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Practical implementation of nonlinear time series methods:
The TISEAN package
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We describe the implementation of methods of nonlinear time series analysis which are based on the
paradigm of deterministic chaos. A variety of algorithms for data representation, prediction, noise
reduction, dimension and Lyapunov estimation, and nonlinearity testing are discussed with
particular emphasis on issues of implementation and choice of parameters. Computer programs that
implement the resulting strategies are publicly available as theTISEAN software package. The use of
each algorithm will be illustrated with a typical application. As to the theoretical background, we
will essentially give pointers to the literature. ©1999 American Institute of Physics.
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Nonlinear time series analysis is becoming a more and
more reliable tool for the study of complicated dynamics
from measurements. The concept of low-dimensiona
chaos has proven to be fruitful in the understanding of
many complex phenomena despite the fact that very few
natural systems have actually been found to be low-
dimensional deterministic in the sense of the theory. In
order to evaluate the long term usefulness of the nonlin-
ear time series approach as inspired by chaos theory, i
will be important that the corresponding methods be-
come more widely accessible. This paper, while not a
proper review on nonlinear time series analysis, tries to
make a contribution to this process by describing the ac-
tual implementation of the algorithms, and their proper
usage. Most of the methods require the choice of certain
parameters for each specific time series application. We
will try to give guidance in this respect. The scope and
selection of topics in this article, as well as the implemen-
tational choices that have been made, correspond to the
contents of the software packageTISEAN which is publicly
available from http://www.mpipks-dresden.mpg.de/
˜ tisean. In fact, this paper can be seen as an extende
manual for the TISEAN programs. It fills the gap between
the technical documentation and the existing literature,
providing the necessary entry points for a more thorough
study of the theoretical background.

I. INTRODUCTION

Deterministic chaos as a fundamental concept is by n
well established and described in a rich literature. The m
fact that simple deterministic systems generically exh
complicated temporal behavior in the presence of nonline
ity has influenced thinking and intuition in many field
However, it has been questioned whether the relevanc

a!Electronic mail: kantz@mpipks-dresden.mpg.de
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chaos for the understanding of the time evolving world go
beyond that of a purely philosophical paradigm. Accor
ingly, major research efforts are dedicated to two rela
questions. The first question is if chaos theory can be use
gain a better understanding and interpretation of obser
complex dynamical behavior. The second is if chaos the
can give an advantage in predicting or controlling such
time evolution. Time evolution as a system property can
measured by recording the time series. Thus, nonlinear t
series methods will be the key to the answers of the ab
questions. This paper is intended to encourage the exp
ative use of such methods by a section of the scientific co
munity which is not limited to chaos theorists. A range
algorithms has been made available in the form of compu
programs by theTISEAN project.1 Since this is fairly new
territory, unguided use of the algorithms bears considera
risk of wrong interpretation and unintelligible or spuriou
results. In the present paper, the essential ideas behind
algorithms are summarized and pointers to the existing
erature are given. To avoid excessive redundancy with
text book2 and the recent review,3 the derivation of the meth-
ods will be kept to a minimum. On the other hand, t
choices that have been made in the implementation of
programs are discussed more thoroughly, even if this m
seem quite technical at times. We will also point to possi
alternatives to theTISEAN implementation.

Let us at this point mention a number of general ref
ences on the subject of nonlinear dynamics. At an introd
tory level, the book by Kaplan and Glass4 is aimed at an
interdisciplinary audience and provides a good intuitive u
derstanding of the fundamentals of dynamics. The theoret
framework is thoroughly described by Ott,5 but also in the
older books by Berge´ et al.6 and by Schuster.7 More ad-
vanced material is contained in the work by Katok a
Hasselblatt.8 A collection of research articles compiled b
Ott et al.9 covers some of the more applied aspects of cha
like synchronization, control, and time series analysis.
© 1999 American Institute of Physics

ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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Nonlinear time series analysis based on this theoret
paradigm is described in two recent monographs; one
Abarbanel10 and one by Kantz and Schreiber.2 While the
former volume usuallyassumeschaoticity, the latter book
puts some emphasis on practical applications to time se
that are not manifestly found, nor simply assumed to
deterministic chaotic. This is the rationale we will also ado
in the present paper. A number of older articles can be s
as reviews, including Grassbergeret al.,11 Abarbanelet al.,12

as well as Kugiumtziset al.13,14 The application of the non
linear time series analysis to real world measurements, w
determinism is unlikely to be present in a stronger sense
reviewed in Schreiber.3 Apart from these works, a number o
conference proceedings volumes are devoted to a cha
time series, including Refs. 15–19.

