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Abstract

In this paper we make a detailed numerical comparison between three algorithms for the computation of the full Lyapunov
spectrum as well as the associated eigenvectors of general dynamical systems. They are: (a) the standard method, (b) a differ-
ential formulation of the standard method, and (c) a new algorithm which does not require rescaling and reorthogonalization.
We also bring out the relations among these methods. Moreover, we give a simplified formulation of the new algorithm when
the dimensionality of the system is 4. We find that there is reasonable agreement among the Lyapunov spectra obtained using
the three algorithms in most cases. However the standard method seems to be the most efficient followed by the new method
and the differential version of the standard method (in that order), as far as the CPU time for the computation of the Lyapunov
spectra is concerned. The new method is hardly suitable for finding the eigenvectors, whereas the other procedures give nearly
identical numerical results. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Extreme sensitivity to initial conditions is the commonly accepted defining property of chaos in nonlinear systems.
Lyapunov exponents which determine the exponential rates at which nearby trajectories diverge on an average, are the
quantitative characteristics of a chaotic orbit. A dynamical system of dimensionn hasn Lyapunov exponents andn
principal directions or eigenvectors, corresponding to a set of nearby trajectories [1]. One of the standard and popular
methods to compute the Lyapunov spectrum of a dynamical system involves a Gram–Schmidt Reorthonormalizaton
(GSR) of the ‘tangent vectors’ [2,15,16]. A differential version of this method has been formulated which corresponds
to a continuous GSR of the tangent vectors [3]. A modification of this method with the introduction of a stability
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parameter makes it dynamically stable, applicable to systems with degenerate spectra, and reliable for computations
[4]. Recently, a new algorithm for the computation of Lyapunov exponents has been proposed, which has been
claimed to be valid even for evaluating partial Lyapunov spectra [5]. This is based on the ‘QR’ method for the
decomposition of the tangent map (whereQ is an orthogonal matrix andR is an upper triangular matrix) which has
been studied by several authors [6]. It utilizes representations of orthogonal matrices applied to the tangent map,
and does not require the GSR procedure. It has also been claimed that it has several advantages over the existing
methods, as it involves a minimum number of equations. In this paper we have made a detailed comparison of
the three algorithms as regards accuracy and efficiency, by computing the full Lyapunov spectra of some typical
nonlinear systems with 2, 3 and 4 variables. We also compare the performance of the standard method with its
differential version, in computing the Lyapunov eigenvectors.

In Section 2, we outline the three methods with necessary details. We bring out the relation between the differential
version of the standard method and the new procedure, by deriving the differential equations of the latter from those
of the former. It is difficult to use the new method with a standard representation of orthogonal matrices when
the number of dimensions of the system is greater than 3. In Section 3, we give a convenient representation for
them forn = 4, by making use of the well-known fact thatSO(4) ∼ SO(3) × SO(3) [7]. This simplifies the
calculations considerably. In Section 4, we make a comparative study of the three algorithms for the computation of
Lyapunov spectra by taking up some typical 2, 3 and 4 dimensional systems. We have considered both dissipative
and Hamiltonian systems of some physical interest, for comparison. In Section 5, we compare the computation
of the Lyapunov eigenvectors (which are local properties), using these algorithms. In Section 6, we make a few
concluding remarks.

2. Computation of Lyapunov exponents

Consider ann-dimensional continuous-time dynamical system

dZ
dt

= F(Z, t), (1)

whereZ andF aren-dimensional vector fields. To determine then Lyapunov exponents of the system, corresponding
to some initial conditionZ(0), we have to find the long term evolution of the axes of an infinitesimal sphere of states
aroundZ(0). For this, consider the tangent map given by the set of equations,

dδZ
dt

= JδZ, (2)

whereJ is then × n Jacobian matrix with

Jij = ∂Fi

∂Zj

. (3)

A solution of Eq. (2) can be formally written as

δZ(t) = M (Z(t), t)δZ(0), (4)

whereM (Z(t), t) is the tangent map whose evolution equation is easily seen to be

dM
dt

= JM . (5)

In the following, we give a brief description of the procedures for computing then Lyapunov exponents of the
system using (a) the standard method, (b) the differential version of the standard method and (c) the new method
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based on the ‘QR’ decomposition ofM, which dispenses with the tangent vectorsδZ, and in a sense, computes the
exponents directly.

