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We describe the implementation of methods of nonlinear time series analysis which are based on the
paradigm of deterministic chaos. A variety of algorithms for data representation, prediction, noise
reduction, dimension and Lyapunov estimation, and nonlinearity testing are discussed with
particular emphasis on issues of implementation and choice of parameters. Computer programs that

implement the resulting strategies are publicly available agi$®\N software package. The use of
each algorithm will be illustrated with a typical application. As to the theoretical background, we
will essentially give pointers to the literature. €999 American Institute of Physics.
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Nonlinear time series analysis is becoming a more and
more reliable tool for the study of complicated dynamics
from measurements. The concept of low-dimensional
chaos has proven to be fruitful in the understanding of
many complex phenomena despite the fact that very few
natural systems have actually been found to be low-
dimensional deterministic in the sense of the theory. In
order to evaluate the long term usefulness of the nonlin-
ear time series approach as inspired by chaos theory, it
will be important that the corresponding methods be-
come more widely accessible. This paper, while not a
proper review on nonlinear time series analysis, tries to
make a contribution to this process by describing the ac-
tual implementation of the algorithms, and their proper
usage. Most of the methods require the choice of certain
parameters for each specific time series application. We
will try to give guidance in this respect. The scope and
selection of topics in this article, as well as the implemen-
tational choices that have been made, correspond to the
contents of the software packagaISEAN which is publicly
available  from  http://www.mpipks-dresden.mpg.de/
“tisean. In fact, this paper can be seen as an extended
manual for the TISEAN programs. It fills the gap between
the technical documentation and the existing literature,
providing the necessary entry points for a more thorough
study of the theoretical background.

I. INTRODUCTION

chaos for the understanding of the time evolving world goes
beyond that of a purely philosophical paradigm. Accord-
ingly, major research efforts are dedicated to two related
questions. The first question is if chaos theory can be used to
gain a better understanding and interpretation of observed
complex dynamical behavior. The second is if chaos theory
can give an advantage in predicting or controlling such a
time evolution. Time evolution as a system property can be
measured by recording the time series. Thus, nonlinear time
series methods will be the key to the answers of the above
questions. This paper is intended to encourage the explor-
ative use of such methods by a section of the scientific com-
munity which is not limited to chaos theorists. A range of
algorithms has been made available in the form of computer
programs by therisean project! Since this is fairly new
territory, unguided use of the algorithms bears considerable
risk of wrong interpretation and unintelligible or spurious
results. In the present paper, the essential ideas behind the
algorithms are summarized and pointers to the existing lit-
erature are given. To avoid excessive redundancy with the
text booK and the recent reviedthe derivation of the meth-
ods will be kept to a minimum. On the other hand, the
choices that have been made in the implementation of the
programs are discussed more thoroughly, even if this may
seem quite technical at times. We will also point to possible
alternatives to theISEAN implementation.

Let us at this point mention a number of general refer-
ences on the subject of nonlinear dynamics. At an introduc-
tory level, the book by Kaplan and Gl4ss aimed at an

Deterministic chaos as a fundamental concept is by novhterdisciplinary audience and provides a good intuitive un-
well established and described in a rich literature. The mergerstanding of the fundamentals of dynamics. The theoretical
fact that simple deterministic systems generically exhibittramework is thoroughly described by Gthut also in the
complicated temporal behavior in the presence of nonlinearg|ger pooks by Bergeet al® and by Schuster.More ad-
ity has inf_Iuenced thinking _and intuition in many fields. y5nced material is contained in the work by Katok and
However, it has been questioned whether the relevance QiasselblatB A collection of research articles compiled by
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Ott et al® covers some of the more applied aspects of chaos,
like synchronization, control, and time series analysis.
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Nonlinear time series analysis based on this theoreticaliser of TISEAN—tO the existing literature and available sta-
paradigm is described in two recent monographs; one byistics software for an optimal, up-to-date implementations of
Abarbanel’ and one by Kantz and Schreilfeitvhile the  these important methods.
former volume usuallyassumeschaoticity, the latter book Some users will miss a convenient graphical interface to
puts some emphasis on practical applications to time serigbe programs. We felt that at this point the extra implemen-
that are not manifestly found, nor simply assumed to betational effort would not be justified by the expected addi-
deterministic chaotic. This is the rationale we will also adopttional functionality of the package. Work is in progress,
in the present paper. A number of older articles can be sedmowever, to provide interfaces to higher level mathematics
as reviews, including Grassbergaral,'! Abarbanelet al,'>  (or statistic$ software.
as well as Kugiumtziet al!*'* The application of the non-
linear time series analysis to real world measurements, where
determinism is unlikely to be present in a stronger sense, i§- General computational issues
reviewed in SchreibetApart from these works, a number of The natural basis to formulate nonlinear time series al-

conference proceedings volumes are devoted to a chaotifyrithms from chaos theory is a multi-dimensional phase
time series, including Refs. 15-19. space, rather than the time or the frequency domain. It will
A. Philosophy of the TISEAN implementation be essential for the global dynamics in this phase space to be

_ _ nonlinear in order to fulfill the constraints of nontriviality
A number of different people have been credited for the;ng poundedness. Only in particular cases this nonlinear

saying that every complicated question has a simple answ&krcture will be easily representable by a global nonlinear
which is wrong. Analyzing a time series with a nonlinear fynction. Instead, all properties will be expressed in terms of
approach is definitely a complicated problem. Simple anqoca| quantities, often by suitable global averages. All local
swers have been repeatedly offered in the literature, quotingsformation will be gained from neighborhood relations of
numerical values for attractor dimensions for any conceivyarious kinds from time series elements. Thus, a recurrent
able system. The present implementation reflects our skeplomputational issue will be that of defining local neighbor-
cism against such simple answers which are the inevitablgoods in phase space. Finding neighbors in multidimensional
result of using black box algorithms. Thus, for example,space is a common problem of computational geometry.
none of the “dimension” programs will actually print a pmuyltidimensional tree structures are widely used and have
number which can be quoted as the estimated attractor djttractive theoretical properties. Finding all neighbors in a set
mension. |nStead, the correlation sum is Computed and baSEf N vectors take@(k)g N) operationsl thus the total opera-
tools are provided for its interpretation. It is up to the scien-tion count isO(N logN). A fast alternative that is particu-
tist who does the analysis to put these results into theifarly efficient for relatively low-dimensional structures em-
proper context and to infer what information she or he maybedded in multidimensional spaces is given by box-assisted
find useful and plausible. We should stress that this is nofeighbor search methods which can push the operation count
simply a question of error bars. Error bars do not tell aboutjown to O(N) under certain assumptions. Both approaches
systematic errors and neither do they tell if the underlyingare reviewed in Ref. 20 with particular emphasis on time
assumptions are justified. series applications. In theISEAN project, a fast neighbor
The TISEAN project has emerged from work of the in- search is done using a box-assisted approach, as described in
volved research groups over several years. Some of the pr@ef. 2.
grams are in fact based on the code published in Ref. 2. No matter in what space dimension we are working, we
Nevertheless, we still like to see it as a starting point rathewill define candidatesfor nearest neighbors in two dimen-
than a conclusive step. First of all, nonlinear time seriessions using a grid of evenly spaced boxes. With a grid of
analysis is still a rapidly evolving field, in particular with spacinge, all neighbors of a vectox closer than epsilon
respect to applications. This implies that the selection of topmust be located in the adjacent boxes. But not all points in
ics in this article and the selection of algorithms imple-the adjacent boxes are neighbors, they may be upg w2y
mented iNTISEAN are highly biased towards what we know in two dimensions and arbitrarily far in higher dimensions.
now and found useful so far. But even the well establishedrhe neighbors search is thus a two stage process. First, the
concepts like dimension estimation and noise reduction leavibox-assisted data base has to be filled and then for each point
considerable room for alternatives to the present implemenra list of neighbors can be requested. There are a few in-
tation. Sometimes this resulted in two or more concurringstances where it is advisable to abandon the fast neighbor
and almost redundant programs entering the package. Waearch strategy. One example is the progmamise that
have deliberately not eliminated these redundancies since tlimes nonlinear noise filtering in a data stream. It is supposed
user may benefit from having a choice. In any case it igo start filtering soon after the first points have been re-
healthy to know that for most of the algorithms the final corded. Thus the neighbor data base cannot be constructed in
word has not been spoken yet—nor is ever to be. the beginning. Another exception is if quite short
While the TISEAN package does contain a number of (<500 points, say high-dimensional data are processed.
tools for linear time series analysisspectrum, autocorrela- Then the overhead for the neighbor search should be avoided
tions, histograms, etg.these are only suitable for a quick and instead an optimized straight{N?) method be used,
inspection of the data. Spectral or even ARMA estimationlike it is done in c2naive.
are industries in themselves and we refer the reader—and the For portability, all programs expect time series data in
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column format represented by ASCII numbers. The column
to be processed can be specified on the command line. Al-
though somewhat wasteful for storing data, ASCII numbers
can be produced and read by most other software. All param-
eters can be set by adding options to the command, which, in
many programs, just replace the default values. Obviously,
relying on default settings is particularly dangerous in such a
subtle field. Since almost all routines can read from standard
input and write to standard output, programs can be part of
as pipelines. For example, they can be called filters from
inside graphics software or other software tools which are
able to execute shell commands. Also, data conversion or
compression can be done “on the fly” this way. The reader
here realizes that we are speaking of UNIX or LINUX plat-
forms which seems to be the most appropriate environment.
It is, however, expected that most of the programs will be
ported to other environments in the near future.

For those readers familiar with the programs published
in Ref. 2 we should mention that these form the basis for a
number of thoseTISEAN programs written in FORTRAN.
The C programs, even if they do similar things, are fairly
independent implementations. All C and+G programs

FIG. 1. Time delay representation of a human magneto-cardiogram. In the

now use dynamlc allocation of storage, for example. upper panel, a short delay time of 10 ms is used to resolve the fast waveform
corresponding to the contraction of the ventricle. In the lower panel, the
1l. PHASE SPACE REPRESENTATION slower recovery phase of the ventri¢kmall loop is better resolved due to

the use of a slightly longer delay of 40 ms. Such a plot can be conveniently
Deterministic dynamical systems describe the time evobe produced by a graphic tool suchgsuplot  without generating extra

lution of a system in some phase spdt&R. They can be datafiles.
expressed, for example, by ordinary differential equations,

X(t) =F(x(1)), (1) measurements are available, the number of embedding vec-
tors is onlyN—(m—1)7. This has to be kept in mind for the
correct normalization of averaged quantities. There is a large
Xn+1=f(Xn). 2 literature on the “optimal” choice of the embedding param-

A time series can then be thought of as a sequence of obseflersm and. It turns out, however, that what constitutes the
vations {s,=s(x,)} performed with some measurement optimal choice largely depends on the application. We will
function s(-). Since the(usually scalar sequence(s,} in therefore discuss the choice of embedding parameters occa-
itself does not properly represent tiimulti-dimensional ~ Sionally together with other algorithms below.

phase space of the dynamical system, one has to employ A Stand-alone version of the delay procedddelay ,
some technigue to unfold the multi-dimensional structure us€mbed) is an important tool for the visual inspection of data,

or in discrete tima=n At by maps of the form

ing the available data. even though visualization is restricted to two dimensions, or
. at most two-dimensional projections of three-dimensional
A. Delay coordinates renderings. A good unfolding already in two dimensions may