A. Philosophy of the TISEAN implementation

A number of different people have been credited for
saying that every complicated question has a simple ans
which is wrong. Analyzing a time series with a nonline
approach is definitely a complicated problem. Simple
swers have been repeatedly offered in the literature, quo
numerical values for attractor dimensions for any conce
able system. The present implementation reflects our ske
cism against such simple answers which are the inevita
result of using black box algorithms. Thus, for examp
none of the ‘‘dimension’’ programs will actually print
number which can be quoted as the estimated attracto
mension. Instead, the correlation sum is computed and b
tools are provided for its interpretation. It is up to the scie
tist who does the analysis to put these results into th
proper context and to infer what information she or he m
find useful and plausible. We should stress that this is
simply a question of error bars. Error bars do not tell ab
systematic errors and neither do they tell if the underly
assumptions are justified.

The TISEAN project has emerged from work of the in
volved research groups over several years. Some of the
grams are in fact based on the code published in Ref
Nevertheless, we still like to see it as a starting point rat
than a conclusive step. First of all, nonlinear time ser
analysis is still a rapidly evolving field, in particular wit
respect to applications. This implies that the selection of t
ics in this article and the selection of algorithms imp
mented inTISEAN are highly biased towards what we kno
now and found useful so far. But even the well establish
concepts like dimension estimation and noise reduction le
considerable room for alternatives to the present implem
tation. Sometimes this resulted in two or more concurr
and almost redundant programs entering the package.
have deliberately not eliminated these redundancies since
user may benefit from having a choice. In any case i
healthy to know that for most of the algorithms the fin
word has not been spoken yet—nor is ever to be.

While the TISEAN package does contain a number
tools for linear time series analysis~spectrum, autocorrela
tions, histograms, etc.!, these are only suitable for a quic
inspection of the data. Spectral or even ARMA estimat
are industries in themselves and we refer the reader—and
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user ofTISEAN—to the existing literature and available st
tistics software for an optimal, up-to-date implementations
these important methods.

Some users will miss a convenient graphical interface
the programs. We felt that at this point the extra impleme
tational effort would not be justified by the expected ad
tional functionality of the package. Work is in progres
however, to provide interfaces to higher level mathema
~or statistics! software.

B. General computational issues

The natural basis to formulate nonlinear time series
gorithms from chaos theory is a multi-dimensional pha
space, rather than the time or the frequency domain. It
be essential for the global dynamics in this phase space t
nonlinear in order to fulfill the constraints of nontrivialit
and boundedness. Only in particular cases this nonlin
structure will be easily representable by a global nonlin
function. Instead, all properties will be expressed in terms
local quantities, often by suitable global averages. All lo
information will be gained from neighborhood relations
various kinds from time series elements. Thus, a recur
computational issue will be that of defining local neighbo
hoods in phase space. Finding neighbors in multidimensio
space is a common problem of computational geome
Multidimensional tree structures are widely used and h
attractive theoretical properties. Finding all neighbors in a
of N vectors takesO(logN) operations, thus the total opera
tion count isO(N logN). A fast alternative that is particu
larly efficient for relatively low-dimensional structures em
bedded in multidimensional spaces is given by box-assis
neighbor search methods which can push the operation c
down to O(N) under certain assumptions. Both approach
are reviewed in Ref. 20 with particular emphasis on tim
series applications. In theTISEAN project, a fast neighbor
search is done using a box-assisted approach, as describ
Ref. 2.

No matter in what space dimension we are working,
will define candidatesfor nearest neighbors in two dimen
sions using a grid of evenly spaced boxes. With a grid
spacinge, all neighbors of a vectorx closer than epsilon
must be located in the adjacent boxes. But not all points
the adjacent boxes are neighbors, they may be up to 2e away
in two dimensions and arbitrarily far in higher dimension
The neighbors search is thus a two stage process. First
box-assisted data base has to be filled and then for each
a list of neighbors can be requested. There are a few
stances where it is advisable to abandon the fast neigh
search strategy. One example is the programnoise that
does nonlinear noise filtering in a data stream. It is suppo
to start filtering soon after the first points have been
corded. Thus the neighbor data base cannot be construct
the beginning. Another exception is if quite sho
~,500 points, say!, high-dimensional data are processe
Then the overhead for the neighbor search should be avo
and instead an optimized straightO(N2) method be used
like it is done in c2naive.