2.1. Standard method

Let λ1, λ2, . . . , λn be then Lyapunov exponents of the system in a decreasing sequence,λ1 ≥ λ2 ≥ · · · ≥ λn. In
the standard method [2,15,16] one first choosesn orthogonal tangent vectors as initial conditions for Eq. (2). The
standard choice iŝe1(0) = (1, 0, 0, . . . ); ê2(0) = (0, 1, 0, 0, . . . ), etc. Eq. (2) is then solved up to timeτ for each
of the initial conditions yielding vectorsv1(τ ), v2(τ ), . . . , vn(τ ). These vectors are orthonormalized using a GSR
procedure to yield

ê1(τ ) = v1

‖v1‖ , ê2(τ ) = v2 − (v2, ê1(τ ))ê1(τ )

‖v2 − (v2, ê1(τ ))ê1(τ )‖ , (6)

and so on. The norms in the denominators, denoted byN1(1), N2(1), . . . , Nn(1), are stored for the computation
of Lyapunov exponents. The procedure is repeated for a subsequent timeτ of integration usinĝei (τ ) as initial
conditions for Eq. (2). The resulting vectorsvi (2τ), are again orthonormalized using a GSR procedure to yield
orthonormal tangent vectorsêi (2τ), i = 1, . . . , n and the normsN1(2), N2(2), . . . , Nn(2). After r iterations, we
get the orthonomal set of vectorsêi (rτ ), i = 1, . . . , n at timet = rτ . The Lyapunov exponents are

λi = lim
r→∞

∑r
m=1logNi(m)

rτ
. (7)

This is due to the following reason. Since GSR never affects the direction of the first vector in a system, this vector
tends to seek out the direction in the tangent space, which is most rapidly growing and its norm is proportional to
eλ1t for larget . The second vector has its component along the direction of the first vector removed and its norm
would be proportional to eλ2t for larget and so on.

It is to be noted that we have to integraten(n + 1) coupled equations in this method, as there aren equations for
the fiducial trajectory in (1) andn copies of the tangent map equations in (2).

2.2. Differential version of the standard method

In this method [3], the orthonormal set of vectorsêi (t) are obtained by solving differential equations set up for
them, instead of resorting to the GSR at discrete steps. Rather, GSR is incorporated in the procedure itself. It can
be shown that

d

dt
êi (t) = Gêi − Gii êi −

i−1∑
j=1

(Gij + Gji)êj , (8)

whereG=J is the Jacobian matrix introduced in Eq. (2) and

Gij = (êi (t), J(Z(t))êj (t)), (9)

that is,Gij are the matrix elements of the Jacobian in the basisêi (t). Now let êi (0) evolve toei (t):

ei (t) = M (Z(t), t)êi (0), (10)

In fact, êi (t) is the orthonormalized set corresponding toei (t) i = 1, . . . , n. Define

dij = (ei (t), êj (t)). (11)
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The GSR procedure ensures that dij is a lower triangular matrix

dij = 0, i < j. (12)

It can be shown that

ḋii = Giidii , i = 1, . . . , n, (13)

and that,

dii = eλi t (14)

for larget. That is,

λi = lim
t→∞

1

t
logdii . (15)

The Lyapunov exponents are computed by solving the coupled Eqs. (1), (8) and (13), in this method. As there are
n2 equations for then components each of the orthonormal vectorsêi (t) in Eq. (8),n equations fordii in Eq. (13),
apart from then equations for the fiducial trajectory in (1), we have to integraten(n + 2) coupled equations in this
method.

In practice, this procedure is not numerically ‘stable’, as the setêi (t) may not remain orthonormal under the time
evolution. In particular,1ij defined by1ij = (êi (t), êj (t)) − δij , 1 ≤ i, j ≤ n may not all vanish. Moreover, the
method is not applicable to systems with degenerate exponents. These are remedied by a modification of the method,
using a stability parameterβ [4]. We replaceGii by Gii +β((êi , êi )− 1) andGij by Gij +β(êi , êj ), i 6= j in Eqs.
(8) and (13). Though it has been shown that the method is strongly stable whenβ > −λn, whereλn is the lowest
exponent, it is found in certain problems, thatβ has to be significantly larger than−λn in practice. Moreover, it may
be pointed out that this method requires prior knowledge of the lowest Lyapunov exponentλn for the computation
of the complete spectrumλi . If an arbitrarily high value is assigned toβ, one ends up with an arithmetic overflow
problem during computations.

2.3. New method based on a ‘QR’ decomposition of M

The new algorithm [5] is based on a ‘QR’ decomposition ofM, whereQ is an orthogonal matrix andR is an
upper triangular matrix. This results in a set of coupled differential equations for the Lyapunov exponents along
with the various angles parametrizing the orthogonal matrices. In this subsection, we derive these equations from
the differential version of the standard method considered in the previous subsection.

Consider the tangent map matrixM . From Eq. (10),

Mij = (êi (0), Mêj (0)) = (êi (0), ej (t)). (16)

As êj (t) form an orthonormal set of vectors, we have from Eq. (11),

ej (t) =
∑

êk(t)djk. (17)

Hence,

Mij =
∑

k

(êi (0), êk(t))djk. (18)

Define the matricesQ andR by

Qij = (êi (0), êj (t)) = (êj (t))i , (19)
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and

Rij = dji . (20)

Hence,

M = QR. (21)

Clearly the columns ofQ are the orthonormal vectorsêj (t), andQ an orthogonal matrix. Asd is a lower triangular
matrix,R an upper triangular matrix.

Now Gij andJij are the matrix elements of the Jacobian in the orthonormal basesêi (t) andêi (0), respectively,
and related by a rotation transformation represented byQ.

