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ABSTRACT 
Time series is a sequence of observations of one 
or a few time variable of a dynamical system. 
Linear analysis assumes that the intrinsic 
dynamics of the system is related to the fact that 
small causes lead to small effects. On the other 
hand, nonlinear data set may be related to 
irregular data with purely deterministic inputs. 
Nonlinear time series analysis is of special 
interest of several areas. Time series prediction 
is an area of this general topic that has the 
objective of estimating future values from a 
known time series, called past, without any 
knowledge of the governing equations of 
phenomena. This article considers the analysis of 
some prediction techniques applied to time series 
obtained from an experimental nonlinear 
pendulum. Noise suppression is not 
contemplated and all signals are analyzed 
without filtering. Periodic and chaotic signals are 
analyzed employing three different predictors: 
simple nonlinear, polynomial and radial basis 
functions. The influence of state space 
reconstruction is exploited showing that it is an 
important task to be taking into account in 
prediction problems. 
 
1. Introduction. 
 
The most direct link between chaos theory and 
the real world is the analysis of time series from 
real systems in terms of nonlinear dynamics. 
Time series is a sequence of observations of one 
or a few time variable of the system [1]. Usually, 
it is related to a nonlinear dynamical system 
which experimental analysis furnishes a scalar 
sequence of measurements. 
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establish a prediction accuracy, defining the 
predictor error. 
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Figure 1. Time series prediction. 

 
Lyapunov exponents give an indication of how 
far into the future reliable predictions can be 
made. On the other hand, information dimension 
gives indication of how complex must be the 
system model [2]. The accuracy of the predictor 
is evaluated from an error value that can be 
defined with different ways. In this text, a 
normalized root mean square error, eRMS, is 
considered: 
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where p is the number of steps in future and σ is 
the standard deviation of the signal. Usually, 
there are two kinds of error that could be 
evaluated from predictions: in-sample and out-
of-sample errors.  
Gershenfeld and Weigend [3] says that the 
beginning of the modern study of time series 
prediction is due to Yule [2], which presents, for 
the first time, the autoregressive technique 
applied to a state variable in order to estimate the 
future behavior of a dynamical system. 
 Nowadays, there are several areas with 
special interest in time series prediction. Among 
them, one could mention engineering [5–7], 
economics [8–9], marketing [10], weather 
forecasting [11–12] and medicine [13]. 
Prediction can be imagined even in arts. Dirst 
and Weigend [14] employ these techniques in 

order to analyze an unfinished music of Johann 
Sebastian Bach (1685-1750). 
In general, techniques for time series prediction 
may be classified in linear and nonlinear 
methods. Other classification reported in 
literature considers local and global methods [2]. 
References [1, 15–19] provide an overview of 
the main aspects related to nonlinear time series 
analysis and prediction. 
 Linear prediction methods include linear 
zeroth order, moving average, autoregressive 
and autoregressive moving average [1, 18–19]. 
Nonlinear methods are based on the state space 
reconstruction [1–2, 15, 19, 21–22] and include 
techniques such as: simple nonlinear, polynomial 
and radial basis functions. Recently, neural 
networks are being used as a good alternative in 
prediction problems [1–2, 15, 21]. Fuzzy Logic 
and Logic Rules are also new improvements 
included in prediction techniques [10–11]. 
 This article considers the analysis of some 
prediction techniques applied to time series 
obtained from an experimental nonlinear 
pendulum [23]. Noise suppression is not 
contemplated and all signals are analyzed 
without filtering. Periodic and chaotic signals are 
contemplated employing three different 
predictors: simple nonlinear, polynomial and 
radial basis functions. The influence of state 
space reconstructions is analyzed. 
 
2. State Space Reconstruction. 
 
The basic idea of the state space reconstruction 
is that a signal contains information about 
unobserved state variables that can be used to 
predict the present state. Therefore, a scalar time 
series, , may be used to construct a vector 
time series that is equivalent to the original 
dynamics from a topological point of view. The 
state space reconstruction needs to form a 
coordinate system to capture the structure of 
orbits in state space, which could be done using 
lagged variables, , where τ is the time delay. 
Then, it is possible to use a collection of time 
delays to create a vector in a D

nS

τ+nS

e-dimensional 
space, 
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( ) ( )( )nnDenDenn SSSS ,,...,, 21 τττ −−−−−=U  (2) 
 
The literature reports many methods employed 
to determine time delay. The mutual information 
method [24] presents good results, which 
disseminate its use. The determination of 
embedding dimension, De, also involves 
different methods. The false nearest neighbors 
(FNN) [25] is a good alternative with this aim. 
 