For portability, all programs expect time series data
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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column format represented by ASCII numbers. The colu
to be processed can be specified on the command line
though somewhat wasteful for storing data, ASCII numb
can be produced and read by most other software. All par
eters can be set by adding options to the command, whic
many programs, just replace the default values. Obviou
relying on default settings is particularly dangerous in suc
subtle field. Since almost all routines can read from stand
input and write to standard output, programs can be par
as pipelines. For example, they can be called filters fr
inside graphics software or other software tools which
able to execute shell commands. Also, data conversion
compression can be done ‘‘on the fly’’ this way. The read
here realizes that we are speaking of UNIX or LINUX pla
forms which seems to be the most appropriate environm
It is, however, expected that most of the programs will
ported to other environments in the near future.

For those readers familiar with the programs publish
in Ref. 2 we should mention that these form the basis fo
number of thoseTISEAN programs written in FORTRAN.
The C programs, even if they do similar things, are fai
independent implementations. All C and C11 programs
now use dynamic allocation of storage, for example.

II. PHASE SPACE REPRESENTATION

Deterministic dynamical systems describe the time e
lution of a system in some phase spaceG,R. They can be
expressed, for example, by ordinary differential equation

ẋ~ t !5F„x~ t !…, ~1!

or in discrete timet5n Dt by maps of the form

xn115f~xn!. ~2!

A time series can then be thought of as a sequence of ob
vations $sn5s(xn)% performed with some measureme
function s(•). Since the~usually scalar! sequence$sn% in
itself does not properly represent the~multi-dimensional!
phase space of the dynamical system, one has to em
some technique to unfold the multi-dimensional structure
ing the available data.

A. Delay coordinates

The most important phase space reconstruction te
nique is themethod of delays. Vectors in a new space, th
embedding space, are formed from time delayed value
the scalar measurements:

sn5~sn2~m21!t ,sn2~m22!t ,...,sn!. ~3!

The numberm of elements is called theembedding dimen
sion, the timet is generally referred to as thedelayor lag.
Celebrated embedding theorems by Takens21 and by Sauer
et al.22 state that if the sequence$sn% does indeed consist o
scalar measurements of the state of a dynamical system,
under certain genericity assumptions, the time delay emb
ding provides a one-to-one image of the original set$x%,
providedm is large enough.

Time delay embeddings are used in almost all meth
described in this paper. The implementation is straightf
ward and does not require further explanation. IfN scalar
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measurements are available, the number of embedding
tors is onlyN2(m21)t. This has to be kept in mind for the
correct normalization of averaged quantities. There is a la
literature on the ‘‘optimal’’ choice of the embedding param
etersm andt. It turns out, however, that what constitutes t
optimal choice largely depends on the application. We w
therefore discuss the choice of embedding parameters o
sionally together with other algorithms below.

A stand-alone version of the delay procedure~delay ,
embed! is an important tool for the visual inspection of dat
even though visualization is restricted to two dimensions
at most two-dimensional projections of three-dimensio
renderings. A good unfolding already in two dimensions m
give some guidance about a good choice of the delay t
for higher-dimensional embeddings. As an example let
show two different two-dimensional delay coordinate rep
sentations of a human magneto-cardiogram~Fig. 1!. Note
that we do neither assume nor claim that the magneto-~or
electro-! cardiogram is deterministic or even chaotic. A
though in the particular case of cardiac recordings the us
time delay embeddings can be motivated theoretically,23 here
we only want to use the embedding technique as a visua
tion tool.