Introducing complete sets of states at the appropriate places, we have

Gij = (êi (t), Jêj (t)) =
∑
k,l

(êi (t), êk(0))(êk(0), Jêl (0))(êl (0), êj (t)) =
∑
k,l

Q̃ikJklQlj = (Q̃JQ)ij . (22)

Taking the scalar product of Eq. (8) withêj (0) and making appropriate changes of indices, we have

d

dt
Qjk = d

dt
(êj (0), êk(t)) = (êj (0), Jêk(t)) − Gkk(êj (0), êk(t)) −

k−1∑
l=1

(Gkl + Glk)(êj (0), êl (t))

= (êj (0), Jêk(t)) − GkkQjk −
k−1∑
l=1

(Gkl + Glk)Qjl. (23)

As all the quantities are real,

Q̃ij = Qji = (êj (0), êi (t)) = (êi (t), êj (0)). (24)

Multiplying Eq. (23) byQij on the right and using the fact that

Q̃ij (êj (0), Jêk(t)) =
∑
j

(êi (t), êj (0))(êj (0), Jêk(t)) = (êi (t), Jêk(t)) = Gik. (25)

we find
(

Q̃
d

dt
Q

)
ik

= Q̃ij

d

dt
Qjk = Gik − Gkk

∑
j

Q̃ijQjk −
∑
j

k−1∑
l=1

(Gkl + Glk)Q̃ijQjl

= Gik − Gkkδik −
k−1∑
l=1

(Gkl + Glk)δil, (26)

asQ is an orthonormal matrix.
Again, Q̃(d/dt)Q is an antisymmetric matrix asQ is orthogonal and it is sufficient to consideri > k. In this

case, the last term vanishes and we obtain,(
Q̃

d

dt
Q

)
ik

= Gik = (Q̃JQ)ik, i > k. (27)

Q is an orthogonal matrix is characterized byn(n − 1)/2 angles and we obtain differential equations for these
angles. From Eqs. (13) and (14), the differential equations for the Lyapunov exponents are

d

dt
(λi t) = Gii = (Q̃JQ)ii . (28)
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In this method, we have essentially traded the orthonormal vectorsêi (t) for the orthogonal matrixQ parametrized
by then(n − 1)/2 angles. We have to solve the coupled equations (1), (27) and (28) in this procedure to obtain the
Lyapunov exponents. We have to integraten + (n(n − 1)/2) + n = n(n + 3)/2 coupled equations in this method.

3. A convenient representation forQ and simplification of Q̃Q̇ for n = 4n = 4n = 4

In [5], the explicit representation of the orthogonal matrixQ used is the one in which it is represented as a product
of n(n − 1)/2 orthogonal matrices, each of which corresponds to a simple rotation in the(i − j)th plane(i < j).
ThusQ

Q = O(12)O(13)O(14) · · · O(1n)O(23) · · · O(n−2,n−1)O(n−1,n),

where

O
(ij)
kl =




1 if k = l 6= i, j ;
cosθij if k = l = i or j ;
sinθij if k = i, l = j ;
− sinθij if k = j, l = i;
0 otherwise.

(29)

In terms of the group generators,O(ij) can be written as

O(ij) = eθij (tij ), (30)

where the generatortij is represented by

(tij )kl = δikδjl − δilδjk. (31)

The generators satisfy the commutation relations,

[tij , tmn] = δintjm + δjmtin − δimtjn − δjntim. (32)

The above representation forQ is conceptually simple and works very well forn = 2 and 3 [5]. However, forn > 3,
it is hardly suitable for practical computations of Lyapunov exponents. This is because the expressions forQ̃Q̇ and
Q̃JQ are very lengthy and unmanageable even forn = 4.

In the present work, we employ a representation forQ, which simplifies the calculations and numerical compu-
tations forn = 4. This is based on the well-known fact thatSO(4) ∼ SO(3) × SO(3) [7]. From the generatorstij
we construct the following combinations:

M1 = 1
2(t23 + t14), N1 = 1

2(t23 − t14); M2 = 1
2(t31 + t24), N2 = 1

2(t31 − t24);
M3 = 1

2(t12 + t34), N3 = 1
2(t12 − t34). (33)

Then it is easily verified thatMi andNi generate two mutually commutingSO(3) algebras

[Mi, Mj ] = −εijkMk, [Ni, Nj ] = −εijkNk, [Mi, Nj ] = 0. (34)

We writeQ as

Q = QIIQI , (35)
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where

QII = O(6)O(5)O(4) = eθ6N3eθ5N2eθ4N1, (36)

and

QI = O(3)O(2)O(1) = eθ3M3eθ2N2eθ1M1. (37)

Using

eXYe−X = Y + [X, Y ] + 1
2! [X, [X, Y ]] + · · · , (38)

for any matricesX, Y and the commutation relations in Eq. (32), it can be easily verified that

Q̃Q̇ = Q̃I Q̇I + Q̃II Q̇II = [θ̇1 + θ̇3 sinθ2]M1 + [θ̇2 cosθ1 + θ̇3 sinθ1 cosθ2]M2