 
2.1 - Method of Average Mutual Information 
 
 Fraser and Swinney [24] establishes that the 
time delay τ corresponds to the first local 
minimum of the average mutual information 
function I(τ), which is defined as follows, 
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where  is the probability of the measure 

,  is the probability of the measure 
, and is the joint probability of 

the measure of  and  [24]. The average 
mutual information is really a kind of 
generalization to the nonlinear phenomena from 
the correlation function in the linear phenomena. 
When the measures  and  are completely 
independent, I(τ) = 0. On the other hand, when 

 and  are equal, I(τ) is maximum. 
Therefore, plotting I(τ) versus τ it is possible to 
identify the best value for the time delay which 
is related to the first local minimum. 
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2.2 - Method of False Nearest Neighbors 
 
 The false nearest neighbors algorithm (FNN) 
was originally developed for determining the 
number of time delay coordinates needed to 
recreate autonomous dynamics, but it is extended 
to examine the problem of determining the 
proper embedding dimension. 
 In an embedding dimension that is too small 
to unfold the attractor, not all points that lie close 

to one another will be neighbors because of the 
dynamics. Some will actually be far from each 
other and simply appear as neighbors because 
the geometric structure of the attractor has been 
projected down onto a smaller space [25]. 
 In order to use the method of false nearest 
neighbors, a D-dimensional space is considered 
where the point  has rth nearest neighbors, 

. The square of the Euclidean distance 
between these points is, 

nU
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Now, going from dimension D to D+1 by time 
delay, there is a new coordinate system and, as a 
consequence, a new distance between  and 

. When these distances change from one 
dimension to another, these are false neighbors. 
A natural criterion for catching embedding errors 
is that the increase in distance between  and 

 is large when going from dimension D to 
D+1. The increase in distance can be stated with 
distance equations and some criteria must be 
established to designate the existence of false 
neighbors. Reference [25] establishes proper 
criteria for this aim. 

nU
r
nU

nU
r
nU

 
3. Prediction Methods. 
 
 This section presents a brief discussion on 
prediction methods. Basically, three different 
techniques are considered: simple nonlinear, 
polynomial and radial basis functions. 
 
3.1 Simple Nonlinear Prediction 
 
 Simple nonlinear prediction is based on the 
state space reconstruction. After the 
reconstruction, in order to predict a time ∆n (∆n 
= 1, ..., p) ahead N, it is necessary to define a 
parameter ε that is related to the size of the 
neighborhood ( )NV Uε  around point . 
Therefore, for all points  closer than ε to 

NU

nU

NU ( )( )Nn V UU ε∈  look up the individual 
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prediction Sn+∆n. The prediction PN+∆n is then 
calculated from the average of the individual 
predictions Sn+∆n [1]. 
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where ( )NV Uε  denotes the number of elements 

of the neighborhood .  ( )NV Uε

 Figure 2 presents a schematic representation 
of the simple nonlinear prediction applied to a 
time series with 10 elements and De = 2. For a 
parameter ε, points U2, U4, U5, U7 and U8 are 
inside the neighborhood and hence, the first 
prediction, , is evaluated from the average of 
the values S

11P
3, S5, S6, S8 and S9. 
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Figure 2. Simple nonlinear prediction. 

 
The simple nonlinear predictor may be 
understood as a local method since it uses only a 
limited number of neighboring samples to 
perform the prediction.  
 