B. Embedding parameters

A reasonable choice of the delay gains importan
through the fact that we always have to deal with a fin
amount of noisy data. Both noise and finiteness will prev
us from having access to infinitesimal length scales, so

FIG. 1. Time delay representation of a human magneto-cardiogram. In
upper panel, a short delay time of 10 ms is used to resolve the fast wave
corresponding to the contraction of the ventricle. In the lower panel,
slower recovery phase of the ventricle~small loop! is better resolved due to
the use of a slightly longer delay of 40 ms. Such a plot can be convenie
be produced by a graphic tool such asgnuplot without generating extra
data files.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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the structure we want to exploit should persist up to
largest possible length scales. Depending on the type
structure we want to explore we have to choose a suita
time delay. Most obviously, delay unity for highly sample
flow data will yield delay vectors which are all concentrat
around the diagonal in the embedding space and thus
structure perpendicular to the diagonal is almost invisible
Ref. 24 the termsredundancyand irrelevancewere used to
characterize the problem: Small delays yield strongly co
lated vector elements, large delays lead to vectors wh
components are~almost! uncorrelated and the data are th
~seemingly! randomly distributed in the embedding spac
Quite a number of papers have been published on the pr
choice of the delay and embedding dimension. We have
gued repeatedly11,2,3 that an ‘‘optimal’’ embedding can—if
at all—only be defined relative to a specific purpose
which the embedding is used. Nevertheless, some quan
tive tools are available to guide the choice.

The usual autocorrelation function~autocor , corr !
and the time delayed mutual information~mutual !, as well
as visual inspection of delay representations with vari
lags provide important information about reasonable de
times while the false neighbors statistic~false –nearest !
can give guidance about the proper embedding dimens
Again, ‘‘optimal’’ parameters cannot be thus established
cept in the context of a specific application.

1. Mutual information

The time delayed mutual information was suggested
Fraser and Swinney25 as a tool to determine a reasonab
delay: Unlike the autocorrelation function, the mutual info
mation also takes into account nonlinear correlations. O
has to compute

S52(
i j

pi j ~t!ln
pi j ~t!

pipj
, ~4!

where for some partition on the real numberspi is the prob-
ability to find a time series value in thei -th interval, and
pi j (t) is the joint probability that an observation falls in
the i -th interval and the observation timet later falls into the
j -th. In theory this expression has no systematic depende
on the size of the partition elements and can be quite ea
computed. There exist good arguments that if the time
layed mutual information exhibits a marked minimum at
certain value oft, then this is a good candidate for a reaso
able time delay. However, these arguments have to be m
fied when the embedding dimension exceeds two. Moreo
as will become transparent in the following sections, not
applications work optimally with the same delay. Our routi
mutual uses Eq.~4!, where the number of boxes of ident
cal size and the maximal delay time has to be supplied.
adaptive algorithm used in Ref. 25 is more data intens
Since we are not really interested in absolute values of
mutual information here but rather in the first minimum, t
minimal implementation given here seems to be sufficie
The related generalized mutual information of order two c
be defined using the correlation sum concept~Sec. VII, Refs.
26, 27!. An estimation of the correlation entropy is explain
in Sec. VII A.
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2. False nearest neighbors

A method to determine the minimal sufficient embe
ding dimensionm was proposed by Kennelet al.28 It is
called thefalse nearest neighbormethod. The idea is quite
intuitive. Suppose the minimal embedding dimension fo
given time series$si% is m0 . This means that in a
m0-dimensional delay space the reconstructed attractor
one-to-one image of the attractor in the original phase sp
Especially, the topological properties are preserved. Thus
neighbors of a given point are mapped onto neighbors in
delay space. Due to the assumed smoothness of the dy
ics, neighborhoods of the points are mapped onto neigh
hoods again. Of course the shape and the diameter of
neighborhoods is changed according to the Lyapunov ex
nents. But suppose now you embed in anm-dimensional
space withm,m0 . Due to this projection the topologica
structure is no longer preserved. Points are projected
neighborhoods of other points to which they would not b
long in higher dimensions. These points are calledfalse
neighbors. If now the dynamics is applied, these false neig
bors are not typically mapped into the image of the neig
borhood, but somewhere else, so that the average ‘‘di
eter’’ becomes quite large.

The idea of the algorithmfalse –nearest is the fol-
lowing. For each pointsW i in the time series look for its near
est neighborsW j in anm-dimensional space. Calculate the di
tanceisW i2sW j i . Iterate both points and compute

Ri5
usi 112sj 11u

isW i2sW j i
. ~5!