+[θ̇2 sinθ2 + θ̇3 cosθ1 cosθ2]M3 + [θ̇4 + θ̇6 sinθ5]N1 + [θ̇5 cosθ4 − θ̇6 sinθ4 cosθ5]N2

+[θ̇5 sinθ5 + θ̇6 cosθ4 cosθ5]N3. (39)

The explicit form of the matricesMi andNi can be found using Eqs. (31) and (33) and are written in terms of 2× 2
blocks as given below

M1 = 1

2




0
... σ1

· · · · · · · · ·
−σ1

... 0


 , M2 = 1

2




0
... −σ3

· · · · · · · · ·
σ3

... 0


 , M3 = 1

2




iσ2
... 0

· · · · · · · · ·
0

... iσ2


 ,

N1 = 1

2




0
... −iσ2

· · · · · · · · ·
−iσ2

... 0


 , N2 = 1

2




0
... −I

· · · · · · · · ·
I

... 0


 , N3 = 1

2




iσ2
... 0

· · · · · · · · ·
0

... −iσ2


 . (40)

Here I is the 2× 2 identity matrix andσ1, σ2, σ3 are the Pauli matrices:

I =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (41)

Then we find that

Q̃Q̇ =




0 −f1(θ, θ̇) −f2(θ, θ̇) −f3(θ, θ̇)

f1(θ, θ̇) 0 −f4(θ, θ̇) −f5(θ, θ̇)

f2(θ, θ̇) f4(θ, θ̇) 0 −f6(θ, θ̇)

f3(θ, θ̇) f5(θ, θ̇) f6(θ, θ̇) 0


 , (42)

where

f1 = −1
2(θ̇2 sinθ1 + θ̇3 cosθ1 cosθ2 + θ̇5 sinθ4 + θ̇6 cosθ4 cosθ5),

f2 = 1
2(θ̇2 cosθ1 − θ̇3 sinθ1 cosθ2 + θ̇5 cosθ4 − θ̇6 sinθ4 cosθ5),

f3 = −1
2(θ̇1 + θ̇3 sinθ2 − θ̇4 − θ̇6 sinθ5),

f4 = −1
2(θ̇1 + θ̇3 sinθ2 + θ̇4 + θ̇6 sinθ5),

f5 = 1
2(−θ̇2 cosθ1 + θ̇3 sinθ1 cosθ2 + θ̇5 cosθ4 − θ̇6 sinθ4 cosθ5),

f6 = −1
2(θ̇2 sinθ1 + θ̇3 cosθ1 cosθ2 − θ̇5 sinθ4 − θ̇6 cosθ4 cosθ5). (43)
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Using Eq. (39), we find that the equations forθ̇i , split neatly into two sets

 −1 0 − sinθ2

0 − sinθ1 − cosθ1 cosθ2

0 cosθ1 − sinθ1 cosθ2





 θ̇1

θ̇2

θ̇3


 =


 G32 + G41

G21 + G43

G31 − G42


 , (44)

and 
 −1 0 − sinθ5

0 − sinθ4 − cosθ4 cosθ5

0 cosθ4 − sinθ4 cosθ5





 θ̇4

θ̇5

θ̇6


 =


 G32 − G41

G21 − G43

G31 + G42


 . (45)

We also have

d

dt
(λi t) = Gii, i = 1, . . . , 4, (46)

from Eq. (28). Hence, to find the Lyapunov exponents of a dynamical system with four variables, we have to solve
the evolution equations for the system given by Eq. (1) and the tangent map equations given by Eqs. (44)–(46), after
findingG ≡ Q̃JQ.

Any 4 × 4 matrixJ can be written as

J =
16∑
i=1

aiXi, (47)

where the 16 matricesXi are defined in terms of 2× 2 blocks as

X1 =
[

I 0
0 I

]
, X2 =

[ −I 0
0 I

]
, X3 =

[
σ3 0
0 σ3

]
, X4 =

[ −σ3 0
0 σ3

]
,

X5 =
[

σ1 0
0 σ1

]
, X6 =

[ −σ1 0
0 σ1

]
, X7 =

[
iσ2 0
0 iσ2

]
, X8 =

[
iσ2 0
0 −iσ2

]
,

X9 =
[

0 I

I 0

]
, X10 =

[
0 I

−I 0

]
, X11 =

[
0 σ3

σ3 0

]
, X12 =

[
0 σ3

−σ3 0

]
, X13 =

[
0 σ1

σ1 0

]
,

X14 =
[

0 σ1

−σ1 0

]
, X15 =

[
0 −iσ2

−iσ2 0

]
, X16 =

[
0 −iσ2

iσ2 0

]
. (48)

It is easy to find commutators [Xi, Mj ] and [Xi, Nj ] from Eqs. (40) and (48). Then, using Eqs. (35)–(38), we can
obtain

G = Q̃JQ. (49)