3.2 Polynomial Prediction 
 
 A general procedure for prediction is to adjust 
general functions )...,,1( αΦ =jj  to the last m 
values of the time series.  
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Parameters aj (j = 1, …, α) are defined in order 
to minimize the in-sample error [1]. The 
minimization of this error furnishes: 
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which follows the linear system, 
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where Cij is the covariant matrix given by, 
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A recursive procedure allows one to estimate 
predicted values of the time series. Polynomial 
function is a good alternative for the time series 
modeling: ( ) ( ) αΦ .,..,0, == jSS j

nnj , that is, 
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Polynomial order is an important task in this 
method. Gershenfeld and Weigend [3] says that 
lower degrees is related to robust predictions, 
however, it is not possible to capture all details 
of the data set structure. On the other hand, 
higher order polynomials tend to capture noise 
characteristics of the signal, which is related to a 
phenomenon known by overfitting. The 
polynomial predictor may be understood as a 
global method since it is a generalization of 
Taylor series expansion to perform the 
prediction. 
 
3.3 Radial Basis Functions Prediction 
 
 Radial basis functions constitute another 
alternative to the known functions employed to 
the predictor presented in the preceding section. 
With this aim, the predictor may be written as 
follows, 
 

(∑
=

+ =
α

Φ
1

1
j

njjn aP U ) (11) 

 



Nonlinear prediction of time series obtained from an experimental pendulum 155 

where jΦ  are radial basis functions. Usually, 
bell-shaped functions are defined with respect to 
k centers on the attractor, yj, with rj width. 
Therefore, 
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Parameters aj are defined from an error 
minimization process. It is reported in literature 
that these functions are convenient to model time 
series related to complex behaviors, as strange 
attractors. However, there is a raise in the 
number of parameters, which is associated with 
higher computational effort. 
 Lillekjendlie et al. [17] considers this 
technique as a semi-local method, which 
combines the smoothness of global predictors 
and the localized dependence on new 
information of local predictors. This article 
employs the algorithm due to Hegger et al. [22] 
to evaluate predictions considering 10 centers 
uniformly distributed over the domain. 
 
4. Experimental Signals. 
 
 The experimental data related to the nonlinear 
pendulum response is obtained from the 
apparatus depicted in Figure 3 [23]. The 
pendulum is constructed by a disc with a lumped 
mass (1) and is connected to a rotary motion 
sensor (3). An adjustable magnetic device (2) 
regulates the dissipation of the system. A motor-
string-spring device (4-5) provides the excitation 
of the pendulum. The motor (5), PASCO ME-
8750, has the following characteristics: 12V DC, 
0.3-3Hz and 0-0.3A. The signal measurement is 
done with the aid of two transducers. The rotary 
motion sensor (3), PASCO encoder CI-6538, has 
1440 orifices and a precision of 0.250. The 
magnetic transducer (6) is employed in order to 
generate a frequency signal associated with the 
forcing frequency of the motor, which is used to 
construct the Poincaré map of the signal. The 
apparatus is connected with an A/D interface, 
Science Workshop Interface 500 (CI-6760), 
where the sampling frequency varies from 2Hz 
to 20kHz. The interface oversamples the signal 8 
times for frequencies below 100Hz and a single 

time for higher sampling rates. Furthermore, this 
interface does not have any anti-aliasing filters 
and a 9V AC-DC adapter provides power 
supply.  
All signals are analyzed with the aid of the 
Science Workshop Data Acquisition, which 
allows one to evaluate angular velocity and 
angular position. Noise suppression is not 
contemplated and all signals are stored without 
filtering. In order to perform the analysis of the 
nonlinear pendulum, one considers a time series 
which is a sequence of angular position, θ, 
measured from the experiment: =nS nθ , n = 1, 
2,..., N. 
 Figure 4 presents two different signals 
obtained from the cited experimental apparatus 
[23]: A period-2 and a chaotic signal. The 
determination of delay parameters is done 
employing the algorithm of Hegger et al. [22]. 
Figure 5 presents results related to these 
determinations for the periodic signal. Time 
delay and embedding dimension are, 
respectively, τ = 7∆t and De = 3. 
 Figure 6 presents time delay parameters 
analysis for the chaotic signal. Now, time delay 
and embedding dimension are τ = 6∆t and De = 
3. 