If Ri exceeds a given heuristic thresholdRt , this point is
marked as having a false nearest neighbor.28 The criterion
that the embedding dimension is high enough is that
fraction of points for whichRi.Rt is zero, or at least suffi-
ciently small. Two examples are shown in Fig. 2. One is
the Lorenz system~crosses!, one for the He´non system~filled
circles!, and one for a He´non time series corrupted by 10%
of Gaussian white noise~open circles!. One clearly sees that
as expected,m52 is sufficient for the He´non andm53 for
the Lorenz system, whereas the signature is less clear in
noisy case.

The introduction of the false nearest neighbors conc
and other ad hoc instruments was partly a reaction to

FIG. 2. The fraction of false nearest neighbors as a function of the em
ding dimension for noise free Lorenz~crosses! and Hénon ~filled circles!
time series, as well as a He´non time series~open circles! corrupted by 10%
of noise.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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finding that many results obtained for the genuine invaria
like the correlation dimension, has been spurious due to
veats of the estimation procedure. In the latter case, s
correlations and small sample fluctuations can easily be m
taken for nonlinear determinism. It turns out, however, t
the ad hoc quantities basically suffer from the sa
problems—which can be cured by the same precautions.
implementationfalse –nearest therefore allows us to
specify a minimal temporal separation of valid neighbors

Other software for the analysis of false nearest neighb
is available in source form from Kennel.29 Or, if you prefer
to pay for a license, from Ref. 30.

C. Principal components

It has been shown in Ref. 22 that the embedding te
nique can be generalized to a wide class of smooth trans
mations applied to a time delay embedding. In particular
we introduce time delay coordinates$sn%, then almost every
linear transformation of sufficient rank again leads to an e
bedding. A specific choice of linear transformation is know
asprincipal component analysis, singular value decompo
tion, empirical orthogonal functions, Karhunen–Loéve de-
composition, and probably a few other names. The techniq
is fairly widely used, for example, to reduce multivaria
data to a few major modes. There is a large literature, inc
ing textbooks like that by Jolliffe.31 In the context of nonlin-
ear signal processing, the technique has been advoc
among others by Broomhead and King.32

The idea is to introduce a new set of orthonormal ba
vectors in embedding space such that projections ont
given number of these directions preserve the maximal f
tion of the variance of the original vectors. In other word
the error in making the projection is minimized for a give
number of directions. Solving this minimization problem31

leads to an eigenvalue problem. The desiredprincipal direc-
tions can be obtained as the eigenvectors of the symme
autocovariance matrix that correspond to the largest eig
values. The alternative and formally equivalent approach
the trajectory matrix is used in Ref. 32. The latter is nume
cally more stable but involves the singular value decom
sition of anN3m matrix for N data points embedded inm
dimensions, which can easily exceed computational
sources for time series of even moderate length.33

In almost all the algorithms described below, simp
time delay embeddings can be substituted by principal c
ponents. In theTISEAN project ~routinessvd , pc !, principal
components are only provided as a stand-alone visualiza
tool and for linear filtering,34 see Sec. II E below. In any
case, one first has to choose an initial time delay embed
and then a number of principal components to be kept.
the purpose of visualization, the latter is immediately
stricted to two or at most three. In order to take advantag
the noise averaging effect of the principal compon
scheme, it is advisable to choose a much shorter delay
one would for an ordinary time delay embedding, while
the same time increasing the embedding dimension. Exp
mentation is recommended. Figure 3 shows the contribut
ownloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP lic
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of the first two principal components to the magne
cardiogram shown in Fig. 1.

D. Poincaré sections

Highly sampled data representing the continuous time
a differential equation are calledflow data. They are charac
terized by the fact that errors in the direction tangent to
trajectory do neither shrink nor increase exponentially~so
called marginally stable direction! and thus possess on
Lyapunov exponent which is zero, since any perturbation
this direction can be compensated by a simple shift of
time. Since in many data analysis tasks this direction is
low interest, one might wish to eliminate it. The theoretic
concept to do so is called the Poincare´ section. After having
chosen an (m21)-dimensional hyperplane in th
m-dimensional~embedding! space, one creates a compress
time series of only the intersections of the time continuo
trajectory with this hyperplanein a predefined orientation.
These data are then vector valued discrete timemap like
data. One can consider the projection of the
(m21)-dimensional vectors onto the real numbers as
other measurement function~e.g., by recording the value o
sn when sn passes the Poincare´ surface!, so that one can
create a new scalar time series if desirable. The prog
poincare constructs a sequence of vectors from a sca
flow-like data set, if one specifies the hyperplane, the ori
tation, and the embedding parameters. The intersection
the discretely sampled trajectory with the Poincare´ plane are
computed by a third order interpolation~see Fig. 4!.