4. A comparative study of the three algorithms for the computation of Lyapunov spectra

The standard algorithm involves an explicit GSR for finding the orthonormal setêi (t) and the Lyapunov spectrum.
The differential version considered in Section 2.2 amounts to computing the spectrum with continuous GSR. Here
explicit GSR is avoided as it is incorporated in the method. However, the differential equations forêi (t) in this
method are nonlinear, as they involve(êi (t), Jêj (t)) in the RHS, in contrast to the standard method which uses the
linearized equations forδZ directly. In the new method, one deals directly with the orthogonal matrix relatingêi (t)
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andêi (0). It uses a minimal number of variables and rescaling and reorthogonalization are eliminated. However, in
this method, the evolution equations for the angles and Lyapunov exponents are highly nonlinear involving sines and
cosines of the angles. Hence it is not clear ‘a priori’ which method is ‘superior’ and there is a need to compare the
efficiency and accuracy of the three methods. That is the subject matter of the present investigation. Here we consider
some typical nonlinear systems of physical interest withn = 2, 3 and 4. The driven van der Pol oscillator is taken as
an example of a two-dimensional system, whereas the standard Lorenz system is chosen forn = 3. Forn = 4, we
consider the coupled quartic oscillators and anisotropic Kepler problem as examples of conservative Hamiltonian
systems and the Rössler hyperchaos system as an example of a dissipative system. We give the differential equations
for these dynamical systems in the following.
1. Driven van der Pol oscillator (n = 2):

d

dt

(
z1

z2

)
=

(
z2

−d(1 − z2
1)z2 − z1 + b cosωt,

)
, (50)

whereb andd are parameters andω is the driving frequency. In our numerical work we have chosend =
−5.0, b = 5.0 andω = 2.47 as the parameter values.

2. Lorenz system (n = 3):

d

dt


 z1

z2

z3


 =


 σ(z2 − z1)

z1(ρ − z3) − z2

z1z2 − βz3


 . (51)

This system is too well-known to require any further discussion. For computations we setσ = 10.0, ρ = 28.0
andβ = 8

3.
3. Coupled quartic oscillators (n = 4): This is a conservative system and the Hamiltonian is given by

H = z2
3

2
+ z2

4

2
+ z4

1 + z4
2 + αz2

1z
2
2, (52)

wherez1 andz2 are the canonical coordinates,z3 andz4 the corresponding momenta andα a parameter. The
Hamiltonian in Eq. (53) finds applications in high energy physics [8], to mention just one example. The equations
of motion are

d

dt




z1

z2

z3

z4


 =




z3

z4

−(4z3
1 + 2αz1z

2
2)

−(4z3
2 + 2αz2

1z2)


 . (53)

This system is known to be integrable forα = 0, 2 and 6 [9].
4. Anisotropic Kepler problem (n = 4): The Hamiltonian of this system is given by

H = p2
ρ

2
+ γ

p2
z

2
− e2√

ρ2 + z2
, (54)

whereγ is a number.
The Hamiltonian given above describes the motion of an electron in the Coloumb field in an anisotropic

crystal, where its effective mass along thex–y plane andz-direction are different [10].γ = 1 corresponds to
the isotropic case and is integrable. Whenγ 6= 1, the system is nonintegrable. Because of the singularity at
ρ = z = 0, the Hamiltonian in the above form is hardly suitable for numerical integration. For this we choose
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z1 = √
ρ + z andz2 = √

ρ − z as the canonical variables. We can find the corresponding canonical momenta
z3 andz4 in terms ofpρ andpz. We also use a re-parametrized time variableτ defined by dt = dτ(z2

1 + z2
2).

The original Hamiltonian with the old variables and energyE corresponds to the following Hamiltonian with
H ′ = 2 in terms of the new variables [11]:

H ′ = 2 = 1

2
(z2

3 + z2
4) − E(z2

1 + z2
2) + (γ − 1)

(z1z3 − z2z4)
2

2(z2
1 + z2

2)
. (55)

The equations of motion resulting from this are

d

dt




z1

z2

z3

z4


 =




z3 + (γ − 1)z1
(z1z3 − z2z4)

(z2
1 + z2

2)

z4 − (γ − 1)z2
(z1z3 − z2z4)

(z2
1 + z2

2)

2Ez1 − (γ − 1)
(z2

3z1z
2
2 + z2z3z4(z

2
1 − z2

2) − z2
2z1z

2
4)

(z2
1 + z2

2)

2Ez2 − (γ − 1)
(z2

4z2z
2
1 − z1z3z4(z

2
1 − z2

2) − z2
1z2z

2
3)

(z2
1 + z2

2)




. (56)

We have chosenγ = 0.61 for computational purposes.
5. Rössler hyperchaos system (n=4): This is a dissipative system and an extension of the three dimensional Rössler

attractor [12]. It is described by the equations

d

dt




z1

z2

z3

z4


 =




−(z2 + z3)

z1 + az2 + z4

b + z1z3

cz4 − dz3


 , (57)

wherea, b, c andd are parameters whose values are taken to be 0.25, 3.0, 0.05 and 0.5, respectively, for our
computations.