The most important phase space reconstruction tecrgive some guidance about a good choice of the delay time
nique is themethod of delaysVectors in a new space, the for higher-dimensional embeddings. As an example let us
embedding space, are formed from time de|ayed values cﬂhOW two different two-dimensional delay coordinate repre-

the scalar measurements: sentations of a human magneto-cardiogréfig. 1). Note
B that we do neither assume nor claim that the magnto-
$1=(Sn—(m-1)7:Sn—(m-2)7s+++Sn)- (3 electroy cardiogram is deterministic or even chaotic. Al-

The numbem of elements is called thembedding dimen- though in the particular case of cardiac recordings the use of
sion, the timer is generally referred to as trielayor lag.  time delay embeddings can be motivated theoreticdlhere
Celebrated embedding theorems by Taktmmd by Sauer we only want to use the embedding technique as a visualiza-
et al? state that if the sequends,} does indeed consist of tion tool.
scalar measurements of the state of a dynamical system, then
under certain genericity assumptions, the time delay embe
ding provides a one-to-one image of the original &gt
providedm is large enough. A reasonable choice of the delay gains importance
Time delay embeddings are used in almost all method¢hrough the fact that we always have to deal with a finite
described in this paper. The implementation is straightforamount of noisy data. Both noise and finiteness will prevent
ward and does not require further explanationNIfscalar us from having access to infinitesimal length scales, so that

CE. Embedding parameters
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the structure we want to exploit should persist up to the
largest possible length scales. Depending on the type of

structure we want to explore we have to choose a suitable 0.8 -
time delay. Most obviously, delay unity for highly sampled 0.6 -
flow data will yield delay vectors which are all concentrated 04

around the diagonal in the embedding space and thus all
structure perpendicular to the diagonal is almost invisible. In
Ref. 24 the termsedundancyandirrelevancewere used to
characterize the problem: Small delays yield strongly corre- 1 2 3 4 5
lated vector elements, large delays lead to vectors whose m
components aréalmos} uncorrelated and the data are thusgg 2. The fraction of false nearest neighbors as a function of the embed-
(seemingly randomly distributed in the embedding space.ding dimension for noise free Lorergrosses and Henon (filled circles
Quite a number of papers have been published on the propéme ;eries, as well as a Hen time seriesopen circleg corrupted by 10%
choice of the delay and embedding dimension. We have af "°'se
gued repeatedly?° that an “optimal” embedding can—if
at all—only be defined relative to a specific purpose forp raise nearest neighbors
which the embedding is used. Nevertheless, some quantita-
tive tools are available to guide the choice.

The usual autocorrelation functio@utocor , corr )
and the time delayed mutual informatiomutual ), as well
as visual inspection of delay representations with variou

lags provide important information about reasonable dela . i .
gs p P o-dimensional delay space the reconstructed attractor is a

times while the false neighbors statistfalse _nearest . . o
g St - ) ne-to-one image of the attractor in the original phase space.

can give guidance about the proper embedding dimensio : : :
Again, “optimal” parameters cannot be thus established exr_gspemally, the topological properties are preserved. Thus the

. o - neighbors of a given point are mapped onto neighbors in the
ceptin the context of a specific application. delay space. Due to the assumed smoothness of the dynam-

1. Mutual information ics, neighborhoods of the points are mapped onto neighbor-
hoods again. Of course the shape and the diameter of the

Fras-rer;e;r']rge;j;:}?g;{gu;uz)lo'rft%rrggzggxzsasﬁgggggdbI?ﬁeighborhoods is changed according to the Lyapunov expo-
nents. But suppose now you embed in mrdimensional

delay: Unlike the autocorrelation function, the mutual infor- space withm<m,. Due to this projection the topological

mation also takes into account nonlinear correlations. Ongtructure is no longer preserved. Points are projected into

has to compute neighborhoods of other points to which they would not be-
pij(7) long in higher dimensions. These points are calfatbe
S=- ; pii(T)an’ (4) neighbors If now the dynamics is applied, these false neigh-

. bors are not typically mapped into the image of the neigh-
where for some partition on the real numberss the prob-  porhood, but somewhere else, so that the average “diam-
ability to find a time series value in thieth interval, and  eter” becomes quite large.
pij(7) is the joint probability that an observation falls into  The idea of the algorithrfalse _nearest is the fol-
'Fhe|-th interval a_nd the obs_ervatlon timdater fal_ls into the lowing. For each poinﬁi in the time series look for its near-
j-th. In theory this expression has no systematic dependence : > . . .

: " ) .est neighbos; in anm-dimensional space. Calculate the dis-
on the size of the partition elements and can be quite easn%/ oo )
computed. There exist good arguments that if the time detancel|si—s;|. lterate both points and compute
layed mutual information exhibits a marked minimum at a
certain value ofr, then this is a good candidate for a reason- R
able time delay. However, these arguments have to be modi-
fied when the embedding dimension exceeds two. Moreovelf R; exceeds a given heuristic threshd®{, this point is
as will become transparent in the following sections, not allmarked as having a false nearest neigtfioFhe criterion
applications work optimally with the same delay. Our routinethat the embedding dimension is high enough is that the
mutual uses Eq(4), where the number of boxes of identi- fraction of points for whichR;>R; is zero, or at least suffi-
cal size and the maximal delay time has to be supplied. Theiently small. Two examples are shown in Fig. 2. One is for
adaptive algorithm used in Ref. 25 is more data intensivethe Lorenz systertcrossey one for the Haon systentfilled
Since we are not really interested in absolute values of theircles, and one for a Heon time series corrupted by 10%
mutual information here but rather in the first minimum, the of Gaussian white nois@pen circles. One clearly sees that,
minimal implementation given here seems to be sufficientas expectedn=2 is sufficient for the Heon andm=3 for
The related generalized mutual information of order two carthe Lorenz system, whereas the signature is less clear in the
be defined using the correlation sum cond&gc. VII, Refs.  noisy case.

26, 27. An estimation of the correlation entropy is explained The introduction of the false nearest neighbors concept
in Sec. VIIA. and other ad hoc instruments was partly a reaction to the

fraction of false neighbors

A method to determine the minimal sufficient embed-
ding dimensionm was proposed by Kennedt al?® It is
called thefalse nearest neighbamethod. The idea is quite
éntuitive. Suppose the minimal embedding dimension for a
iven time series{s;} is my. This means that in a

:|Si+1_sj+1|
”Si_sj”

®)
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finding that many results obtained for the genuine invariants,
like the correlation dimension, has been spurious due to ca-
veats of the estimation procedure. In the latter case, serial
correlations and small sample fluctuations can easily be mis-
taken for nonlinear determinism. It turns out, however, that
the ad hoc quantities basically suffer from the same
problems—which can be cured by the same precautions. The
implementationfalse _nearest therefore allows us to
specify a minimal temporal separation of valid neighbors.

Other software for the analysis of false nearest neighbors
is available in source form from Kenn®.Or, if you prefer
to pay for a license, from Ref. 30.

FIG. 3. The phase space representation of a human magneto-cardiogram
using the two largest principal components. An initial embedding was cho-
sen inm=20 dimensions with a delay of=7 ms. The two components
cover 70% of the variance of the initial embedding vectors.

C. Principal components

, i of the first two principal components to the magneto-
It has been shown in Ref. 22 that the embedding teChéardiogram shown in Fig. 1.

nigue can be generalized to a wide class of smooth transfor-
mations applied to a time delay embedding. In particular, if
we introduce time delay coordinatés,}, then almost every
linear transformation of sufficient rank again leads to an em-  Highly sampled data representing the continuous time of
bedding. A specific choice of linear transformation is knowna differential equation are calldtbw data. They are charac-
asprincipal component analysis, singular value decompositerized by the fact that errors in the direction tangent to the
tion, empirical orthogonal functions, Karhunehoeve de- trajectory do neither shrink nor increase exponentigdiy
compositionand probably a few other names. The techniquecalled marginally stable directipnand thus possess one

is fairly widely used, for example, to reduce multivariate Lyapunov exponent which is zero, since any perturbation in
data to a few major modes. There is a large literature, includthis direction can be compensated by a simple shift of the
ing textbooks like that by Jolliffé! In the context of nonlin-  time. Since in many data analysis tasks this direction is of
ear signal processing, the technique has been advocatémlv interest, one might wish to eliminate it. The theoretical
among others by Broomhead and Kitfg. concept to do so is called the Poincaextion. After having

The idea is to introduce a new set of orthonormal basichosen an rh—1)-dimensional hyperplane in the
vectors in embedding space such that projections onto mr-dimensionalembedding space, one creates a compressed
given number of these directions preserve the maximal fracime series of only the intersections of the time continuous
tion of the variance of the original vectors. In other words,trajectory with this hyperplané a predefined orientatian
the error in making the projection is minimized for a given These data are then vector valued discrete timap like
number of directions. Solving this minimization prob@m data. One can consider the projection of these
leads to an eigenvalue problem. The despedcipal direc- (m—1)-dimensional vectors onto the real numbers as an-
tions can be obtained as the eigenvectors of the symmetriother measurement functige.g., by recording the value of
autocovariance matrix that correspond to the largest eigers, when s, passes the Poincamurface, so that one can
values. The alternative and formally equivalent approach vizreate a new scalar time series if desirable. The program
the trajectory matrix is used in Ref. 32. The latter is numeri-poincare  constructs a sequence of vectors from a scalar
cally more stable but involves the singular value decompoflow-like data set, if one specifies the hyperplane, the orien-
sition of anN X m matrix for N data points embedded m  tation, and the embedding parameters. The intersections of
dimensions, which can easily exceed computational rethe discretely sampled trajectory with the Poincplane are
sources for time series of even moderate lerigth. computed by a third order interpolatideee Fig. 4.

In almost all the algorithms described below, simple  The placement of the Poincasarface is of high rel-
time delay embeddings can be substituted by principal comevance for the usefulness of the result. An optimal surface
ponents. In thelSEAN project(routinessvd , pc), principal ~ maximizes the number of intersections, i.e., minimizes the
components are only provided as a stand-alone visualizatiotime intervals between them, if at the same time the attractor
tool and for linear filtering* see Sec. IIE below. In any remains connected. One avoids the trials and errors related to
case, one first has to choose an initial time delay embeddintiat if one defines a surface by the zero crossing of the tem-
and then a number of principal components to be kept. Foporal derivative of the signal, which is synonymous with
the purpose of visualization, the latter is immediately re-collecting all maxima or all minima, respectively. This is
stricted to two or at most three. In order to take advantage oflone byextrema . However, this method suffers more from
the noise averaging effect of the principal componentnoise, since for small time derivativése., close to the ex-
scheme, it is advisable to choose a much shorter delay tharema additional extrema can be produced by perturbations.
one would for an ordinary time delay embedding, while atAnother aspect for the choice of the surface of section is that
the same time increasing the embedding dimension. Experone should try to maximize the variance of the data inside
mentation is recommended. Figure 3 shows the contributionthe section, since their absolute noise level is independent of

D. Poincare sections

Downloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



418 Chaos, Vol. 9, No. 2, 1999 Hegger, Kantz, and Schreiber

300

2600
2600 2700 2800

Sn—-1

60
J
. 55 - ) I
< FIG. 5. The recurrence plot for a Poincagection data from a vibrating
string experimentRef. 39. Above the diagonal an embedding in two di-
50 mensions was used while below the diagonal, scalar time series values were
compared. In both cases the lighter shaded region at the beginning of the
L T recording indicates that these data are dynamically distinct from the rest. In
4545 50 55 60 this particular case this was due to adjustments in the measurement appara-

tus.