1 2

3

4
4

5

7

6  
Figure 3. Experimental apparatus of the 

nonlinear pendulum: (1) Disc with lumped mass; 
(2) Magnetic damping device; (3) Rotary motion 

sensor: PASCO CI-6538; (4) Spring; 
(5) DC Motor: PASCO ME-8750; (6) Magnetic 

transducer: TEKTRONIX; 
(7) Science workshop interface: PASCO CI-

6760. 
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Figure 4. Experimental signals. 
(a) Periodic; (b) Chaotic. 
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Figure 5. Delay parameters for periodic signal (N 
= 37090): (a) Mutual information versus τ; (b) 

False neighbors versus De. 
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Figure 6. Delay parameters for chaotic signal (N 
= 29589): (a) Mutual information versus τ; (b) 

False neighbors versus De. 
 The following sections discuss prediction 
techniques applied to both periodic and chaotic 
experimental time series. In all Figures, symbols 
are used to identify techniques. 
 
5. Prediction in Periodic Signal. 
 
The analysis of periodic signal assumes N = m = 
37090. Initially, a scalar prediction (De = 1 and τ 
= ∆t) is considered, and then these parameters 
are varied in order to analyze the effect of state 
space reconstruction in predictions. The analysis 
is presented contemplating two situations: short-
term prediction, arbitrarily defined for p ≤ 20, 
and long-term prediction, defined for p > 20. 
Furthermore, results are analyzed in terms of 
RMS in-sample errors. 
Figure 7 shows scalar predictions for the three 
methods discussed here. In general, polynomial 
predictor presents better results in short-term. 
For the first point, however, simple nonlinear 
predictor presents the better prediction. For long-
term prediction, simple nonlinear prediction 
presents better results, despite the irregular 
behavior of the response. It should be pointed 
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out that this irregularity is related to inadequate 
delay parameters [22]. 
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Figure 7. RMS error for periodic signal: N = m 
=37090, De = 1 and τ = 1∆t; (a) p = 1 to 20; (b) p 

= 1 to 200. 
 The forthcoming analysis considers different 
delay parameters, evaluating the influence of 
state space reconstruction. Changing only the 
time delay, τ, results are not altered. The next 
step considers the variation of embedding 
dimension, De, which performs a great influence 
in prediction results (Figure 8). For the first 
prediction, methods present similar responses. 
The next predictions show that simple nonlinear 
predictor presents better results either in short-
term or long-term prediction. Notice, however, 
that prediction related to the simple nonlinear 
predictor continues to present an irregular 
behavior associated with inadequate delay 
parameters. 
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(b) 
Figure 8. RMS error for the periodic signal: N = 
m = 37090, De = 3 and τ = 1∆t; (a) p = 1 to 20; 

(b) p = 1 to 200. 
 
 The calculated delay parameters are now 
considered (De = 3 and τ = 7∆t). Simple 
nonlinear prediction presents better results and 
errors vary in a regular way, indicating that delay 
parameters are adequate. Adopting an admissible 
error, for example eRMS ≤ 0.20, it is possible to 
establish a comparison among techniques. 
Polynomial and radial basis functions needs to 
have p ≤ 4 while simple nonlinear predictor 
presents acceptable errors until long-term 
(Figure 9). 
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Figure 9. RMS error for periodic signal: N = m = 
37090, De = 3 and τ  = 7∆t; 

(a) p = 1 to 20; (b) p = 1 to 200. 
 
 
 In order to analyze the influence of 
embedding dimension, the forthcoming analysis 
consider the calculated time delay (τ  = 7∆t) and 
different values of the embedding dimension. 
Observing Figures 10 and 11, it is clear that 
predictions obtained from polynomial and radial 
basis functions predictors are improved with the 
increase of embedding dimension. On the other 
hand, results from simple nonlinear predictor are 
not significantly altered with these variations. 
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Figure 10. RMS error for periodic signal: N = m 
= 37090, De = 5 and τ = 7∆t; (a) p = 1 to 20; (b) 

p = 1 to 200. 
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Figure 11. RMS error for periodic signal: N = m 
=37090, De = 10 and τ = 7∆t; (a) p = 1 to 20; (b) 

p = 1 to 200. 
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 Increasing a little more the embedding 
dimension (De = 20), polynomial predictor 
present better results in short-term prediction, 
however, these results tends to become unstable 
in long-term predictions. On the other hand, 
radial basis functions predictors present worse 
results, which are explained by the fact that the 
data set becomes scarce in higher dimension and 
hence most points in the state space have no 
basis function cover [17]. As in the previous 
examples, simple nonlinear predictor is not 
significantly altered with these variations (Figure 
12). 
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Figure 12. RMS error for periodic signal: N = m 
=37090, De = 20 and τ = 7∆t; 

(a) p = 1 to 20; (b) p = 1 to 200. 
 