In all these cases, the full Lyapunov spectrum is computed using the three methods. The time of integration is
chosen to ensure reasonable convergence of the Lyapunov exponents. In most of the cases the time of integration
wast = 1 00 000 (the exceptions are the anisotropic Kepler problem and the Rössler hyperchaos system using the
differential version of the standard method due to the problem of numerical overflow). For all the systems, we have
used a variable step-size Runge Kutta routine (RKQC) for integration, with an error tolerance,ε = 10−6 − 10−8.
All the computations were performed on a DEC Alpha based workstation running OpenVMS. The CPU time taken
for each system with each of the algorithms was noted. This is the actual time taken by the CPU to accomplish a
specific process (independent of the other processes running in the system). The details of the comparison between
the two methods are summarized in Table 1.

It may be noticed that all the methods yield essentially the same Lyapunov spectrum. For any autonomous
dynamical system, one of the Lyapunov exponents has to be zero (corresponding to the difference vectorδzzz lying
along the trajectory itself). For the Lorenz system, the Rössler hyperchaos system (both dissipative) and the coupled
quartic oscillators, this condition is satisfied by all the algorithms. For the anisotropic Kepler problem all the
methods fail the test. This aspect needs to be studied further. For Hamiltonian systems, for every eigenvalueλ,
there is an eigenvalue−λ. This symmetry is respected by all the algorithms. For the coupled quartic oscillators,
all the exponents should be zero corresponding to the integrable case ofα = 6. This is indeed satisfied by all the
algorithms. In Fig. 1 we give plots of Lyapunov exponents as functions of time, for a typical case. Again, there
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Table 1
Comparison of the Lyapunov spectrum obtained by standard, differential and new methods and the computational time required to evaluate them
with three different methods for some of the systems withn = 2, 3 and 4a

System with initial condition t = 10 000 t = 100 000

Standard Differential New Standard Differential New

Driven van der Pol oscillator (n = 2)
z1 = −1.0 0.0985 0.0980 0.0989 0.0987 0.0991 0.0981
z2 = 1.0 −6.8494 −6.8300 −6.8379 −6.8411 −6.8359 −6.8400

(−6.7509) (−6.7321) (−6.7390) (−6.7424) (−6.7368) (−6.7419)
[825.56] [2224.31] [519.22]

Lorenz system (n = 3)
z1 = 0.0 0.9022 0.9040 0.9038 0.9051 0.9056 0.9056
z2 = 1.0 0.0003 0.0003 0.0001 0.0000 0.0000 0.0000
z3 = 0.0 −14.5691 −14.5710 −14.5705 −14.5718 −14.5723 −14.5723

(−13.667) (−13.667) (−13.667) (−13.667) (−13.667) (−13.667)
[1668.7] [15492.7] [2394.30]

Anisotropic Kepler problem (n = 4)
z1 = 1.0 0.1386 0.1343 0.1434 0.1332 0.1360
z2 = 2.0 0.0834 0.0830 0.0860 0.0832 0.0831
z3 = 1.0 −0.0845 −0.0817 −0.0864 −0.0833 −0.0833
z4 = 0.5 −0.1375 −0.1355 −0.1429 −0.1331 −0.1357

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[303.25] [201.04] [350.18]

Rössler hyperchaos (n = 4)
z1 = −20.0 0.1108 0.1080 0.1125 0.1121 0.1128
z2 = 0.0 0.0224 0.0218 0.0225 0.0196 0.0214
z3 = 0.0 −0.0003 −0.0003 −0.0003 −0.0000 −0.0000
z4 = 15.0 −25.9113 −23.7753 −23.9904 −25.1886 −24.7527

(−25.778) (−23.646) (−23.862) (−25.057) (−24.619)
[4792.61] [5595.99] [1527.68]

Coupled quartic oscillator (n = 4, α = 6)
z1 = 0.8 0.0009 0.0010 0.0010 0.0001 0.0001 0.0001
z2 = 0.5 0.0008 0.0008 0.0008 0.0001 0.0001 0.0001
z3 = 1.0 −0.0008 −0.0008 −0.0008 −0.0001 −0.0001 −0.0001
z4 = 1.3 −0.0009 −0.0010 −0.0010 −0.0001 −0.0001 −0.0001

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[492.09] [5453.3] [803.49]

Coupled quartic oscillator (n = 4, α = 8)
z1 = 0.8 0.1892 0.2096 0.1739 0.1738 0.1793 0.1806
z2 = 0.5 0.0011 0.0011 0.0010 0.0001 0.0001 0.0001
z3 = 1.0 −0.0011 −0.0011 −0.0013 −0.0001 −0.0001 −0.0001
z4 = 1.3 −0.1892 −0.2095 −0.1795 −0.1738 −0.1793 −0.1806

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[492.09] [7658.6] [39012.8]

aSum of the exponents and CPU time in sec are given in ( ) and [ ], respectively.

is no significant difference between the three algorithms as far as the convergence of the Lyapunov exponents is
concerned. It is noteworthy that the differential method works well for even systems with degenerate spectra like
the coupled quartic oscillators.