The placement of the Poincare´ surface is of high rel-
evance for the usefulness of the result. An optimal surf
maximizes the number of intersections, i.e., minimizes
time intervals between them, if at the same time the attra
remains connected. One avoids the trials and errors relate
that if one defines a surface by the zero crossing of the t
poral derivative of the signal, which is synonymous wi
collecting all maxima or all minima, respectively. This
done byextrema . However, this method suffers more from
noise, since for small time derivatives~i.e., close to the ex-
trema! additional extrema can be produced by perturbatio
Another aspect for the choice of the surface of section is
one should try to maximize the variance of the data ins
the section, since their absolute noise level is independen

FIG. 3. The phase space representation of a human magneto-cardio
using the two largest principal components. An initial embedding was c
sen inm520 dimensions with a delay oft57 ms. The two components
cover 70% of the variance of the initial embedding vectors.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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the section. One last remark: Time intervals between in
sections are phase space observables as well36 and the em-
bedding theorems are thus valid. For a time series with p
nounced spikes, one often likes to study the sequenc
interspike time intervals, e.g., in cardiology the RR-interva
If these time intervals are constructed in a way to yield ti
intervals of a Poincare´ map, they are suited to reflect th
deterministic structure~if any!. For complications see Re
36.

For a periodically driven nonautonomous system
best surface of section is usually given by a fixed phase
the driving term, which is also called astroboscopic view.
Here again the selection of the phase should be guided by
variance of the signal inside the section.

E. SVD filters

There are at least two reasons to apply a SVD filter
time series data: Either, if one is working with flow data, o
can implicitly determine the optimal time delay, or, whe
deriving a stroboscopic map from synchronously samp
data of a periodically driven system, one might use the
dundancy to optimize the signal to noise ratio.

In both applications the mathematics is the same: O
constructs the covariance matrix of all data vectors~e.g., in
an m-dimensional time delay embedding space!,

Ci j 5^sn2m1 isn2m1 j&2^sn2m1 i&^sn2m1 j&, ~6!

and computes its singular vectors. Then one projects onto
m-dimensional vectors corresponding to theq largest singu-
lar values. To work with flow data,q should be at least the

FIG. 4. A Poincare´ surface of section usingextrema : A two-dimensional
delay plot of the sequence of maxima~top! and of the time intervals betwee
successive maxima~bottom!. Without employing the option-t time, where
time is the number of time steps after the last extremum during which
further extrema are searched for~here: 3!, one finds some fake extrema du
to noise showing up close to the diagonal of the delay representation. D
Time series of the output power of a CO2 laser~Ref. 35!.
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correct embedding dimension, andm considerably larger
~e.g., m52q or larger!. The result is a vector valued tim
series, and in Ref. 22 the relation of these component
temporal derivatives on the one hand and to Fourier com
nents on the other hand were discussed. If, in the nona
nomous case, one wants to compress flow data to map
q51. In this case, the redundancy of the flow is implicit
used for noise reduction of the map data. The routinesvd
can be used for both purposes.

III. VISUALIZATION, NONSTATIONARITY

A. Recurrence plots

Recurrence plots are a useful tool to identify structure
a data set in a time resolved way qualitatively. This can
intermittency~which one detects also by direct inspection!,
the temporary vicinity of a chaotic trajectory to an unstab
periodic orbit, or nonstationarity. They were introduced
Ref. 37 and investigated in much detail in Ref. 38, whe
you find many hints on how to interpret the results. O
routinerecurr simply scans the time series and marks ea
pair of time indices (i , j ) with a black dot, whose corre
sponding pair of delay vectors has distance<e. Thus in the
( i , j )-plane, black dots indicate closeness. In an ergodic s
ation, the dots should cover the plane uniformly on avera
whereas nonstationarity expresses itself by an overall
dency of the dots to be close to the diagonal. Of course
return to a dynamical situation the system was in before
comes evident by a black region far away from the diagon
In Fig. 5, a recurrence plot is used to detect transient beh
ior at the beginning of a longer recording.