6. Prediction in a Chaotic Signal. 
 
The analysis of chaotic signal considers N = m = 
29589. The sequence of analysis is similar to the 
one presented for the periodic signal. Initially, a 
scalar prediction (De = 1 and τ = ∆t) is 
considered, and then these parameters are varied 
in order to analyze the influence of state space 

reconstruction in the predictions. Again, the 
analysis is presented in order to contemplate 
short-term and long-term predictions, showing 
the RMS in-sample errors. 
 Scalar predictions (De = 1 and τ = ∆t) show 
that all techniques has similar behavior for p ≤ 7. 
In general, short-term predictions present less 
error values employing radial basis functions and 
polynomials predictors (Figure 13). 
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Figure 13. RMS error for chaotic signal: N = m = 
29589, De = 1 and τ = 1∆t; 

(a) p = 1 to 20; (b) p = 1 to 200. 
 
 The alteration of only time delay has small 
influence in predictions. Considering De = 3 and 
τ = ∆t, however, predictions present better 
results (Figure 14). In short-term predictions, 
polynomial predictor present good results when 
compared to the other techniques, also 
presenting stable results in long-term. 
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(b) 
Figure 14. RMS error for chaotic signal: N = m = 

29589, De = 3 and τ = 1∆t; 
(a) p = 1 to 20; (b) p = 1 to 200. 

 
 Calculated delay parameters are now focused 
(De = 3 and τ = 6∆t), Figure 15. Radial basis 
functions predictor presents better results. The 
regular behavior of simple nonlinear predictor 
indicates that delay parameters are adequate to 
describe the dynamics of the system [22]. 
Adopting an admissible error eRMS ≤ 0.20, it is 
possible to see in short-term predictions that 
radial basis functions predictor is always inside 
this region while polynomial predictor needs to 
have p ≤ 2 and simple nonlinear predictor, p ≤ 5. 
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(b) 
Figure 15. RMS error for chaotic signal: N = m = 

29589, De = 3 and τ = 6∆t; 
(a) p = 1 to 20; (b) p = 1 to 200. 

 
 The forthcoming analysis considers the 
calculated time delay (τ = 6∆t) altering the 
embedding dimension. Initially, De = 5 is 
assumed (Figure 16), and short-term predictions 
presents better results. Considering De = 10 
(Figure 17), results are more or less the same for 
the polynomial and simple nonlinear predictors, 
however, radial basis functions predictor 
presents worse results. Assuming De = 20, radial 
basis functions predictor present even worse 
results. This behavior is explained because basis 
functions cannot capture the attractor structure in 
this dimension (Figure 18). 
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Figure 16. RMS error for chaotic signal: N =m 
=29589, De = 5 and τ = 6∆t; (a) p = 1 to 20; (b) p 

= 1 to 200. 
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Figure 17. RMS error for chaotic signal: N = m 
=29589, De = 10 and τ = 6∆t; (a) p = 1 to 20; (b) 

p = 1 to 200. 
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(b) 
Figure 18. RMS error for chaotic signal: N = m 

=29589, De = 20 and τ = 6∆t; (a) p = 1 to 20; (b) 
p = 1 to 200. 

 
7. Conclusions 
 
 This article presents an overview of some 
prediction techniques applied to an experimental 
nonlinear pendulum. In particular, the analyses 
of simple nonlinear, polynomial and radial basis 
functions methods are carried out. Periodic and 
chaotic signals are analyzed. In general, a 
comparison among these techniques points that 
simple nonlinear predictor presents better results 
in periodic signal while radial basis predictor has 
better predictions in chaotic signals. 
Nevertheless, it should be pointed out that 
simple nonlinear predictor present stable results 
in any kind of signal and it is a good alternative 
when there is less information about the signal 
characteristics. State space reconstruction shows 
to be a very important task in predictions. The 
calculated delay parameters tend to be the most 
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stable alternative to be used in state space 
reconstruction. 
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