On the whole, the standard method seems to have an edge over the new method as far as the CPU time for
the computation of the Lyapunov spectrum is concerned. The differential version of the standard method generally
consumes more CPU time compared to the other two methods. For some systems like the anisotropic Kepler problem
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Fig. 1. Plot of the maximal Lyapunov exponent for the coupled quartic oscillator system withα = 8.

and the Rössler hyperchaos system, there are numerical overflow problems, whatever be the values ofβ and the
error toleranceε one chooses for this algorithm. In fact, it appears that the value ofβ has to be significantly higher
than−λn (indicated by the stability analysis) for these systems, for reasonable convergence.

For the system of coupled quartic oscillators, the CPU time is abnormally high for the new method, corresponding
to the nonintegrable case ofα = 8. This is true both for small and large energies. For large energies (∼ 25 000),
since the energy varied by∼ 15 when we used the RKQC routine, we also used a symplectic procedure which
eliminates secular variations in the energy [13]. With this routine, the CPU times were nearly the same for both
the methods. However the new method yields poor results for the Lyapunov spectrum. For instance corresponding
to the initial conditionz1 = 7.0, z2 = 7.0, z3 = 5.0 andz4 = 4.0, the Lyapunov spectrum computed using the
new and the standard methods are(1.5506, 0.3254, −0.3261, −1.5499) and(1.5205, 0.0001, −0.0001, −1.5205),
respectively. The differential version of the standard method led to a numerical overflow problem, corresponding
to this initial condition.

In the standard method, after solving for the fiducial trajectory, the equations for the tangent flow are linearized
equations. In differential method, corresponding to continuous GSR, these equations are nonlinear. In the new
method, these equations are replaced by the equations for the angles determining the principal axes or the bases
associated with the Lyapunov spectrum and the Lyapunov exponents. These equations involving sines and cosines
of the angles are highly nonlinear. For dissipative systems this nonlinearity does not pose a problem. However
in many cases, this nonlinearity renders the differential version of the standard method and the new method less
efficient and can even lead to inaccuracies, in strongly chaotic situations.
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5. Lyapunov eigenvectors

Earlier we had defined the matrixdij as

dij = (ei (t), êj (t)). (58)

Consider the quantities

d̄ij =
{

dij /djj , i ≥ j,

= 0, i < j.
(59)

Define the vectors̄di as

d̄1 = (d̄11, d̄21, d̄31, . . . ), d̄2 = (0, d̄22, d̄32, . . . ), etc. (60)

Let D1, D2, . . . , Dn , be the orthonormal set of vectors obtained fromd̄ ′
i by the Gram–Schmidt procedure, starting

with d̄1. It can now be shown thatD1, D2, . . . , Dn , are the eigenvectors of̃MM or the Lyapunov eigenvectors
corresponding to the eigenvaluesλ1, λ2, . . . , λn [3]. In this section, we consider the computation and convergence
of these eigenvectors corresponding to the systems considered in Section 4.

In the standard method, we have to computeei (t) andêi (t) separately to obtain̄dij . As all the vectorsej (t) tend
to align alonĝe1, bothdij = (ei (t), êj (t)) anddjj = (ej (t), êj (t)) would tend to zero forj > 1. As d̄ij is the ratio
of dij anddjj , it would be difficult to compute them for larget , in this method. Even then, the procedure seems to
give reasonable results for all the systems, we have considered.

In the differential version of the standard method, it has been shown thatd̄ij satisfy the following differential
equations [3]:

d

dt
d̄ij =

i∑
k=j+1

dkk

djj

d̄ik(Gjk + Gkj ), i > j. (61)

So the eigenvectors are obtained by direct integration of these equations. This procedure does not pose any problem
as we do not come across division by small numbers here. Indeed we find that the eigenvectors converge much more
rapidly than the Lyapunov exponents in all the cases, as anticipated by Goldhirsch et al. [3].

In the new method, the orthonormal vectorsêi (t) are just the columns of the orthogonal matrixQ. However, it
is not straightforward to computeei (t) in this method. So we do not consider this method further here.

We summarize the results for the Lyapunov eigenvectors in Table 2 for the same systems with the same parameters
and initial conditions as in Table 1. As remarked earlier, the vectors converge sufficiently fast and the two methods
yield essentially identical results. Now for a Hamiltonian system, the tangent map matrixM satisfies the ‘sympletic
condition’

M̃SM = S, (62)

with

S =




0
... I

· · · · · · · · ·
−I

... 0


 , (63)

where 0 andI are(n/2) × (n/2) null matrix and identity matrix, respectively, [14]. It can be shown that ifD is an
eigenvector corresponding to eigenvalueλ, then the eigenvector corresponding to the eigenvalue−λ is SD [1]. This
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Table 2
Comparison of the Lyapunov eigenvectors computed using the differential and the standard methods for some systems withn=2, 3 and 4a