FIG. 4. A Poincaresurface of section usingxtrema : A two-dimensional . . . .
delay plot of the sequence of maxirttap) and of the time intervals between COrrect embedding dimension, amd considerably larger

successive maximgdottom). Without employing the optiort time, where (e.g.,m=2q or largey. The result is a vector valued time
time is the number of time steps after the Ia_st extremum during which Noseries, and in Ref. 22 the relation of these components to
further extrema are searched fhiere: 3, one finds some fake extrema due . . .
to noise showing up close to the diagonal of the delay representation. Datéemporal derivatives on the one hand and to Fourier compo-
Time series of the output power of a G@ser(Ref. 35. nents on the other hand were discussed. If, in the nonauto-
nomous case, one wants to compress flow data to map data,
g=1. In this case, the redundancy of the flow is implicitly
the section. One last remark: Time intervals between interused for noise reduction of the map data. The rousne
sections are phase space observables as®veeitl the em- can be used for both purposes.
bedding theorems are thus valid. For a time series with pro-
nounced spikes, one often likes to study the sequence dfi. VISUALIZATION, NONSTATIONARITY
interspikg tim_e intervals, e.g., in cardiolpgy the RR—interngs.A_ Recurrence plots
If these time intervals are constructed in a way to yield time
intervals of a Poincarenap, they are suited to reflect the Recurrence plots are a useful tool to identify structure in
deterministic structuréif any). For complications see Ref. a data set in a time resolved way qualitatively. This can be
36. intermittency (which one detects also by direct inspecjion
For a periodically driven nonautonomous system thethe temporary vicinity of a chaotic trajectory to an unstable
best surface of section is usually given by a fixed phase operiodic orbit, or nonstationarity. They were introduced in
the driving term, which is also called stroboscopic view Ref. 37 and investigated in much detail in Ref. 38, where
Here again the selection of the phase should be guided by th&u find many hints on how to interpret the results. Our
variance of the signal inside the section. routinerecurr  simply scans the time series and marks each
pair of time indices i,j) with a black dot, whose corre-
sponding pair of delay vectors has distaree. Thus in the
(i,j)-plane, black dots indicate closeness. In an ergodic situ-
There are at least two reasons to apply a SVD filter tcation, the dots should cover the plane uniformly on average,
time series data: Either, if one is working with flow data, onewhereas nonstationarity expresses itself by an overall ten-
can implicitly determine the optimal time delay, or, when dency of the dots to be close to the diagonal. Of course, a
deriving a stroboscopic map from synchronously sampledeturn to a dynamical situation the system was in before be-
data of a periodically driven system, one might use the recomes evident by a black region far away from the diagonal.

E. SVD filters

dundancy to optimize the signal to noise ratio. In Fig. 5, a recurrence plot is used to detect transient behav-
In both applications the mathematics is the same: Onéor at the beginning of a longer recording.

constructs the covariance matrix of all data vect@rg., in For the purpose of stationary testing, the recurrence plot

an m-dimensional time delay embedding space is not particularly sensitive to the choice of embedding. The

Ci=(s < V(s s y ©) contrast of the resulting images can be selected by the dis-

1 n—m+i=n—m+] n=mHi/ASn=—m+]/> tance e and the percentage of dots that should be actually
and computes its singular vectors. Then one projects onto thaotted. Various software involving the color rendering and
m-dimensional vectors corresponding to tipéargest singu- quantification of recurrence plots is offered in DOS execut-
lar values. To work with flow datag should be at least the able form by Webbef® The interpretation of the often in-
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600 test. If the out-of-sample error is considerably larger than the
in-sample error, data are either nonstationary or one has
overfitted the data, i.e., the fit extracted structure from ran-
dom fluctuations. A model with less parameters will then
serve better. In cases where the data base is poor, one can
apply complete cross-validatioror take-one-out statisti¢s
: ] i.e., one constructs as many models as one performs fore-
0 100 20 300 - 400 500 casts, and in _each case ignores_the pqint one wants to predict.
By construction, this method is realized in the local ap-
proaches, but not in the global ones.
sty o o 2 pont s o s o e The mas sgnifcant, bu east quanitative way of moriel
goint if its tepmporal d)ilstance i8t. Pr%bability densitigs are 1/10 to 1 with vahdaﬂpn IS t(,) iterate the m9de| and to compare this syn-
increments of 1/10 from bottom to top. Clear correlations are visible. thetic time series to the experimental data. One starts form an
observed delay vector as an initial condition and performs a
forecast. Its outcome is combined with all but the last com-
triguing patterns beyond the detection and study of nonstaponents of the initial vector to a new delay vector, and the
tionarity is still an open question. For suggestions for thenext forecast is performed. After>m iterations, then-th
study of nonstationary signals see Ref. 3 and referencegelay vector contains only values generated by the model

distance

relative time &t

given there. and no observations any more. In terms ofraestep predic-
tion, the outcome will be terribly bad, since due to the sen-
B. Space—time separation plot sitive dependence on initial conditions even an ideal model

, , will create a diverging trajectory due to inaccuracies in the
While the recurrence plot shows absolute times, thg,easurement of the initial condition. However, for the model

. . . 41
space—time separation plot introduced by Provenaa. to be reasonable, the resulting attractor should be as similar
integrates along parallels to the diagonal and thus only shows, ihe observed data as possiltteg., in a delay plot al-

relative times. One usually draws lines of constant probabily, g gh it is not easy to define the similarity quantitatively.
ity per time unit of a point to be aa-neighbor of the current

point, when its time distance igt. This helps identifying
temporal correlations inside the time series and is relevant tB. Simple nonlinear prediction
estimate a reasonable delay time, and, more importantly, the

. . . . . Conventional linear prediction schemes average over all
Theiler-windoww in dimension and Lyapunov-analygisee

SR . locations in phase space when they extract the correlations
tSec. V”)I' ds.a}['d In (ﬂff;arent wor.df, 'thShcl);Vi how tlsrgt;e the they exploit for predictability. Ton”ﬁ promoted an extension
emporal distance between points shou € SO thal We Cal) .; fits different linear models if the current state is below or

assume that they form independent_ sample_s according to ﬂQﬁ)ove a given thresholdTAR, Threshold Autoregressive
invariant measure. The corresponding routine of tisEAN Mode). If we expect more than a slight nonlinear compo-

package isstp ; see Fig. 6. nent to be present, it is preferable to make the approximation
as local in phase space as possible. There have been many
IV. NONLINEAR PREDICTION similar suggestions in the literature on how to exploit a local

To think about predictability in time series data is worth- SIrUCtUre; see, e.g., Refs. 43-46. The simplest approach is to
while even if one is not interested in forecasts at all. PredictMake the approximation local but only keep the zeroth order,
ability is one way in which correlations between data expres&at iS, approximate the dynamics locally by a constant. In
themselves. These can be linear correlations, nonlinear cof® TISEAN package we include such a robust and simple
relations, or even deterministic constraints. Questions relategf€thod: In a delay embedding space, all neighbors, aire
to those relevant for predictions will reappear with noise re-S0Ught, if we want to predict the measurements at time
duction and in surrogate data tests, but also for the comput K- The forecast is then simply

tation of Lyapunov exponents from data. Prediction is dis- 1

cussed in most of the general nonlinear time series Sn+k:ms_§u Sj+k» (7)
references, in particular, a nice collection of articles can be e

found in Ref. 17. i.e., the average over the “futures” of the neighbors. The

average forecast errors obtained with the routieeoth
(predict  would give similar resultsfor the laser output
Before entering the methods, we have to discuss how tdata used in Fig. 4 as a function of the numkeof steps
assess the results. The most obvious quantity for the quant&head the predictions are made is shown in Fig. 7. One can
fication of predictability is the average forecast error, i.e., thealso iterate the predictions by using the time series as a data
root of the mean square@ms) deviation of the individual base.
prediction from the actual future value. If it is computed on Apart from the embedding parameters, all that has to be
those values which were also used to construct the model specified for zeroth order predictions is the size of the neigh-
to perform the predictionsit is called thein-sample error It borhoods. Since the diffusive motion below the noise level
is always advisable to save some data for an out-of-sampleannot be predicted anyway, it makes sense to select neigh-

A. Model validation
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FIG. 7. Predictionk time steps aheath_o iterated predictior)su_sing _th_e 15 -1 05 0 05 1 15
programzeroth . Top curve: embedding dimension two is insufficient, Sp—1

since these flow data fill a (2¢€)-dimensional attractor. Second from top:

Although embedding dimension four should in theory be a good embeddingFIG. 8. Orbits of period six, or a sub-period thereof, of thentte map,
=1 suppresses structure perpendicular to the diagonal so that the predidetermined from noisy data. The hfen attractor does not have a period
tions are as bad as im=2! Lower curves:m=3 and 4 with a delay of three orbit.

about 4-8 time units serve well.

p

ENPES (C8] RNCNPELE 10
borhoods which are at least as large as the noise level, maybe nzl I$h =TS 179 (10
tW(.) or three times Ia_rger. _For a fairly Cle_an time Series, th'slnstead. The routineupo uses a standard Levenberg—
guideline may result in neighborhoods with very few points.

Thereforezeroth  also permit 1o specifv the minimal Marquardt algorithm to minimiz€10). For this it is neces-
' ZEro SO permits us 1o sp ify e mini sary thatf(-) is smooth. Therefore we cannot use the simple
number of neighbors on which to base the predictions.

o . . nonlinear predictor based on locally constant approximations
A relevant modification of this method is to extend the b y pp

neighborhood/ to infinity, but to introduce a distance de- W?hwvi(g?\fe;o ?f;lazszr;] 0?:; klfer?r?‘lalv iﬁ%@ﬁﬁﬂﬁigg
pendent weight, P '

mines the degree of smoothnessfof. Trying to start the
- S nSj+kW(|s—s) minimization with all available time series segments will
Sn+k= (s —s]) (8) produce a number of false minima, depending on the value
of h. These have to be distinguished from the true solutions
by inspection. On the other hand, we can reach solutions of
Eqg. (9) which are not closely visited in the time series at alll,
an important advantage over close return mettéds.

It should be noted that, depending bnwe may always
C. Finding unstable periodic orbits find good minima of8), even if no solution of Eq(9), or not

As an application of a simple nonlinear phase space pre(gven a truly deterministic dynamics, exists. Thus the finding

diction, let us discuss a method to locate unstable periodifg)funstable periodic orbits in itself is not a strong indicator of

orbits embedded in a chaotic attractor. This is not the plac eterminism. We may, however, use the cycle locations or

to review the existing methods to solve this problem, Somestabmtles as a discriminating statistics in a test for nonlin-

references includ® 20 The TISEAN package contains a rou- earity; see Sec. VIII. While the orbits themselves are found

tine that implements the requirement that for a pepatbit quite easily, it is surprisingly difficult to obtain reliable esti-
3 n=1 fad ical like Eq2 . mates of their stability in the presence of noise.upo, a
gﬁ;lé;;eéltaryg} of a dynamical system like E@) acting on small perturbation is iterated along the orbit and the unstable

eigenvalue is determined by the rate of its separation from
S.1=f(S), N=1,..p, Syi1=S,. (99  the periodic orbit.

. Snﬂ, > P =R o The user ofupo has to specify the embedding dimen-
Wlth unit delay, thep dglay vectors contaip different spalar sion, the periodwhich may also be smalleand the kernel
entries, and Eqt9) defines a root of a system pfnonlinear  pangwidth. For efficiency, one may choose to skip trials with
equations inp dimensions. Multidimensional root finding is yery similar points. Orbits are counted as distinct only when
not a simple problem. The standard Newton method has tghey differ by a specified amount. The routine finds the or-
be augmented by special tricks in order to converge globallypits, their expanding eigenvalue, and possible sub-periods.
Some such tricks, in particular means to select different SOFigure 8 shows the determination of all period six orbits

lutions of Eq.(9), are implemented in Ref. 50. Similar to the t,0m 1000 iterates of the Hen map, contaminated by 10%
problems encountered in nonlinear noise reduction, solvings5,ssian white noise.

