
k-1
= (8)(0), J& (1) — G Qjx — Y (G + Gu) Q- (23)
=1
As all the quantities are real,
0ij = Qi = (&;(0), &) = (& (1), &/(0)). (24)
Multiplying Eq. (23) byQ;; on the right and using the fact that
0 (;(0), J& (1) = Z(éi (1), 8;(0)(&;(0), J& (1)) = (& (1), J& (1)) = Gix- (25)
J
we find
. d . d 3 k-1 3
(QEQ)ik =0ij . Ojx = Gix = Gkkzj:Qiijk —~ ;g(GH +Gi)0ij Qji
k-1
=Gik — Gudix — Y_(Gu + Gi)dir, (26)
=1

asQ is an orthonormal matrix.
Again, Q(d/dr)Q is an antisymmetric matrix a@ is orthogonal and it is sufficient to consider k. In this
case, the last term vanishes and we obtain,

~d ~
(Qd—Q> =Gik =(QJ Dk, 1>k 27)
t ik

Q is an orthogonal matrix is characterized bg — 1)/2 angles and we obtain differential equations for these
angles. From Egs. (13) and (14), the differential equations for the Lyapunov exponents are

d -
a()»il) =G =(QJ0D)ii. (28)
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In this method, we have essentially traded the orthonormal vegteydor the orthogonal matri@) parametrized
by then(n — 1)/2 angles. We have to solve the coupled equations (1), (27) and (28) in this procedure to obtain the
Lyapunov exponents. We have to integrat¢ (n(n — 1)/2) +n = n(n + 3)/2 coupled equations in this method.

3. A convenient representation forQ and simplification of Q0 forn=4

In [5], the explicit representation of the orthogonal maixised is the one in which it is represented as a product
of n(n — 1)/2 orthogonal matrices, each of which corresponds to a simple rotation (i the¢)th plane(i < j).
ThusQ

0= 0(12) 0(13) 0(14) . 0(171)0(23) . 0("—2,71—1)0("—1,")’

where
1 if k=1+#1i,j;
- COSb;; if k=I1=ioryj,
ol =1 sing; if k=i 1= (29)
—sin@,-j if k=],l=l,
0 otherwise

In terms of the group generator®{/) can be written as

0D = i ij) (30)
where the generatay; is represented by

(i = SikSj1 — 8itd k. (31)
The generators satisfy the commutation relations,

[%ij, tun] = Bintjm + 8 jmtin — Bimtjn — Sjntim. (32)

The above representation f@ris conceptually simple and works very well foe= 2 and 3 [5]. However, for > 3,
it is hardly suitable for practical computations of Lyapunov exponents. This is because the expresgiupsfut
0JQ are very lengthy and unmanageable everfer 4.
In the present work, we employ a representation@pwhich simplifies the calculations and numerical compu-

tations forn = 4. This is based on the well-known fact thfa® (4) ~ SO (3) x SO(3) [7]. From the generatous;
we construct the following combinations:

My = %(t23+ t14), N1 = %(tza —t4); Mz = %(t31 +124), N2 = %(f31 — 124);

Mz =3(t12+ t3), N3 = 3(t12— t34). (33)

Then it is easily verified tha¥Z; and N; generate two mutually commutir§p (3) algebras
[M;, M;] = —€;jiMi, [N;,Njl= —€;jiNr, [M;,N;j]1=0. (34)
We write Q as

0=0mn2r, (35)
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where

Q11 =0©®0®0W = efoNselsNoghaN, (36)
and

01 = 000N = fsMsghoNeghiM1 (37)
Using

eYe X =V +[X, Y]+ Z[X, [X, Y] + -+, 38)

for any matricesX, Y and the commutation relations in Eq. (32), it can be easily verified that
00=0,01+ 011011 =01+ 635iN02] M1 + [62 COSO1 + 63 SiN61 COSH2] M2
+[62 sinB + B3 0S8y COSH2] M3 + [64 + 6 SiNBs] N1 + [65 COSH4 — O SiNB4 COS5] N2
+[65 SinBs + U5 COSH4 COSH5] N3. (39)

The explicit form of the matricesf; andN; can be found using Egs. (31) and (33) and are written in terms«dt 2
blocks as given below