For the purpose of stationary testing, the recurrence
is not particularly sensitive to the choice of embedding. T
contrast of the resulting images can be selected by the
tancee and the percentage of dots that should be actu
plotted. Various software involving the color rendering a
quantification of recurrence plots is offered in DOS exec
able form by Webber.40 The interpretation of the often in

o

ta:

FIG. 5. The recurrence plot for a Poincare´ section data from a vibrating
string experiment~Ref. 39!. Above the diagonal an embedding in two d
mensions was used while below the diagonal, scalar time series values
compared. In both cases the lighter shaded region at the beginning o
recording indicates that these data are dynamically distinct from the res
this particular case this was due to adjustments in the measurement ap
tus.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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triguing patterns beyond the detection and study of non
tionarity is still an open question. For suggestions for
study of nonstationary signals see Ref. 3 and referen
given there.

B. Space–time separation plot

While the recurrence plot shows absolute times,
space–time separation plot introduced by Provenzaleet al.41

integrates along parallels to the diagonal and thus only sh
relative times. One usually draws lines of constant proba
ity per time unit of a point to be ane-neighbor of the curren
point, when its time distance isdt. This helps identifying
temporal correlations inside the time series and is relevan
estimate a reasonable delay time, and, more importantly
Theiler-windoww in dimension and Lyapunov-analysis~see
Sec. VII!. Said in different words, it shows how large th
temporal distance between points should be so that we
assume that they form independent samples according to
invariant measure. The corresponding routine of theTISEAN

package isstp ; see Fig. 6.

IV. NONLINEAR PREDICTION

To think about predictability in time series data is wort
while even if one is not interested in forecasts at all. Pred
ability is one way in which correlations between data expr
themselves. These can be linear correlations, nonlinear
relations, or even deterministic constraints. Questions rel
to those relevant for predictions will reappear with noise
duction and in surrogate data tests, but also for the com
tation of Lyapunov exponents from data. Prediction is d
cussed in most of the general nonlinear time se
references, in particular, a nice collection of articles can
found in Ref. 17.

A. Model validation

Before entering the methods, we have to discuss how
assess the results. The most obvious quantity for the qu
fication of predictability is the average forecast error, i.e.,
root of the mean squared~rms! deviation of the individual
prediction from the actual future value. If it is computed
those values which were also used to construct the mode~or
to perform the predictions!, it is called thein-sample error. It
is always advisable to save some data for an out-of-sam

FIG. 6. A space–time separation plot of the CO2 laser data. Shown are line
of constant probability density of a point to be ane-neighbor of the current
point if its temporal distance isdt. Probability densities are 1/10 to 1 wit
increments of 1/10 from bottom to top. Clear correlations are visible.
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test. If the out-of-sample error is considerably larger than
in-sample error, data are either nonstationary or one
overfitted the data, i.e., the fit extracted structure from r
dom fluctuations. A model with less parameters will th
serve better. In cases where the data base is poor, one
apply complete cross-validationor take-one-out statistics,
i.e., one constructs as many models as one performs f
casts, and in each case ignores the point one wants to pre
By construction, this method is realized in the local a
proaches, but not in the global ones.

The most significant, but least quantitative way of mod
validation is to iterate the model and to compare this s
thetic time series to the experimental data. One starts form
observed delay vector as an initial condition and perform
forecast. Its outcome is combined with all but the last co
ponents of the initial vector to a new delay vector, and
next forecast is performed. Aftern.m iterations, then-th
delay vector contains only values generated by the mo
and no observations any more. In terms of ann-step predic-
tion, the outcome will be terribly bad, since due to the se
sitive dependence on initial conditions even an ideal mo
will create a diverging trajectory due to inaccuracies in t
measurement of the initial condition. However, for the mod
to be reasonable, the resulting attractor should be as sim
to the observed data as possible~e.g., in a delay plot!, al-
though it is not easy to define the similarity quantitatively