Eq. (9) exactlyis particularly problematic sinc-) is un-
known and must be estimated from the data. In Ref. 49
approximate solutions are found by performing just one it-
eration of the Newton method for each available time series If there is a good reason to assume that the relation
point. We prefer to look for éeast squaresolution by mini- s, ;=1(s,) is fulfilled by the experimental data in good
mizing approximation(say, within 5% for some unknowri and that

wherew is called the kernel. For(z) =0 (e—z) where® is
the Heaviside step function, we return to E@).

D. Locally linear prediction
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FIG. 9. A time delay representation of 5000 iterations of the local linear

predictornstep in two dimensions, starting from the last delay vector of F|G. 10. The Casdagli test for nonlinearity: The rms prediction error of

Fig. 4. local linear models as a function of the neighborhood gizeower curve:
The CQ laser data. These data are obviously highly deterministionin
=4 dimensions and with lag=6. Central curve: The breath rate data

: o : L . _shown in Fig. 12 withm=4 andr=1. Determinism is weakejpresumably
fis smooth, predictions can be improved by fitting local lin due to a much higher noise leyebut still the nonlinear structure is domi-

ear models. They can be considered as the local Taylor €Xuant. upper curve: Numerically generated data of ar(5Rrocess, a lin-
pansion of the unknowf) and are easily determined by mini- early correlated random procegs=5, 7=1).
mizing

2= E (Sj+1_ansj_bn)21 (11) E. Global function fits

5 €Un The local linear fits are very flexible, but can go wrong

with respect ta, andb,,, wherelt, is thee-neighborhood of on parts of the phase space where the points do not span the
s,, excludings, itself, as before. Then, the prediction is available space dimensions and where the inverse of the ma-
Sns+1=2a,S,+b,,. The minimization problem can be solved trix involved in the solution of the minimization does not
through a set of coupled linear equations, a standard linedXist. Moreover, very often a large set of different linear
algebra problem. This scheme is implementedniestep .  Maps is unsatisfying. Therefore many authors suggested fit-
For moderate noise levels and time series lengths this caind global nonlinear functions to the data, i.e., to solve
give a reasonable improvement oveeroth and pre-
dict . Moreover, as discussed in Sec. VI, these linear maps ~ 02= 2, (Sp11— ()%, (12
are needed for the computation of the Lyapunov spectrum. A 5
locally linear approximation was introduced in Refs. 45, 46.where f, is now a nonlinear function in closed form with
We should note that the straight least squares solution of Eqparametersp, with respect to which the minimization is
(11) is not always optimal and a number of strategies aralone. Polynomials, radial basis functions, neural nets, or-
available to regularize the problem if the matrix becomeshogonal polynomials, and many other approaches have been
nearly singular and to remove the bias due to the errors in thesed for this purpose. The results depend on how far the
“independent” variables. These strategies have in commorthosen ansat, is suited to model the unknown nonlinear
that any possible improvement is bought with a considerabléunction, and on how well the data are deterministic at all.
complication of the procedure, requiring subtle parametekVe included the routinesbf andpolynom in the TISEAN
adjustments. We refer the reader to Refs. 51, 52 for advancqshckage, wheré,, is modeled by radial basis functios®
material. and polynomials? respectively. The advantage of these two

In Fig. 9 we show iterated predictions of the Poincaremodels is that the parametgr®ccur linearly in the function
map data from the CQlaser(Fig. 4) in a delay representa- f and can thus be determined by simple linear algebra, and
tion (usingnstep in two dimensions The resulting data do the solution is unique. Both features are lost for models
not only have the correct marginal distribution and powerwhere the parameters enter nonlinearly.
spectrum, but also form a perfect skeleton of the original  In order to make global nonlinear predictions, one has to
noisy attractor. There are of course artifacts due to noise anslipply the embedding dimension and time delay as usual.
the roughness of this approach, but there are good reasonsFarther, forpolynom the order of the polynomial has to be
assume that the line-like substructure reflects fractality of thgiven. The program returns the coefficients of the model. In
unperturbed system. rbf one has to specify the number of basis functions to be

Casdagfi® suggested the use of local linear models as alistributed on the data. The width of the radial basis func-
test for nonlinearity: He computed the average forecast erraions (Lorentzians in our prograjrs another parameter, but
as a function of the neighborhood size on which the fitdpr  since the minimization is so fast, the program runs many trial
andb, is performed. If the optimum occurs at large neigh-values and returns parameters for the best. Figure 11 shows
borhood sizes, the data at this embedding spagéest the result of a fit to the CPlaser time seriegFig. 4) with
described by a linear stochastic process, whereas an optimuradial basis functions.
at rather small sizes supports the idea of the existence of a If global models are desired in order to infer the struc-
nonlinear almost deterministic equation of motion. This pro-ture and properties of the underlying system, they should be
tocol is implemented in the routinkar ; see Fig. 10. tested by iterating them. The prediction errors, although
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T T sent the geometric structure in phase space by a local ap-
proximation. The first and simplest does so to constant order;
2800 = N the more sophisticated uses local linear subspaces plus cur-
. vature corrections.
w
2700 |- — A. Simple nonlinear noise reduction
The simplest nonlinear noise reduction algorithm we
2600 1 I know of replaces the central coordinate of each embedding
2600 2700 2800 vector by the local average of this coordinate. This amounts

Sp—1 to a locally constant approximation of the dynamics and is

based on the assumption that the dynamics is continuous.

FIG. 11. Attractor obtained by iterating the model that has been obtained b)i_h I ithm is d p'b d in Ref 9)/ imil hi

a fit with 40 radial basis functions in two dimensions to the time series e agorlt. m is described in Ref. 59, a similar approac _'S

shown in Fig. 4. Compare also Fig. 9. proposed in Ref. 43. In an unstable, for example chaotic,
system, it is essential not to replace the first and last coordi-

o _ _ nates of the embedding vectors by local averages. Due to the
small in size, could be systematic and thus repel the iterategystapility, initial errors in these coordinates are magnified

trajectory from the range where the original data are locateqnstead of being averaged out.

It can be useful to study a dependence of the size or the sign  Thjs noise reduction scheme is implemented quite easily.
of the prediction errors on the position in the embeddingrirst an embedding has to be chosen. Except for extremely
space, since systematic errors can be reduced by a differegersampled data, it is advantageous to choose a short time
model. Global models are attractive because they yieldie|ay. The prograntazy always uses unit delay. The em-
closed expressions for the full dynamics. One must not forhedding dimensiorm should be chosen somewhat higher
get, however, that these models describe the observed prgyan that required by the embedding theorems. Then for each
cess only in regions of the space which have been visited bympedding vectofs,}, a neighborhood/(" is formed in

the data. Outside this area, the shape of the model dependfase space containing all poirs, } such that|s,—s.|
e.xclusively on the chosen ansatz. In particular, polynomials: ¢ The radius of the neighborhooéshould be taken large
diverge outside the range of the data and hence can be UBnough in order to cover the noise extent, but still smaller

stable under iteration. than a typical curvature radius. These conditions cannot al-
ways be fulfilled simultaneously, in which case one has to
V. NONLINEAR NOISE REDUCTION repeat the process with several choices and carefully evaluate

ethe results. If the noise level is substantially smaller than the

use of special methods since the usual spectral or other linel¥Pical radius of curvature, neighborhoods of radius about
filters may interact unfavorably with the nonlinear structure.2~3 times the noise level gave the best results with artificial
Iregular signals from nonlinear sources exhibit genuingdat@. For each embedding vec&=(Sy—(m-1)..--:Sn) (the
broad band spectra and there is no justification to identify€lay time has been set to unity corrected middle coordi-
any continuous component in the spectrum as noise. Nonlir?ates,—m; is computed by averaging over the neighborhood
ear noise reduction does not rely on frequency information T

order to define the distinction between signal and noise. In-

stead, structure in the reconstructed phase space will be ex- 1
ploited. Gengral serial dependencies among thg measure- g = > Sy_me- (13
ments {s,} will cause the delay vector§s,} to fill the 178

availablem-dimensional embedding space in an inhomoge-

neous way. Linearly correlated Gaussian random variables

will for example be distributed according to an anisotropicAfter one complete sweep through the time series, all mea-
multivariate Gaussian distribution. Linear geometric filteringsurementss, are replaced by the corrected valugs Of

in phase space seeks to identify the principal directions ofourse, for the first and lasin(—1)/2 points(if mis odd, no

this distribution and project onto them; see Sec. Il E. Non-correction is available. The average correction can be taken
linear noise reduction takes into account that nonlinear sigas a new neighborhood radius for the next iteration. Note that
nals will form curved structures in delay space. In particularthe neighborhood of each point at least contains the point
noisy deterministic signals form smeared-out lower- itself. If that is the only member, the average, Efd), is
dimensional manifolds. Nonlinear phase space filtering seeksmply the uncorrected measurement and no change is made.
to identify such structures and project onto them in order toThus one can safely perform multiple iterations with de-
reduce noise. creasing values of until no further change is made.

There is a rich literature on nonlinear noise reduction  Let us illustrate the use of this scheme with an example,
methods. Two articles of review character are available; ona recording of the air flow through the nose of a human as an
by Kostelich and Schreibéf,and one by Davies We refer  indicator of breath activity(The data is part of data set B of
the reader to these articles for further references and for théne Santa Fe time series contest held in 1991f9gee
discussion of approaches not described in the present articlRigney et al®° for a description. The result of simple non-
Here we want to concentrate on two approaches that reprdéinear noise reduction is shown in Fig. 12.

Filtering of signals from nonlinear systems requires th

%/EZ/{(EH)
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The notion of orthogonality depends on the metric used.
Intuitively one would think of using the Euclidean metric.
But this is not necessarily the best choice. The reason is that
we are working with delay vectors which contain temporal
information. Thus, even if the middle parts of two delay
vectors are close, the late parts could be far away from each
other due to the influence of the positive Lyapunov expo-
nents, while the first parts could diverge due the negative
ones. Hence it is usually desirable to correct only the center
part of delay vectors and leave the outer parts mostly un-
changed, since their divergence is not only a consequence of
the noise, but also of the dynamics itself. It turns out that for
most applications it is sufficient to fix just the first and the
last component of the delay vectors and correct the rest. This
can be expressed in terms of a metric tenBawhich we

define to b&"
RS i=j] and I<i,j<m,
Pi=)0: elsewhere, (14
’ t—05 )1 wherem is the dimension of the “over-embedded” delay
x(t—V.os

vectors.