Y R ARV ISl IR | (LGOI
2 . ’ 2 . ’ 2 . ’
L —01 . 0 o3 : 0 0 : i62
1 0 —io2 1 0 : —1 1 lop 0
Nl:E ,N2=§ e ]\/3=E . (40)
| —io2 0 I : 0 0 : —io

Here | is the 2x 2 identity matrix andr1, o2, o3 are the Pauli matrices:

BRI I A

Then we find that
0 —f1(0,0) —f20,0) —f3(6,0)

~ f16,6) 0 —fa(0,0) —f5(0,0)
= . . . 42
eg f200.6)  fa6.6) 0 —fe6.6) | (42)
£30,0)  f50,0)  fs(0,6) 0
where

f1=—3(625in61 + 65 cOSH1 COSH + 65 SiN4 + G COSH4 COSBs),

f2 = 3(62cos01 — 63 5in6y cosH; + B OSP4 — G SiNG4 COSB),

fa=—3(61+ b3sind — 64 — b5 sinds),

fa=—3%(61+ 035sinb + 04 + b5 Sinbs),

f5=3(—62C0801 + B3 SiNfy COSH, + 05 COSHa — O SiNB4 COSYs),

fe= _%(92 Sinfy + 63 cosf1 CosP2 — B SiNBs — O COSH4 COSO). (43)
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Using Eq. (39), we find that the equations £y split neatly into two sets

-1 0 —sing; 91 G322+ Gar
0 —sinf1 —coshcoshy O | = Gor+Gas |, (44)
0 cosY;  — Sinf1coshy 93 G31— Ga2
and
-1 0 —sinfs 94 G332 — Ga1
0 —sinf; —coshscoshs 95 =\ Go1—Gy3 |. (45)
0 co¥s —sinfscoshs O G31+ Gaz

We also have

d

—\) =Gy, i=1,....,4, 46

T l (46)
from Eq. (28). Hence, to find the Lyapunov exponents of a dynamical system with four variables, we have to solve
the evolution equations for the system given by Eg. (1) and the tangent map equations given by Eqgs. (44)—(46), after

finding G = 0JQ.
Any 4 x 4 matrixJ can be written as

16
I=) aiX; (47)
i=1
where the 16 matriceX; are defined in terms of 2 blocks as
__1 0 |- 0 _ | o3 0 _ | —o3 0
__01 0 | =01 O _ iop O _ iop 0
XS__O O’1:|’ X6_|: 0 01i|’ X7_|:O i02i|’ X8_|:O —iag]’
__0 1 _ 0 I _ 0 o3 _ 0 03 _ 0 o1
Xg—_l 0], Xlo—[_l 0], Xll—|:03 0] X’12—[_03 0}, X13—|:01 0],

__ 0 o1 _ 0 —ioy | 0 —io2
Xu=\_ 0], X15_|:—i02 0 } X16—|:i02 0 ] (48)

It is easy to find commutators(}, M;] and [X;, N;] from Egs. (40) and (48). Then, using Egs. (35)—(38), we can
obtain

G = 0J0. (49)

4. A comparative study of the three algorithms for the computation of Lyapunov spectra

The standard algorithm involves an explicit GSR for finding the orthonormél@gtind the Lyapunov spectrum.
The differential version considered in Section 2.2 amounts to computing the spectrum with continuous GSR. Here
explicit GSR is avoided as it is incorporated in the method. However, the differential equaticag fan this
method are nonlinear, as they involi&(z), J&; (1)) in the RHS, in contrast to the standard method which uses the
linearized equations f&Z directly. In the new method, one deals directly with the orthogonal matrix reléting
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andg (0). It uses a minimal number of variables and rescaling and reorthogonalization are eliminated. However, in
this method, the evolution equations for the angles and Lyapunov exponents are highly nonlinear involving sines and
cosines of the angles. Hence it is not clear ‘a priori’ which method is ‘superior’ and there is a need to compare the
efficiency and accuracy of the three methods. That is the subject matter of the present investigation. Here we consider
some typical nonlinear systems of physical interest with 2, 3 and 4. The driven van der Pol oscillator is taken as
an example of a two-dimensional system, whereas the standard Lorenz system is cheser8fdforn = 4, we
consider the coupled quartic oscillators and anisotropic Kepler problem as examples of conservative Hamiltonian
systems and the Réssler hyperchaos system as an example of a dissipative system. We give the differential equations
for these dynamical systems in the following.