System with initial condition Lyapunov eigenvectors

Standard method Differential method

Driven van der Pol oscillator (n = 2)
z1 = −1.0 D1(0.894, 0.447) D1(0.894, 0.447)
z2 = 1.0 D2(−0.447, 0.894) D2(−0.447, 0.894)
Lorenz system (n = 3)
z1 = 0.0 D1(0.004, 0.040, −0.999) D1(0.004, 0.040, −0.999)
z2 = 1.0 D2(−0.789, −0.614, −0.028) D2(−0.789, −0.614, −0.028)
z3 = 0.0 D3(−0.614, 0.788, 0.029) D3(−0.614, 0.788, 0.029)
Anisotropic Kepler Problem (n = 4)
z1 = 1.0 D1(0.230, 0.139, −0.868, −0.417) D1(0.233, 0.136, −0.863, −0.428)
z2 = 2.0 D2(−0.291, 0.262, −0.427, 0.815) D2(−0.288, 0.263, −0.438, 0.810)
z3 = 1.0 D3(−0.373, 0.854, 0.187, −0.309) D3(−0.371, 0.855, 0.188, −0.309)
z4 = 0.5 D4(0.850, 0.427, 0.171, 0.255) D4(0.851, 0.425, 0.170, 0.256)
Rössler hyperchaos (n = 4)
z1 = −20.0 D1(0.660, 0.081, −0.051, 0.745) D1(0.660, 0.081, −0.052, 0.745)
z2 = 0.0 D2(−0.749, 0.115, 0.022, 0.653) D2(−0.749, 0.111, 0.022, 0.653)
z3 = 0.0 D3(−0.014, −0.928, 0.347, 0.137) D3(0.030, 0.991, 0.005, −0.134)
z4 = 15.0 D4(−0.058, −0.345, −0.936, 0.025) D4(0.050, −0.003, 0.998, 0.025)
Coupled quartic oscillator (n = 4, α = 6)
z1 = 0.8 D1(0.687, 0.685, 0.162, 0.182) D1(0.684, 0.684, 0.178, 0.185)
z2 = 0.5 D2(−0.223, 0.241, 0.672, −0.663) D2(−0.234, 0.241, 0.666, −0.666)
z3 = 1.0 D3(0.670, −0.666, 0.231, −0.232) D3(0.666, −0.666, 0.241, −0.234)
z4 = 1.3 D4(−0.170, −0.173, 0.684, 0.688) D4(−0.185, −0.178, 0.684, 0.684)
Coupled quartic oscillator (n = 4, α = 8)
z1 = 0.8 D1(0.503, −0.351, 0.581, −0.535) D1(0.503, −0.352, 0.583, −0.533)
z2 = 0.5 D2(0.634, 0.744, 0.080, 0.196) D2(0.635, 0.740, 0.085, 0.204)
z3 = 1.0 D3(−0.084, −0.192, 0.638, 0.741) D3(−0.088, −0.201, 0.633, 0.743)
z4 = 1.3 D4(0.581, −0.536, −0.498, 0.356) D4(0.580, −0.536, −0.502, 0.351)

aThe eigenvectors are att = 1000 for the differential method and att = 1000, 35, 150, 170, 200, 20, respectively, from top to bottom for
the standard method.

symmetry is very evident in our numerical values of the eigenvectors in the case of coupled quartic oscillators, but
is satisfied only approximately in the case of the highly nonlinear anisotropic Kepler problem. It is to be noted that
the eigenvectors are dependent upon the initial conditions and are only ‘local’ properties.

6. Conclusions

In a recently proposed new method [5], the Lyapunov exponentsδ, are computed directly, so to say, by utilizing
representations of orthogonal matrices, applied to the tangent map. In this paper, we have established the connection
between this method and a ‘differential formulation’ of the standard procedure to compute the Lyapunov spectra.
We have also used the standard decompositionSO(4) ∼ SO(3) × SO(3) to simplify the calculations forn = 4,
which are otherwise very involved. It has been claimed that the new method has several advantages over the existing
methods as it does not require renormalization or reorthogonalization and requires lesser number of equations.
This led us to make a detailed comparison of the new method with the standard method as well as its differential
version, as regards accuracy and efficiency, by computing the full Lyapunov spectra of some typical nonlinear
systems with 2, 3 and 4 variables. There is reasonable agreement among the three procedures as far as the values of
the Lyapunov exponents are concerned. However, the standard method seems to score over the other two, as far as
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efficiency (as indicated by the CPU time for a process) is concerned, especially in certain strongly chaotic situations,
and is the most ‘robust’ procedure. The differential version of the standard method relies on a stability parameter
and seems to demand a prior estimate of the Lyapunov spectrum. The equations for tangent flow are nonlinear
in this version and highly so in the new method. This is what makes them less efficient, though the number of
coupled differential equations to be solved is smaller in the new method. However they are still useful as alternative
algorithms for the computation of Lyapunov spectra. We have also made a comparative study of the computation of
the Lyapunov eigenvectors using the standard method and its differential version. The eigenvectors converge fairly
rapidly (compared to the exponents) and the two procedures yield essentially identical results.
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