FIG. 12. The simple nonlinear noise reduction of human breath rate data.  Thus we have to solve the minimization problem,
Three iterations have been carried out, staring with neighborhoods of size

0.4 units. Embeddings in 7 dimensions at unit delay have been used. Argu- !

ably, the resulting seriedower panel is less noisy. However, in Sec. VII| 2 (O,P10;)=min, (15
we will show evidence that the noise is not just additive and independent of |

the signal.
9 with the constraints

a(s,—@®,)+b.=0, fori=q+1,...m (16)
B. Locally projective nonlinear noise reduction

A more sophisticated method makes use of the hypoth‘:Jlnd o
eses that the measured data is composed of the output of a a,Pa,= Sij » (17)
low-dimensional dynamical system and of random or high- i ~ .
dimensional noise. This means that in an arbitrarily high-Vhere thea, are the normal vectors oi at the points,

dimensional embedding space the deterministic part of the “'h id lized in th «
data would lie on a low-dimensional manifold, while the ,T ese ideas are realized in the prc_)gratgis SS .
effect of the noise is to spread the data off this manifold. iferoject gn_d_nmse in TISEAN. While the first two work
we suppose that the amplitude of the noise is sufficientyRS@ posteriorifilters on complete data sets, the last one can

small, we can expect to find the data distributed closel)}’e used in a data gtream..Thls means that |t. is possible to do
the corrections online, while the data is comingfior more

around this manifold. The idea of the projective nonlinearOI | Il th lqorith ioned ab
noise reduction scheme is to identify the manifold and tod€tils see Sec. VICAIl three algorithms mentioned above
rrect for curvature effects. This is done by either post-

project the data onto it. The strategies described here go badi® ) ;
to Ref. 61. A realistic case study is detailed in Ref. 62,  Processing the corrections for the delay veciaiskss ) or

Suppose the dynamical system, EY.or Eq.(2), form a by preprocessing the centers of mass of the local neighbor-

g-dimensional manifoldM containing the trajectory. Ac- hoods(pr.oject )- , , )
cording to the embedding theorems, there exists a one-to-one The idea used in thghkss program is the following.

image of the attractor in the embedding space, if the embedS_uppose the manifold were strictly linear. Then, provided the
ding dimension is sufficiently high. Thus, if the mealsurednoise is white, the corrections in the vicinity of a point on the

time series were not corrupted with noise, all the embeddinganifold would point in all directions with the same prob-

S o~ bility. Thus, if we added all the correctio®® we expect
vectorss, would lie inside another manifold in the em- - .
bedding space. Due to the noise, this condition is no lon etrhem fo sum to zergor (0)=0). On the other hand, if the
ding space. T . N9 anifold is curved, we expect that there is a trend towards
fulfilled. The idea of the locally projective noise reduction

. ! . . the center of curvaturg @)= 0,,). Thus, to correct for this
scheme is that for eacd there exists a c~0rrect|oﬁn, Wlt.h trend each correctio@e(is 2eplaced by®-0,,.
1©4] small, in such a way tha,~ @, < M and that®, is A different strategy is used in the programnoject
orthogonal onM. Of course, a projection to the manifold The projections are done in a local coordinate system which
can only be a reasonable concept if the vectors are embeddgfidefined by the condition that the average of the vectors in
in spaces which are higher dimensional than the manifoldhe neighborhood is zero. Or, in other words, the origin of
M. Thus we have to over-embed in-dimensional spaces the coordinate systems is the center of méss,, of the
with m>g. neighborhood/{. This center of mass has a bias towards the
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center of the curvaturéHence, a projection would not lie on -25
the tangent at the manifold, but on a secant. Now we can
compute the center of mass of these points in the neighbor-
hood ofs, . Let us call it({s,));,- Under fairly mild assump-
tions this point has twice the distance from the manifold than
(sa)u- To correct for the bias the origin of the local coordi-
nate system is set to the poifts,)),,—2(s\)u-

The implementation and use of locally projective noise -40
reduction as realized iproject andghkss is described
in detail in Refs. 61, 62. Let us recall here the most important
parameters that have to be set individually for each time
series. The embedding parameters are usually chosen quite
differently from other applications since considerable over-
embedding may lead to better noise averaging. Thus, the
delay time is preferably set to unity and the embedding di-
mension is chosen to provide embedding windows of reason-
able lengths. Only for highly oversampled dalike the
magneto-cardiogram, Fig. 15, at about 1000 samples per
cycle), larger delays are necessary so that a substantial frac- 15 30
tion of a cycle can be covered without the need to work in #(t — 11 ms)
prohibitively high-dimensional spaces. Next, one has to de- _ _ _
cide how many dimensiong to leave for the manifold sup- FIG. 13. A two-dimensional representation of the NM_R La;er(ima) and

T he result of theghkss algorithm (botton) after three iterations.

posedly containing the attractor. The answer partly dependts
on the purpose of the experiment. Rather brisk projections
can be optimal in the sense of the lowest residual deviation  The main assumption for this algorithm to work is that
from the true signal. Low rms error can, however, coexistthe data is well approximated by a low-dimensional mani-
with systematic distortions of the attractor structure. Thus foko|q. If this is not the case it is unpredictable what results are
a subsequent dimension calculation, a more conservatigeated by the algorithm. In the absence of a real manifold,
choice would be in order. Remember, however, that point$he algorithm must pick statistical fluctuations and spuriously
are only movedowardsbut notonto the local linear sub- interprets them as structure. Figure 14 shows a result of the
space and too low a value gfdoes not do as much harm as ghkss program for pure Gaussian noise. The upper panel
may be thought. shows a delay representation of the original data, the lower

The noise amplitude to be removed can be selected tehows the outcome of applying the algorithm for 10 itera-
some degree by the choice of the neighborhood size. In factions. The structure created is purely artificial and has noth-

nonlinear projective filtering can be seen independently ofng to do with structures in the original data. This means that
the dynamical systems background as filtering by amplitude
rather than by frequency or shape. To allow for a clear sepa-
ration of noise and signal directions locally, neighborhoods
should be at least as large as the supposed noise level, rather
larger. This of course competes with curvature effects. For
small initial noise levels, it is recommended to also specify a
minimal number of neighbors in order to permit stable lin-
earizations. Finally, we should remark that in successful
cases most of the filtering is done within the first one to three
iterations. Going further is potentially dangerous since fur-
ther corrections may lead mainly to distortion. One should
watch the rms correction in each iteration and stop as soon as
it does not decrease substantially any more.

As an example for nonlinear noise reduction we treat the
data obtained from a NMR laser experim&hEnlargements
of two-dimensional delay representations of the data are
shown in Fig. 13. The upper panel shows the raw experimen-
tal data which contains about 1.1% of noise. The lower panel
was produced by applying three iterations of the noise reduc-
tion scheme. The embedding dimension was 7, the vec- 2 1 0 1 2
tors were projected down to two dimensions. The size of the Tn1
local neighborhoods were chosen such that at least 50 nEIQE-G. 14. A two-dimensional representation of a pure Gaussian prégss
bors were found. One clearly sees that the fractal structure qﬂf

s ' nd the outcome of thghkss algorithm (bottom) after 10 iterations. Pro-
the attractor is resolved fairly well. jections fromm=7 down to two dimensions were performed.

z(t)

z(t)

Tn

Ty,
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phase space into directions with different stretching or con-
traction rates, then the spectrum of exponents is the proper
average of these local rates over the whole invariant set, and
thus consists of as many exponents as there are space direc-
tions. The most prominent problem in time series analysis is
that the physical phase space is unknown, and that instead
the spectrum is computed in some embedding space. Thus
the number of exponents depends on the reconstruction, and
might be larger than in the physical phase space. Such addi-
tional exponents are callespurious and there are several
suggestions to either avoid th&hor to identify them. More-

FIG. 15. The real time nonlinear projective filtering of a magneto- OVE, it is plausible that only as many exponents can be de-
cardiogram time series. The top panel shows the unfiltered data. Bottontermined from a time series as are entering the Kaplan Yorke
TWO itgrations were done u_sing projections frqu 10 down tpq:2 formula (See be|ov)l To give a Simp|e examp|e: Consider
dimensions(delay 0.01 & Neighborhoods were limited to a radius of 0.1 i of a high-dimensional system on a stable limit cycle.
units (0.05 in the second iteratipand to maximally 200 points. Neighbors . ;i . .
were only sought upot5 s back in time. Thus the fir§ s ofdata are not 1 h€ data cannot contain any information about the stability
filtered optimally and are not shown here. Since the output of each iteratio®f this orbit against perturbations, as long as they are exactly
leaps behind its input t_)y one delay window, the last 0.2 s cannot be progn the limit cycle. For transients, the situation can be differ-
cessed given the data in the upper panel. ent, but then data are not distributed according to an invari-
ant measure and the numerical values are thus difficult to

if one wants to app|y one of the a|gorithms' one has to Caremterpret. Apart from these difﬁculties, there is one relevant
fully study the results. If the assumptions underlying the alPositive feature: Lyapunov exponents are invariant under
gorithms are not fulfilled in principle anything can happen_smooth transformations and are thus independent of the mea-
One should note, however, that the performance of the prosurement function or the embedding procedure. They carry a
gram itself indicates such spurious behavior. For data whicilimension of an inverse time and have to be normalized to
is indeed well approximated by a lower-dimensional mani-thé sampling interval.

fold, the average corrections applied should rapidly decreasg. The maximal exponent

with each successful iteration. This was the case with the ) )
NMR laser data and, in fact, the correction was so small after 1h€ maximal Lyapunov exponent can be determined
three iteration that we stopped the procedure. For the whit&/ithout the explicit construction of a model for the time

noise data, the correction only decreased at a rate that corré€ri€s. A reliable characterization requires that the indepen-
sponds to a general shrinking of the point set, indicating dence of embedding parameters and the exponential law for

lack of convergence towards a genuine low-dimensionaine growth of distances are checRe& explicitly. Consider
manifold. Below, we will give an example where an approxi—the representation of the time series data as a trajectory in the
mating manifold is present without pure determinism. In thatmPedding space, and assume that you observe a very close

case, projecting onto the manifold does reduce noise in $WUM Sy 10 & previously visited poing,. Then one can

reasonable way. See Ref. 64 for material on the dangers §Pnsider the distancao=s,~s, as a small perturbation,
geometric filtering. which should grow exponentially in time. Its future can be

read from the time serie&d;=s,,,— Sy 4. If one finds that

|A|=AqeM then \ is (with probability one the maximal

Lyapunov exponent. In practice, there will be fluctuations
In Ref. 65, a number of modifications of the above pro-pecause of many effects, which are discussed in detail in Ref.

cedure have been discussed which enable the use of nonligg, Based on this understanding, one can derive a robust

ear projective filtering in a data stream. In this case, onlyconsistent and unbiased estimator for the maximal Lyapunov

points in the past are available for the formation of neigh-exponent. One computes

borhoods. Therefore the neighbor search strategy has to be

modified. Since the algorithm is described in detail in Ref.

65, we only give an example of its use here. Figure 15 shows S(e,m,t)= < In

the result of nonlinear noise reduction on a magneto-

cardiogram(see Figs. 1 and)3with the programnoise .

The same program has also been used successfully for t

extraction of the fetal EC&®

z(t) [A/D units]

t [s]

C. Nonlinear noise reduction in a data stream

1
m E |Sn+t_sn’+t|>> . (18
nl s, N

rely

Illf S(e,m,t) exhibits a linear increase with identical slope for
a‘ﬁ m larger than somen, and for a reasonable range gf
then this slope can be taken as an estimate of the maximal
exponent\ .
The formula is implemented in the routingap _k and
Chaos arises from the exponential growth of infinitesi-lyapunov  in a straightforward way.(The program
mal perturbations, together with global folding mechanismdyap _r implements the very similar algorithm of Ref. 70,
to guarantee boundedness of the solutions. This exponentialhere only the closest neighbor is followed for each refer-
instability is characterized by the spectrum of Lyapunovence point. Also, the Euclidean norm is ugeflpart from
exponent$! If one assumes a local decomposition of theparameters characterizing the embedding, the initial neigh-

VI. LYAPUNOV EXPONENTS
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S(e,m,t)
do
T
]
S(e,m, t)

I A N W W N N
0 2 4 6 8 10 12

t [section crossings]

t [s]

FIG. 17. The breath rate datef. Fig. 12 exhibit no linear increase, reflect-
ing the lack of exponential divergence of nearby trajectories.