1. Driven van der Pol oscillator(= 2):

d Zl Z2
dr - 50
dr <12> (—d(l—zf)zz—zl—i—bcosw,)’ (50)

whereb andd are parameters and is the driving frequency. In our numerical work we have chogdes
—5.0, b = 5.0 andw = 2.47 as the parameter values.
2. Lorenz systenmw( = 3):

d (% o(z2 — z1)
al2|= z1(p—z3) — 22 |- (51)
23 2122 — Bz3

This system is too well-known to require any further discussion. For computations we=s&0.0, p = 28.0
andg = 8.
3. Coupled quartic oscillatora (= 4): This is a conservative system and the Hamiltonian is given by

2 2

Z Z
H=3+ 3 +d+ 3 +addl (52)

wherez1 andzz are the canonical coordinates,andz4 the corresponding momenta amdh parameter. The
Hamiltonianin Eq. (53) finds applications in high energy physics [8], to mention just one example. The equations
of motion are

2 Z3
d 72 24
— = . 53
dr | z3 —(42? + 2az1z%) 3)
4 —(423 + 2az37))
This system is known to be integrable to= 0, 2 and 6 [9].
4. Anisotropic Kepler problem(= 4): The Hamiltonian of this system is given by
2 2 2
Pp Pz e
H=-*+ = - 54
> Tr5 e (54)

wherey is a number.
The Hamiltonian given above describes the motion of an electron in the Coloumb field in an anisotropic
crystal, where its effective mass along the plane andz-direction are different [10]y = 1 corresponds to
the isotropic case and is integrable. Wher# 1, the system is nonintegrable. Because of the singularity at
p =z = 0, the Hamiltonian in the above form is hardly suitable for numerical integration. For this we choose
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71 = +/p + z andzz = /p — z as the canonical variables. We can find the corresponding canonical momenta
zz andz4 in terms ofp, and p,. We also use a re-parametrized time variabtefined by d = dr(z% + z%).

The original Hamiltonian with the old variables and enefjgorresponds to the following Hamiltonian with
H’ = 2 in terms of the new variables [11]:

1 (z123 — 2224)°
H =2=>(z% 2 — E(z2 2 -H)— 55
2(23+Z4) (11+Zz) + ) 2(Z%+Z%) ( )
The equations of motion resulting from this are
st (v — Dza (2123 — 2224)
(zi + Z%)
(z123 — 2224)
“ == D—"———
dlz2|_ (1 +2)) 56
dr | z3 | (252125 + 222324(22 — 23) — 252123 (56)
24 (z1 +25)
(252222 — z12324(2% — 23) — 222223)
2EZ2 - ()/ - 1) 2 2
(z1+25)

We have chosep = 0.61 for computational purposes.
5. Rdssler hyperchaos systema#4): This is a dissipative system and an extension of the three dimensional Rossler
attractor [12]. It is described by the equations

71 —(z2+z23)
d |z _ | mataz2+za (57)
dr | z3 b+ z1z3 ’

24 cz4 — dz3

wherea, b, ¢ andd are parameters whose values are taken to be 0.25, 3.0, 0.05 and 0.5, respectively, for our
computations.

In all these cases, the full Lyapunov spectrum is computed using the three methods. The time of integration is
chosen to ensure reasonable convergence of the Lyapunov exponents. In most of the cases the time of integration
wast = 100000 (the exceptions are the anisotropic Kepler problem and the Rdssler hyperchaos system using the
differential version of the standard method due to the problem of numerical overflow). For all the systems, we have
used a variable step-size Runge Kutta routine (RKQC) for integration, with an error toleraack) % — 108,

All the computations were performed on a DEC Alpha based workstation running OpenVMS. The CPU time taken
for each system with each of the algorithms was noted. This is the actual time taken by the CPU to accomplish a
specific process (independent of the other processes running in the system). The details of the comparison between
the two methods are summarized in Table 1.

It may be noticed that all the methods yield essentially the same Lyapunov spectrum. For any autonomous
dynamical system, one of the Lyapunov exponents has to be zero (corresponding to the differende Wantpr
along the trajectory itself). For the Lorenz system, the Réssler hyperchaos system (both dissipative) and the coupled
quartic oscillators, this condition is satisfied by all the algorithms. For the anisotropic Kepler problem all the
methods fail the test. This aspect needs to be studied further. For Hamiltonian systems, for every eigenvalue
there is an eigenvaluei. This symmetry is respected by all the algorithms. For the coupled quartic oscillators,
all the exponents should be zero corresponding to the integrable case & This is indeed satisfied by all the
algorithms. In Fig. 1 we give plots of Lyapunov exponents as functions of time, for a typical case. Again, there
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Table 1
Comparison of the Lyapunov spectrum obtained by standard, differential and new methods and the computational time required to evaluate them
with three different methods for some of the systems with 2, 3 and 4

System with initial condition ¢ = 10000 t = 100000

Standard Differential New Standard Differential New

Driven van der Pol oscillaton(= 2)

z1=-10 0.0985 00980 00989 Q0987 00991 00981
22 =1.0 —6.8494 —6.8300 —6.8379 —6.8411 —6.8359 —6.8400
(—6.7509 (—6.7321) (—6.7390 (—6.7424 (—6.7368 (—6.7419
[825.56] [222431] [51922]
Lorenz systemi( = 3)
z1=0.0 0.9022 09040 09038 09051 09056 09056
22=10 0.0003 Q0003 00001 Q0000 Q0000 00000
23 =0.0 —14.5691 —145710 —14.5705 —145718 —14.5723 —14.5723
(—13.667 (—13.667) (—13.667) (—13.667) (—13.667) (—13.667)
[16687] [154927] [2394.30]
Anisotropic Kepler problenv{ = 4)
z1=1.0 0.1386 01343 01434 01332 01360
22=20 0.0834 Q0830 00860 00832 00831
23=10 —0.0845 —0.0817 —0.0864 —0.0833 —0.0833
z24=05 —0.1375 —0.1355 —0.1429 —0.1331 —0.1357
(0.0000 (0.0000 (0.0000 (0.0000 (0.0000
[303.25] [20104] [35018]
Rossler hyperchaog (= 4)
z1=—-200 0.1108 01080 01125 01121 01128
22=0.0 0.0224 00218 00225 00196 00214
z3=0.0 —0.0003 —0.0003 —0.0003 —0.0000 —0.0000
z4 = 15.0 —25.9113 —23.7753 —23.9904 —25.1886 —24.7527
(—25.778 (—23.646) (—23.862 (—25.057) (—24.619
[479261] [559599] [152768]
Coupled quartic oscillatot(= 4, « = 6)
z1=0.8 0.0009 00010 00010 00001 00001 00001
22=05 0.0008 Q0008 Q0008 Q0001 Q0001 00001
23=10 —0.0008 —0.0008 —0.0008 —0.0001 —0.0001 —0.0001
24=13 —0.0009 —0.0010 —0.0010 —0.0001 —0.0001 —0.0001
(0.0000 (0.0000 (0.0000 (0.0000 (0.0000 (0.0000
[492.09] [54533] [803.49]
Coupled quartic oscillator(= 4, « = 8)
z1=08 0.1892 02096 01739 01738 01793 01806
22=05 0.0011 Q0011 00010 Q0001 Q0001 00001
z3=10 —0.0011 —0.0011 —0.0013 —0.0001 —0.0001 —0.0001
z24=13 —0.1892 —0.2095 —0.1795 —0.1738 —0.1793 —0.1806
(0.0000 (0.0000 (0.0000 (0.0000 (0.0000 (0.0000
[492.09] [76586] [390128]

aSum of the exponents and CPU time in sec are gine() iand [ ], respectively.

is no significant difference between the three algorithms as far as the convergence of the Lyapunov exponents is
concerned. It is noteworthy that the differential method works well for even systems with degenerate spectra like
the coupled quartic oscillators.

On the whole, the standard method seems to have an edge over the new method as far as the CPU time for
the computation of the Lyapunov spectrum is concerned. The differential version of the standard method generally
consumes more CPU time compared to the other two methods. For some systems like the anisotropic Kepler problem
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Fig. 1. Plot of the maximal Lyapunov exponent for the coupled quartic oscillator systery witB.

and the Rdossler hyperchaos system, there are numerical overflow problems, whatever be the yahrestoe
error tolerance one chooses for this algorithm. In fact, it appears that the valgehafs to be significantly higher
than—,, (indicated by the stability analysis) for these systems, for reasonable convergence.