S(e,m, t)

favorable cases, but as long as the regular oscillations pos-
0 100 200 300 400 sess a linearly increasing average, this can be taken as the
t [flow samples] estimate of the Lyapunov exponent. Normalizing by the sam-

FIG. 16. Estimating the maximal Lyapunov exponent of the, &Rer data. pling rate_’ We again find~0.007 peps, but it is ObVIOUS.
The top panel shows results for the Poincarap data, where the average that the linearity is less pronounced than for the map-like
time interval T, is 52.2 samples of the flow, and the straight line indicates data. Finally, we show in Fig. 17 an example of a negative
A=0.38. For comparison: The iteration of the radial basis function model ofresylt: We study the human breath rate data used before. No
Fig. 11 i =0.35. : [ (e ;
e o T e e o S Inear part exist, and one cannot draw any reasonable con-
approximation\ = Now Tav- Here, the time windowwv to suppress cor- 9'“3'9”- Itis Worth considering the figure on a dOl.Jny '093'
related neighbors has been set to 1000, and the delay time was 6 units. fithmic scale in order to detect a power law behavior, which,
with power 1/2, could be present for a diffusive growth of
distances. In this particular example, there is no convincing
borhood sizee is of relevance: The smalles, the large the power law either.
linear range ofS if there is one. Obviously, noise and the
finite number of data points limi¢ from below. The default
values oflyap _k are rather reasonable for map-like data. It
is not always necessary to extend the average in(E8). The computation of the full Lyapunov spectrum requires
over the whole available data, reasonable averages can bensiderably more effort than just the maximal exponent. An
obtained already with a few hundred reference pointsif essential ingredient is some estimate of the local Jacobians,
some of the reference points have very few neighbors, thee., of the linearized dynamics, which rules the growth of
corresponding inner sum in E¢L8) is dominated by fluc- infinitesimal perturbations. One either finds it from direct fits
tuations. Therefore one may choose to exclude those refeof local linear models of the typg,, ;=a,s,+b,, such that
ence points which have less than, say, ten neighbors. Howhe first row of the Jacobian is the vectay, and Q);;
ever, discretion has to be applied with this parameter since i 5, _4; for i=2,... m, wherem is the embedding dimen-
may introduce a bias against sparsely populated regions. Thison. Thea, is given by the least squares minimizatio
could in theory affect the estimated exponents due to multi==,(s,, ;—a,s —b,)? where{s} is the set of neighbors of
fractality. Like other quantities, Lyapunov estimates may bes, .*>"*Or one constructs a global nonlinear model and com-
affected by serial correlations between reference points anputes its local Jacobians by taking derivatives. In both cases,
neighbors. Therefore, a minimum time for—n’| can and one multiplies the Jacobians one by one, following the tra-
should be specified here as well. See also Sec. VII. jectory, to as many different vectorg in tangent space as
Let us discuss a few typical outcomes. The data underene wants to compute Lyapunov exponents. Every few steps,
lying the top panel of Fig. 16 are the values of the maxima ofone applies a Gram—Schmidt orthonormalization procedure
the CQ laser data. Since this laser exhibits low-dimensionakto the set ofu,, and accumulates the logarithms of their
chaos with a reasonable noise level, we observe a clear lineascaling factors. Their average, in the order of the Gram-—
increase in this semi-logarithmic plot, reflecting the expo-Schmidt procedure, give the Lyapunov exponents in de-
nential divergence of nearby trajectories. The exponent iscending order. The routifgap _spec uses this method,
A~0.38 per iterationmap data), or, when introducing the which goes back to Refs. 71 and 45, employing local linear
average time interval, 0.007 pgs. In the bottom panel we fits. Apart from the problem of spurious exponents, this
show the result for the same system, but now computed omethod contains some other pitfalls: dssumedhat there
the original flow-like data with a sampling rate of 1 MHz. As exist well defined Jacobians, and does not test for their rel-
an additional structure, an initial steep increase and regulavance. In particular, when attractors are thin in the embed-
oscillations are visible. The initial increase is due to non-ding space, soméor all) of the local Jacobians might be
normality and effects of alignment of distances towards theestimated very badly. Then the whole product can suffer
locally most unstable direction, and the oscillations are arfrom these bad estimates and the exponents are correspond-
effect of the locally different velocities and thus different ingly wrong. Thus the global nonlinear approach can be su-
densities. Both effects can be much more dramatic in lesperior, if a modeling has been successful; see Sec. IV.

B. The Lyapunov spectrum
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TABLE I. Lyapunov exponents of the NMR laser data, determined with afrgctal set§,7 whereas thenformation dimensiortakes into
three-dimensional embedding. The algorithms described in Sec. VI A giveaccoum the relative visitation frequencies and is therefore
\1=0.3+0.02 for the largest exponent. . . .

more attractive for physical systems. Finally, for the charac-

Method A Ay As terization of measured data, other similar concepts, like the
Local lnear —20 032  —040  —113 _corrglaﬂon dlmens'lonare more useful. One ger)er_al remark
Local linear k=40 0.30 051 1 is highly relevant in order to understand the limitations of
Local linear k=160 0.28 —0.68 ~131 any numerical approach: dimensions characterize a set or an
Radial basis functions 0.27 —0.64 -1.31 invariant measure whose support is the set, whereas any data
Polynomial 027 -064  -115 set contains only a finite number of points representing the

set or the measure. By definition, the dimension of a finite set
of points is zero. When we determine the dimension of an

attractor numerically, we extrapolate from finite length

InITabI((aj | we Shﬁw th((; expo_nentls Ofbths d,StrObOSC]?p'Cscales, where the statistics we apply is insensitive to the fi-
NMR laser data in a three-dimensional embedding as a funGsjeness of the number of data, to the infinitesimal scales,

tion of the neighborhood size. Using global nonlinear mOd'Where the concept of dimensions is defined. This extrapola-

els, we find the numbers given in the last two rows. Mor€q, ¢an fail for many reasons which will be partly discussed

material is discussed in Ref. 2. The spread of values in thBelow. Dimensions are invariant under smooth transforma-

tab_le fqr this rather clean data set_reflects_ the di_fficulty ofions and thus again computable in time delay embedding
estimating Lyapunov spectra from time series, which has t

_ _ Nas WQpaces.
be done with great care. In particular, when the algorithm is * gy hies are an information theoretical concept to char-
blindly applied to data from a random process,

It Cannot, -1erize the amount of information needed to predict the next

internal!y check folr the consistency of the assumption of anyaaqyrement with a certain precision. The most popular one

underlylng dynam|cal_ system: Therefore a '-yap‘%'”ov SPECs the Kolmogorov—Sinai entropy. We will discuss here only

trum Ihs computed.wh|cp EOV;’_ IS complcfett:lly meaningless. the correlation entropy, which can be computed in a much
The computation of the first part of the Lyapunov Spec-, e ropyst way. The occurrence of entropies in a section on

trum allowsz for some interesting cros§-checks. It WaSdimensions has to do with the fact that they can be deter-
conjectured? and is found to be correct in most physical mined both by the same statistical tool

situations, that the Lyapunov spectrum and the fractal dimen- _ _ _
sion of an attractor are closely related. If the expanding andh. Correlation dimension

least contracting Qirecf[ions i_n space are continuously filled Roughly speaking, the idea behind certain quantifiers of
and only.one p_art|a_l dimension is fractal, then one can aslimensions is that the weighi(€) of a typical e-ball cover-

for the dimensionality of dfracta) volume such that it is jng part of the invariant set scales with its diameter like
invariant, i.e., such that 'Fhe sum of the correspondln%(é)weD, where the value fob depends also on the precise
Lyapunov exponents vanishes, where the last one i§ay one defines the weight. Using the square of the prob-

weighted with the noninteger part of the dimension: ability p; to find a point of the set inside the ball, the dimen-
kN sion is called the correlation dimensi@y, which is com-
Dgy=k+ ol (190  puted most efficiently by the correlation surh:
k+1
N
wherek is the maximum integer su_ch thgt the_sum of khe C(m,e)= _ E E ®(€—|SJ—SK|), 21)
largest exponents is still non-negatiiy is conjectured to pairsi=m k<] -w

coincide with the information dimension. . :
The Pesin identity is valid under the same assumptiongvhere § are m-dimensional delay vectordpqrs=(N—m
—w)(N—m—w+1)/2 the number of pairs of points covered

and allows us to compute the KS-entropy: by the sums@ is the Heaviside step function, amdwill be

m discussed below. On sufficiently small length scales and
th=iZl ON)N;. (20) when the embedding dimension exceeds the correlation-
dimension of the attractdf,
VII. DIMENSIONS AND ENTROPIES C(m, e)xeP2, (22

Solutions of dissipative dynamical systems cannot fill aSince one does not know the correlation-dimension before
volume of the phase space, since dissipation is synonymouwing this computation, one checks for convergence of the
with a contraction of volume elements under the action ofestimated values dD, in m.
the equations of motion. Instead, trajectories are confined to The literature on the correct and spurious estimation of
lower-dimensional subsets which have measure zero in thie correlation dimension is huge and this is certainly not the
phase space. These subsets can be extremely complicatpthce to repeat all the arguments. The relevant caveats and
and frequently they possess a fractal structure, which meamaisconceptions are reviewed, for example, in Refs. 75, 11,
that they are in a nontrivial way self-similar. Generalized76, 2. The most prominent precaution is to exclude tempo-
dimensions are one class of quantities to characterize thislly correlated points from the pair counting by the so called
fractality. TheHausdorff dimensions, from the mathemati- Theiler windoww.”® In order to become a consistent estima-
cal point of view, the most natural concept to characterizeor of the correlatiorintegral (from which the dimension is
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derived the correlationsumshould cover a random sample

of points drawn independently according to the invariant
measure on the attractor. Successive elements of a time se-
ries are not usually independent. In particular, for highly
sampled flow data subsequent delay vectors are highly cor-
related. Theiler suggested to remove this spurious effect by
simply ignoring all pairs of points in Eq21) whose time ol— s venwd v enl 0l
indices differ by less tham, wherew should be chosen 1 10 100 1000
generously. WithO(N?) pairs available, the loss @(wN) €

pairs is not dramatic as long as<N. At the very least, pairs
with j=k have to be excludetl,since otherwise the strong
bias toD,=0, the mathematically correct value for a finite
set of points, reduces the scaling range drastically. Choosing
w, the first zero of the auto-correlation function, sometimes
even the decay time of the auto-correlation function, are not
large enough since they reflect only overall linear REPTTTY BT R
correlations’>’® The space—time-separation pl&ec. Ill B) 1 10 100 1000
provides a good means of determining a sufficient value for €

w, as discussed, for example in Ref. 41, 2. In some cases,
notably processes with inverse power law spectra, inspection
requiresw to be of the order of the length of the time series.
This indicates that the data does not sample an invariant
attractor sufficiently and the estimation of invariants e

or Lyapunov exponents should be abandoned.

Parameters in the routinel?, c2, andc2naive are as T I B
usual the embedding parametersind 7, the time delay, and 1 10 100 1000
the embedding dimension, as well as the Theiler window. €

Fast implementation of the correlation sum have been
proposed by several authors. At small length scales, the com-
putation of pairs can be done @(N logN) or evenO(N)
time rather tharO(N?) without losing any of the precious
pairs; see Ref. 20. However, for intermediate size data sets
we also need the correlation sum at intermediate length
scales where neighbor searching becomes expensive. Many
authors have tried to limit the use of computational resources 1 10 100 1000
by restricting one of the sums in E@Q1) to a fraction of the (log e(k/N))
available points. By this practice, however, one loses valu-
able statistics at the small length scales where points are &G 18..The'dimer?sion estimation for tkieoise filtered NMR laser data.