For the system of coupled quartic oscillators, the CPU time is abnormally high for the new method, corresponding
to the nonintegrable case ef= 8. This is true both for small and large energies. For large energie5000),
since the energy varied by 15 when we used the RKQC routine, we also used a symplectic procedure which
eliminates secular variations in the energy [13]. With this routine, the CPU times were nearly the same for both
the methods. However the new method yields poor results for the Lyapunov spectrum. For instance corresponding
to the initial conditionzy = 7.0,z = 7.0, z3 = 5.0 andz4 = 4.0, the Lyapunov spectrum computed using the
new and the standard methods éré&506 0.3254 —0.3261, —1.5499 and(1.5205 0.0001, —0.0001, —1.5205),
respectively. The differential version of the standard method led to a numerical overflow problem, corresponding
to this initial condition.

In the standard method, after solving for the fiducial trajectory, the equations for the tangent flow are linearized
equations. In differential method, corresponding to continuous GSR, these equations are nonlinear. In the new
method, these equations are replaced by the equations for the angles determining the principal axes or the bases
associated with the Lyapunov spectrum and the Lyapunov exponents. These equations involving sines and cosines
of the angles are highly nonlinear. For dissipative systems this nonlinearity does not pose a problem. However
in many cases, this nonlinearity renders the differential version of the standard method and the new method less
efficient and can even lead to inaccuracies, in strongly chaotic situations.
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5. Lyapunov eigenvectors

Earlier we had defined the matrik; as

dij = (& (1), &;(1)). (58)
Consider the quantities
5 )dij/dji, i =],

Define the vectord; as
di = (d11,do1, d31, ...), da = (0,dop, d32,...), €tC (60)

LetD;, Do, ..., Dy, be the orthonormal set of vectors obtained fidinby the Gram-Schmidt procedure, starting
with dy. It can now be shown thddy, Da, ... , D, are the eigenvectors @ M or the Lyapunov eigenvectors
corresponding to the eigenvalues Az, ... , A, [3]. In this section, we consider the computation and convergence
of these eigenvectors corresponding to the systems considered in Section 4.

In the standard method, we have to compite) andé; (r) separately to obtaid; ;. As all the vectors; (r) tend
to align alongéy, bothd;; = (& (1), &;(r)) andd;; = (e;(r), &;(r)) would tend to zero foj > 1. As&,-j is the ratio
of d;; andd;;, it would be difficult to compute them for largein this method. Even then, the procedure seems to
give reasonable results for all the systems, we have considered.

In the differential version of the standard method, it has been showra?,-yhaatisfy the following differential
equations [3]:

1
%_ij = Z %_ik(ij +Gyj), 1> ). (61)
k=j+1"/
So the eigenvectors are obtained by direct integration of these equations. This procedure does not pose any problem
as we do not come across division by small numbers here. Indeed we find that the eigenvectors converge much more
rapidly than the Lyapunov exponents in all the cases, as anticipated by Goldhirsch et al. [3].

In the new method, the orthonormal vectér&) are just the columns of the orthogonal matéx However, it
is not straightforward to computg(z) in this method. So we do not consider this method further here.

We summarize the results for the Lyapunov eigenvectors in Table 2 for the same systems with the same parameters
and initial conditions as in Table 1. As remarked earlier, the vectors converge sufficiently fast and the two methods
yield essentially identical results. Now for a Hamiltonian system, the tangent map Wfasiatisfies the ‘sympletic
condition’

MSM =S, (62)

with
S=1|.- o ], (63)

where 0 and are(n/2) x (n/2) null matrix and identity matrix, respectively, [14]. It can be shown th&t i§ an
eigenvector corresponding to eigenvaly¢hen the eigenvector corresponding to the eigenvalues SD [1]. This
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Table 2

85

Comparison of the Lyapunov eigenvectors computed using the differential and the standard methods for some systerds3natid 2

System with initial condition

Lyapunov eigenvectors

Standard method

Differential method

Driven van der Pol oscillaton(= 2)
z1=-10

z2=10

Lorenz systemi = 3)

z1=0.0

22=10

z3=0.0

Anisotropic Kepler Problemn(= 4)
z1=10

72=20

z3=10

z4 =05

Rossler hyperchaos (= 4)

z1 = —200

z2=0.0

z3=0.0

z4 =150

Coupled quartic oscillator(= 4, « = 6)
71 =08

z2 =05

z3=1.0

724=13

Coupled quartic oscillator(= 4, « = 8)
z1 =08

72=05

z3=10

74=13

D1(0.894, 0.447)
D(—0.447,0.894)

D1(0.004, 0.040, —0.999
D»(—0.789 —0.614, —0.028
D3(—0.614 0.788 0.029

D1(0.230,0.139 —0.868 —0.417)
D»(—0.291, 0.262 —0.427,0.815
D3(—0.373 0.854,0.187, —0.309
D4(0.850,0.427,0.171, 0.255

D1(0.660, 0.081, —0.051, 0.745
D»(—0.749,0.115 0.022 0.653)
D3(—0.014 —0.928 0.347,0.137)
D4(—0.058 —0.345 —0.936, 0.025

D1(0.687,0.685 0.162 0.182)

D>(—0.223 0.241,0.672 —0.663)
D3(0.670, —0.666, 0.231, —0.232)
D4(—0.170, —0.173 0.684 0.688)

D1(0.503 —0.351,0.581, —0.535
D»(0.634,0.744,0.080,0.196)

D3(—0.084, —0.192 0.638 0.741)
D4(0.581, —0.536, —0.498 0.356)

D1(0.894, 0.447)
D(—0.447,0.894)

D1(0.004, 0.040, —0.999
D»(—0.789 —0.614, —0.028
D3(—0.614,0.788 0.029

D1(0.233 0.136 —0.863 —0.428
D»(—0.288 0.263 —0.438 0.810
D3(—0.371,0.855 0.188 —0.309
D4(0.851, 0.425 0.170, 0.256)

D1(0.660, 0.081, —0.052 0.745
D»(—0.749,0.111, 0.022 0.653)
D3(0.030, 0.991, 0.005, —0.134)
D4(0.050, —0.003 0.998 0.025

D1(0.684,0.684,0.178 0.185

D»>(—0.234 0.241, 0.666, —0.666)
D3(0.666, —0.666, 0.241 —0.234)
D4(—0.185 —0.178 0.684 0.684)

D1(0.503 —0.352 0.583 —0.533
D»(0.635,0.740, 0.085 0.204)

D3(—0.088 —0.201, 0.633 0.743
D4(0.580, —0.536, —0.502 0.351)

3The eigenvectors are at= 1000 for the differential method and at= 100Q 35, 150, 170, 200, 20, respectively, from top to bottom for
the standard method.

symmetry is very evident in our numerical values of the eigenvectors in the case of coupled quartic oscillators, but
is satisfied only approximately in the case of the highly nonlinear anisotropic Kepler problem. It is to be noted that
the eigenvectors are dependent upon the initial conditions and are only ‘local’ properties.

6. Conclusions

In a recently proposed new method [5], the Lyapunov exporgrtse computed directly, so to say, by utilizing
representations of orthogonal matrices, applied to the tangent map. In this paper, we have established the connection
between this method and a ‘differential formulation’ of the standard procedure to compute the Lyapunov spectra.
We have also used the standard decomposKiond) ~ SO(3) x SO (3) to simplify the calculations for = 4,
which are otherwise very involved. It has been claimed that the new method has several advantages over the existing
methods as it does not require renormalization or reorthogonalization and requires lesser number of equations.
This led us to make a detailed comparison of the new method with the standard method as well as its differential
version, as regards accuracy and efficiency, by computing the full Lyapunov spectra of some typical nonlinear
systems with 2, 3 and 4 variables. There is reasonable agreement among the three procedures as far as the values of
the Lyapunov exponents are concerned. However, the standard method seems to score over the other two, as far as
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efficiency (as indicated by the CPU time for a process) is concerned, especially in certain strongly chaotic situations,
and is the most ‘robust’ procedure. The differential version of the standard method relies on a stability parameter
and seems to demand a prior estimate of the Lyapunov spectrum. The equations for tangent flow are nonlinear
in this version and highly so in the new method. This is what makes them less efficient, though the number of
coupled differential equations to be solved is smaller in the new method. However they are still useful as alternative
algorithms for the computation of Lyapunov spectra. We have also made a comparative study of the computation of
the Lyapunov eigenvectors using the standard method and its differential version. The eigenvectors converge fairly
rapidly (compared to the exponents) and the two procedures yield essentially identical results.
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