. mbedding dimensions 2 to 7 are shown. From ab¢eslopes are deter-
scarce anyway that all pairs are needed for stable results. ined by straight line fits to the log—log plot of the correlation sum, Eq.
Ref. 62, both approaches were combined for the first time by21). (b) The Takes—Theiler-estimator of the same slof@.Slopes are
using a fast neighbor search fec € and restricting the sum obtained by straight line fits to _the G_-aussign kgrnel correlation sum, Eq.
for e=¢,. The TISEAN implementation2 andd2 go one (25_). (d) Instgad of t_he cc_)rrelatllon dimension, it has been attempted to

A estimate the information dimension.
step further and select the range for the sums individually for
each length scale to be processed. This turns out to give a

major improvement in speed. The user can specify a desiregomization, however, requires a more sophisticated program

number of pairs which seems large enough for a stable estiyrycture in order to avoid an overhead in computation time.
mation of C(€), typically 1000 pairs will suffice. Then the

sums are extended to a range which guarantees that number ) )

of pairs, or, if this cannot be achieved, to the whole timel- Takens—Theiler estimator

series. At the largest length scales, this range may be rather Convergence to a finite correlation dimension can be
small and the user may choose to give a minimal number o€hecked by plotting scale-dependent “effective dimensions”
reference points to ensure a representative average. Still, ugersus length scale for various embeddings. The easiest way
ing the progrant2 the whole computation may thus at large to proceed is to computénumerically the derivative of
scales be concentrated on the first part of the time seriefpg C(m,e) with respect to log, for example, by fitting
which seems fair for stationary, nonintermittent datansta-  straight lines to the log—log plot d€(€). In Fig. 18a) we
tionary or strongly intermittent data is usually unsuitable forsee the output of the routine2 acting on data from the
correlation dimension estimation anywayfhe progranmd2 NMR laser, processed m2d in order to obtain local slopes.

is safer with this respect. Rather than restricting the range dBy default, straight lines are fitted over one octaveejn

the sums, only a randomly selected subset is used. The ralarger ranges give smoother results. We can see that on the

dlog Cle
dlog ¢

Dryr(e)

dlog Cgle)
dloge

dlog(k/N
Tlog e(k/N)}
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large scales, self-similarity is broken due to the finite extencarried out numerically by interpolatin@(e) with pure
sion of the attractor, and on small but yet statistically signifi-power laws. This is done it2g which uses a 15 point
cant scales we see the embedding dimension instead of Gauss—Kronrod rule for the numerical integration.
saturatedm-independent value. This is the effect of noise,
which is infinite dimensional, and thus fills a volume in ev-
ery embedding space. Only on the intermediate scales we sge
the desirecplateauwhere the results are in good approxima-
tion independent ofm and e. The region where scaling is Another way of attaching weight te-balls, which is
establishegdnot just the range selected for straight line fit- more natural, is the probability; itself. The resulting scaling
ting, is called thescaling range exponent is called the information dimensibr. Since the
Since the statistical fluctuations in plots like Fig.(48 Kaplan—Yorke dimension of Sec. VI is an approximation of
show characteristic (anti)correlations, it has been Dji, the computation oD; through scaling properties is a
suggestet?’® to apply a maximum likelihood estimator to relevant cross-check for highly deterministic ddda.can be
obtain optimal values fob,. The Takens—Theiler-estimator computed from a modified correlation sum, where, however,
reads as unpleasant systematic errors occur. THixed mass
approach! circumvents these problems, so that, including

Information dimension

Drr(e)= Lfr) (23 finite sample correction¥, a rather robust estimator exists.
J'E C(e )de' Instead of counting the number of points in a ball one asks
o € here for the diametet which a ball must have to contain a

certain numbek of points when a time series of lengthis
given. Its scaling withk and N yields the dimension in the
limit of small length scales by

and can be obtained by processing the output2oby c2t .
Since C(€) is available only at discrete valuef;, i
=0,... 1}, we interpolate it by a pure power lgwr, equiva-
lently, the log—log plot by straight lines: |dg(e)=a;log e

+b;] in between these. The resulting integrals can be solved Dy(m)= lim %_ (26)
trivially and summed: kn—od{l0ge(k/N))
! I .
Jf C(e )de' :E ebir' (e 1de’ The routinecl computes thégeometri¢ mean length scale
€ i=1 €i_1 explog e(k/N)) for which k neighbors are found ilN data

points, as a function ok/N. Unlike the correlation sum,
_ 2 e—(ea‘ A (24) finite sample corrections are necessar itf small’’ Essen-

i - tially, the log ofk has to be replaced by the digamma func-
. . . . . . tion (k). The resulting expression is implementedcih.
Plotting D7 vs € [Fig. 18b)] is an interesting alternative to Given m and =, the routine varies and N such that the

the usual local slopes plot, Fig. (8. It is tempting to use largest reasonable range bfN is covered with moderate

such an “estimator of dimension” as a black box to prov'decomputational effort. This means that foNEtk/N<K/N

a number one might quote as a dimension. This would imply(default' K=100), all N available points are searched for
the unjustified assumption that all deviations from exact scal- y '

. o L ) neighbors and is varied. ForK/N<k/N=<1, k=K is kept
ing behavior is due to the statistical fluctuations. Instead, ONE. od andN is decreased. The result for the NMR laser data
still has to verify the existence of a scaling regime. Only :

then,D+1(€) evaluated at the upper end of the scaling rangeIS shown_m Fig. 1&), where a nice scaling W|t_1§1.35_
. . ! A can be discerned. For comparability, the logarithmic deriva-
is a reasonable dimension estimator. tive of k/IN is plotted versus exfog e(k,N)) and notvice

2. Gaussian kernel correlation integral versg althoughk/N is the independent variable. One easily
detects again the violations of scaling discussed before: Cut-

. X L : 8ff on the large scales, noise on small scales, fluctuations on
average density of points where the local density is obtaine . : .
even smaller scales, and a scaling range in between. In this

by a kernel estimator with a step kerr@(e—r). A natural . . .
e . : example,D; is close toD,, and multifractality cannot be
modification for small point sets is to replace the sharp step

kernel by a smooth kernel function dandwidthe. A par- established positively.

ticularly attractive case that has been studied in the

literaturé® is given by the Gaussian kernel, that (e

—r) is replaced bye "¢, The resulting Gaussian kernel C. Entropy estimates

correlation sunCg(€) has the same scaling properties asthe  The correlation dimension characterizes thedepen-
usualC(e). It has been observed in Ref. 3 tl&(e) canbe  gence of the correlation sum inside the scaling range. It is

The correlation sum, Eg.21), can be regarded as an

obtained fromC(e) via natural to ask what we can learn from is-dependence,
1 (% o mp 2 oncem is larger thanD,. The number ofe-neighbors of a
Cole)=52 fo dee” “"*eC(e), (25  delay vector is an estimate of the local probability density,

and, in fact, it is a kind of joint probability: All
without having to repeat the whole computationClfe) is  m-components of the neighbor have to be similar to those of
given at discrete values @f the integrals in Eq(25) can be  the actual vector simultaneously. Thus when increasmg
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joint probabilities covering larger time spans get involved.nificance of the results. One important method in this context
The scaling of these joint probabilities is related to the cor4s the method of surrogate d&aA null hypothesis is for-
relation entropyh,, such that mulated, for example, that the data has been created by a
C(m, €)~ Poe MM, 27) stgtionar.y Gaussian .Iinear process, and then it is attempted to
reject this hypothesis by comparing results for the data to
As for the scaling ine, also the dependence anis valid  appropriate realizations of the null hypothesis. Since the null
only asymptotically for largem, which one will not reach assumption is not a simple one but leaves room for free
due to the lack of data points. So one will stuay(m) vsm  parameters, the Monte Carlo sample has to take these into
and try to extrapolate to large. The correlation entropy is a account. One approach is to constrechstrained realiza-
lower bound of the Kolmogorov Sinai entropy, which in turn tions of the null hypothesis. The idea is that the free param-
can be estimated by the sum of the positive Lyapunov expoeters left by the null are reflected by specific properties of the
nents. The progrard2 produces as output the estimates ofdata. For example, the unknown coefficients of an autore-
h, directly, from the other correlation sum programs it has togressive process are reflected in the autocorrelation function.
be extracted by post-processing the output. Constrained realizations are obtained by randomizing the
The entropies of first and second order can be derivedata subject to the constraint that an appropriate set of pa-
from the output ofcl and c2, respectively. An alternate rameters remains fixed. For example, random data with a
means of obtaining these and the other generalized entropig#s/en periodogram can be made by assuming random phases
is by a box counting approach. Lpt be the probability to  and taking the inverse Fourier transform of the given peri-
find the system state in bax then the ordelq entropy is  odogram. Random data with the same distribution as a given

defined by the limit of small box size and largeof data set can be generated by permuting the data randomly
without replacement. Asking for a given spectrum and a
> pi~e M, (28)  given distribution at the same time poses already a much

more difficult question.

To evaluateZ;p{! over a fine mesh of boxes m>1 dimen-

sions, economical use of memory is necessary: A simple

histogram would take (&)™ storage. Therefore the program B- Iterative Fourier transform method

boxcount implements the mesh of boxes as a tree with  very few real time series which are suspected to show
(1/e)-fold branching points. The tree is worked through re-nonlinearity follow a Gaussian single time distribution. Non-
cursively so that at each instance at most one completgaussianity is the simplest kind of nonlinear signature but it
branch exists in storage. The current version does not implenay have a trivial reason: The data may have been distorted
ment finite sample corrections to E@8). in the measurement process. Thus a possible null hypothesis
would be that there is a stationary Gaussian linear stochastic
process that generates a sequepge, but the actual obser-
vations ares,=s(X,,) wheres(-) is a monotonic function.

Most of the methods and quantities discussed so far aréonstrained realizations of this null hypothesis would re-
most appropriate in cases where the data show strong armtliire the generation of random sequences with the same
consistent nonlinear deterministic signatures. As soon agower spectruntfully specifying the linear processand the
more than a small or at most moderate amount of additivéame single time distributiofspecifying the effect of the
noise is present, scaling behavior will be broken and predictmeasurement functioras the observed data. Thenplitude
ability will be limited. Thus we have explored the opposite Adjusted Fourier Transform (AAFT) method proposed in
extreme, nonlinear and fully deterministic, rather than theRef. 82 attempts to invert the measurement funcsipr) by
classical linear stochastic processes. The bulk of real worlgescaling the data to a Gaussian distribution. Then the Fou-
time series falls in neither of these limiting categories be<ier phases are randomized and the rescaling is inverted. As
cause they reflect nonlinear responses and effectively stsliscussed in Ref. 83, this procedure is biased towards a flat-
chastic components at the same time. Little can be done fder spectrum since the inverse sf-) is not available ex-
many of these cases with current methods. Often it will beactly. In the same reference, a scheme is introduced that
advisable to take advantage of the well founded machineryemoves this bias by iteratively adjusting the spectrum and
of spectral methods and venture into nonlinear territory onlythe distribution of the surrogates. Alternatingly, the surro-
if encouraged by positive evidence. This section is abougates are rescaled to the exact values taken by the data and
methods to establish statistical evidence for nonlinearity bethen the Fourier transform is brought to the exact amplitudes
yond a simple rescaling in a time series. obtained from the data. The discrepancy between both steps
either converges to zero with the number of iterations or to a
finite inaccuracy which decreases with the length of the time

The degree of nonlinearity can be measured in severaleries. The prograrsurrogates  performs iterations until
ways. But how much nonlinear predictability, say, is hecesho further improvement can be made. The last two stages are
sary to exclude more trivial explanations? All quantifiers ofreturned, one having the exact Fourier amplitudes and one
nonlinearity show fluctuations but the distributions, or errortaking on the same values as the data. For not too exotic data
bars if you wish, are not available analytically. It is thereforethese two versions should be almost identical. The relative
necessary to use Monte Carlo techniques to assess the sijscrepancy is also printed.

VIIl. TESTING FOR NONLINEARITY

A. The concept of surrogate data
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FIG. 20. Upper trace: Data from a stationary Gaussian linear stochastic
process X,= 0.7x,_,+ 7,) measured by(x,) =xﬁ. Samples 200—-220 are

an artifact. With the Fourier based schetm@ddle tracé the artifact results

in an increased number of spikes in the surrogates and reduced predictabil-
ity. In the lower trace, the artifact has been preserved along with the distri-

bution of values and lags 1,...,25 of the autocorrelation function.

- 1
0 1

rier based randomization schemes can be avoided by speci-
fying the autocorrelation function rather than the Fourier
transform. The former does not assume periodic continua-
FIG. 19. Upper: The human breath rate data from Fig. 12. Lower: the noision. Maybe more importantly, the restriction to a rather nar-
component extracted by the noise reduction scheme has been randomizedriow null hypothesis can be relaxed since, in principle, arbi-
order to destroy correlations with the signal. The result appears slightly bufrary statistical observables can be imposed on the
significantly less structured than the original. .

surrogates. A desired property of the data has to be formu-
lated in terms of a cost function which assumes an absolute

In Fig. 19 we used this procedure to assess the hypotﬂpinimum \{vher_1 _the property is fulfilled. States arbitrarily
esis that the noise reduction on the breath data reported ffl0S€ t0 this minimal cost can be reached by the method of
Fig. 12 removed an additive noise component which wasimulated annealing. The cost function is minimized among

independent of the signal. If the hypothesis were true, well possible permutations of the data. See Ref. 85 for a de-

could equally well add back on the noise sequence or a rarCriPtion of the approach. _ .
domized version of it which lacks any correlations to the ~ 1he TISEAN package contains the building blocks for a

signal. In the upper panel of Fig. 19 we show the original“brary of surrogate data routines implementing user speci-

data. In the lower panel we took the noise reduced versiofied cost functions. Currently, only the autocorrelation func-
(cf. Fig. 12, bottor and added a surrogate of the suppose&ion with and without periodic continuation have been imple-
noise sequence. The result is similar but still significantlyMented. Further, a template is given from which the user

different from the original to make the additivity assumption M@y derive her/his own routines. A module is provided that
implausible. drives the simulated annealing process through an exponen-

Fourier based randomization schemes suffer from somfi@l cooling scheme. The user may replace this module by

caveats due to the the inherent assumption that the data cofther scheme of her/his choice. A module that performs ran-

stitutes one period of a periodic signal, which is not what wed®m Pair permutations is given which allows us to exclude a

really expect. The possible artifacts are discussed, for exiSt Of points from the permutation scheme. More sophisti-
ample, in Ref. 84 and can, in summary, lead to Spuriougated_permutatlon schemes can be substltuteq if desired.
rejection of the null hypothesis. One precaution that should//0St importantly, the cost function has to be given as an-
be taken when usingurrogates  is to make sure that the ©th€r module. - The — autocorrelation  modules — use
beginning and the end of the data approximately match ifMaX™5/C(7)—C(7)4ad/ 7, WhereC(7) is the autocorrelation
value and phase. Then, the periodicity assumption is not tofinction with or without periodic continuation.

far wrong and harmless. Usually, this amounts to the loss of In Fig. 20 we show an example fulfilling the null hy-

a few points of the series. One should note, however, that theothesis of a rescaled stationary Gaussian linear stochastic
routine may truncate the data by a few points itself in orderocess which has been contaminated by an artifact at
to be able to perform fastFourier transform which requires Samples 200-220. The Fourier based schemes are unable to

the number of points to be factorizable by small prime facimplement the artifact part of the null hypothesis. They
tors. spread the structure given by the artifact evenly over the

whole time span, resulting in more spikes and less predict-
ability. In fact, the null hypothesis of a stationary rescaled
Gaussian linear stochastic process can be rejected at the 95%
In Ref. 85 a general method has been proposed to createvel of significance using nonlinear prediction errors. The
random data which fulfill specified constraints. With this artifact would spuriously be mistaken for nonlinearity. With
method, the artifacts and remaining imprecision of the Fouthe programrandomize _auto _exp_random, we can

z(t —0.58)

C. General constrained randomization
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function but also critically on the annealing schedule. There
is a vast literature on simulated annealing which cannot be
reviewed here. Experimentation with cooling schemes
should keep in mind the basic concept of simulated anneal-
ing. At each stage, the system—here the surrogate to be
created—is kept at a certain “temperature.” Like in thermo-
dynamics, the temperature determines how likely fluctua-
tions around the mean energy—here the value of the cost
function C—are. At temperaturd, a deviation of sizeAC
occurs with the Boltzmann probability exp(—AC/T). In a
Metropolis simulation, this is achieved by acceptial
downhill changes AC<0), but also uphill changes with
probability expAC/T). Here the changes are permutations
of two randomly selected data items. The present implemen-
tation offers an exponential cooling scheme, that is, the tem-
perature is lowered by a fixed factor whenever one of two
conditions is fulfilled: Either a specified number of changes
has beertried, or a specified number of changes has been
acceptedBoth these numbers and the cooling factor can be
chosen by the user. If the state is cooled too fast it gets stuck,
or “freezes” in a false minimum. When this happens, the
system must be “melted” again and cooling is taken up at a
FIG. 21. Randomization of 500 points generated by the theoHenap.(a) slower rate. This can be done automatically until a goal ac-
Original data;(b) the same autocorrelations and distributian~(f) differ- - o, -acy is reached. It is, however, difficult to predict how
ent stages of annealing with a cost functiGninvolving three- and four- L . .
point correlations.(c) A random shuffle,C=2400; (d) C=150: () ¢ Mmany steps it will take. The detailed behavior of the scheme
=15; (f) C=0.002. See the text. is still subject to ongoing research and in all but the simplest
cases, experimentation by the user will be necessary. To fa-
cilitate the supervision of the cooling, the current state is
exclude the artifact from the randomization scheme and obwritten to a file whenever a substantial improvement has
tain a correct test. been made. Further, the verbosity of the diagnostic output
As an example of a more exotic cost function, let uscan be selected.
show the randomization of 500 iterates of thénkie map,
Fig. 21(a). Panel(b) shows the output cdurrogates  hav-
ing the same spectrum and distribution. Starting from a ranD. Measuring weak nonlinearity
dom permutatior{c), the cost function,

When testing for nonlinearity, we would like to use

C=(Xn_1Xn) + (Xn—2Xn) + (X2_ 1 Xp) + (Xn_1X2) quz?\ntif'iers that are optimized for' the weak nonlinearity limit,
) , 5 which is not what most time series methods of chaos theory
+(Xn— 2%n) F (Xn—2Xn—1Xn) + (X X0 + (Xn-2X7) have been designed for. The simple nonlinear prediction
schemdSec. IV B) has proven quite useful in this context. If
OB o), (29 o ) has proven g

used as a comparative statistic, it should be noted that some-
is minimized (randomize _generic _exp_random). It times seemingly inadequate embeddings or neighborhood
involves are all the higher order autocorrelations whichsizes may lead to rather big errors which have, however,
would be needed for a least squares fit with the ansatz small fluctuations. The tradeoff between bias and variance
=c—axﬁ,l+ bx,_», and in this sense fully specifies the qua- may be different from the situation where predictions are
dratic structure of the data. The random shuffle yieldsdesiredper se The same rationale applies to quantities de-
C=2400, panelgc)—(f) correspond t&C=150,15,0.002, re- rived from the correlation sum. Neither the small scale limit,
spectively. genuine scaling, or the Theiler correction, are formally nec-

Since the annealing process can be very CPU time coressary in a comparative test. However, any temptation to
suming, it is important to provide an efficient code for theinterpret the results in terms like “complexity” or “dimen-
cost function. Specifying .« lags forN data points requires sionality” should be resisted, even though “complexity”
O(N7ma9 Multiplications for the calculation of the cost func- does not seem to have an agreed-upon meaning anyway.
tion. An update after a pair has been exchanged, howeveApart from average prediction errors, we have found the sta-
can be obtained wit® (7,40 Multiplications. Often, the full  bilities of short periodic orbit§see Sec. IV Cuseful for the
sum or supremum can be truncated since after the first terntetection of nonlinearity in surrogate data tests. As an alter-
it is clear that a large increase of the cost is unavoidable. Theative to the phase space based methods, more traditional
driving Metropolis algorithm provides the current maximal measures of nonlinearity derived from higher order autocor-
permissible cost for that purpose. relation functiongRef. 86, routineautocor3 ) may also be

The computation time required to reach the desired aceonsidered. If a time-reversal asymmetry is present, its sta-
curacy depends on the choice and implementation of the cosistical confirmation(routinetimerev ) is a very powerful
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detector of nonlinearit}’ Some measures of weak nonlin- substantial fraction of time series problems, including the
earity are compared systematically in Ref. 88. most prominent examples, that is, most data from finance,
meteorology, and biology. It is quite clear that the mere re-
jection of these challenging problems is not satisfactory and
IX. CONCLUSION AND PERSPECTIVES we will have to develop tools to actually analyze, under-
o- Stand, and predict nonstationary data. Some suggestions have

rithms of nonlinear time series analysis to people intereste§€€N maggz_ngor the detection of fluctuating ~control

in applications of the dynamical systems approach. To makBarameters:™== Most of these can be seen as continuous
proper use of these algorithms, it is not essential to hav¥€rsions of the classification problem, another application
written the programs from scratch, an effort we intend toWhich is not properly represented WSEAN yet.

spare the user by makingsean public. Indispensable, how- Publishing software, or reviews and textbooks for that

ever, is a good knowledge of what the programs do ’and Whpwatter, in a field evolving as rapidly as nonlinear time series
they do what they do. The latter requires a thorough backanalysis will always have the character of a snapshot of the

ground in the nonlinear time series approach which cannottate at a given time. Having the options either to wait until
be provided by this paper, but rather by textbooks like inthe field has saturated sufficiently or to risk that programs, or
Refs. 10, 2, reviewst23and the original literatur® Here statements made, will become obsolete soon, we chose the

we have concentrated on the actual implementation as it i§6¢ONd option. We hope that we can thus contribute to the

realized inTiISEAN and on examples of the concrete use of thefUrther evolution of the field.

programs.
Let us finish the discussion by giving some perspectiveCKNOWLEDGMENTS

on future work. So far, th@iSEAN project has concentrated ) ] )

on the most common situation of a single time series. While ~ W€ Wwish to thank Eckehard Olbrich, Marcus Richter,
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well worth pursuing and at some point should become availShungsgemeinschaft.
able to a wider community, including applied research.
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dicates that some of the concepts may prove useful enoughhttp:/iwww.mpipks-dresden.mpg.de/ tisean . The distribu-
in the future to become part of the established time seriestion includes an online documentation system. _
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d reliable inf . h . il b ial. Th University Press, Cambridge, 1997
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principle, be defined and computed automatically, once the new York, 1996.
optimality criterion is formulated. For example, the predic- *'P. Grassberger, T. Schreiber, and C. Schaffrath, “Non-linear time se-
tion programs could be encapsulated in a framework th%quence analysis,” Int. J. Bifurcation Chaos Appl. Sci. Ehg521(1991).
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