B. Simple nonlinear prediction

Conventional linear prediction schemes average over
locations in phase space when they extract the correlat
they exploit for predictability. Tong42 promoted an extension
that fits different linear models if the current state is below
above a given threshold~TAR, ThresholdAutoregressive
Model!. If we expect more than a slight nonlinear comp
nent to be present, it is preferable to make the approxima
as local in phase space as possible. There have been m
similar suggestions in the literature on how to exploit a lo
structure; see, e.g., Refs. 43–46. The simplest approach
make the approximation local but only keep the zeroth ord
that is, approximate the dynamics locally by a constant.
the TISEAN package we include such a robust and sim
method: In a delay embedding space, all neighbors ofsn are
sought, if we want to predict the measurements at timen
1k. The forecast is then simply

ŝn1k5
1

uUnu (
sj PUn

sj 1k , ~7!

i.e., the average over the ‘‘futures’’ of the neighbors. T
average forecast errors obtained with the routinezeroth
~predict would give similar results! for the laser output
data used in Fig. 4 as a function of the numberk of steps
ahead the predictions are made is shown in Fig. 7. One
also iterate the predictions by using the time series as a
base.

Apart from the embedding parameters, all that has to
specified for zeroth order predictions is the size of the nei
borhoods. Since the diffusive motion below the noise le
cannot be predicted anyway, it makes sense to select ne
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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borhoods which are at least as large as the noise level, m
two or three times larger. For a fairly clean time series, t
guideline may result in neighborhoods with very few poin
Thereforezeroth also permits us to specify the minima
number of neighbors on which to base the predictions.

A relevant modification of this method is to extend t
neighborhoodU to infinity, but to introduce a distance de
pendent weight,

ŝn1k5
( j Þnsj 1kw~ usn2sj u!

( j Þnw~ usn2sj u!
, ~8!

wherew is called the kernel. Forw(z)5Q(e2z) whereQ is
the Heaviside step function, we return to Eq.~7!.

C. Finding unstable periodic orbits

As an application of a simple nonlinear phase space
diction, let us discuss a method to locate unstable perio
orbits embedded in a chaotic attractor. This is not the pl
to review the existing methods to solve this problem, so
references include.47–50 The TISEAN package contains a rou
tine that implements the requirement that for a periodp orbit
$s̃n , n51,...,p% of a dynamical system like Eq.~2! acting on
delay vectors,

s̃n115f~ s̃n!, n51,...,p, s̃p11[ s̃1 . ~9!

With unit delay, thep delay vectors containp different scalar
entries, and Eq.~9! defines a root of a system ofp nonlinear
equations inp dimensions. Multidimensional root finding i
not a simple problem. The standard Newton method ha
be augmented by special tricks in order to converge globa
Some such tricks, in particular means to select different
lutions of Eq.~9!, are implemented in Ref. 50. Similar to th
problems encountered in nonlinear noise reduction, solv
Eq. ~9! exactly is particularly problematic sincef~•! is un-
known and must be estimated from the data. In Ref.
approximate solutions are found by performing just one
eration of the Newton method for each available time se
point. We prefer to look for aleast squaressolution by mini-
mizing

FIG. 7. Predictionsk time steps ahead~no iterated predictions! using the
program zeroth . Top curve: embedding dimension two is insufficien
since these flow data fill a (21e)-dimensional attractor. Second from top
Although embedding dimension four should in theory be a good embedd
t51 suppresses structure perpendicular to the diagonal so that the p
tions are as bad as inm52! Lower curves:m53 and 4 with a delay of
about 4–8 time units serve well.
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i s̃n112f~ s̃n!i2, s̃p11[ s̃1 ~10!

instead. The routineupo uses a standard Levenberg
Marquardt algorithm to minimize~10!. For this it is neces-
sary thatf~•! is smooth. Therefore we cannot use the sim
nonlinear predictor based on locally constant approximati
and we have to use a smooth kernel version, Eq.~8!, instead.
With w(z)5exp(2z2/2h2), the kernel bandwidthh deter-
mines the degree of smoothness off~•!. Trying to start the
minimization with all available time series segments w
produce a number of false minima, depending on the va
of h. These have to be distinguished from the true solutio
by inspection. On the other hand, we can reach solution
Eq. ~9! which are not closely visited in the time series at a
an important advantage over close return methods.47

It should be noted that, depending onh, we may always
find good minima of~8!, even if no solution of Eq.~9!, or not
even a truly deterministic dynamics, exists. Thus the find
of unstable periodic orbits in itself is not a strong indicator
determinism. We may, however, use the cycle locations
stabilities as a discriminating statistics in a test for nonl
earity; see Sec. VIII. While the orbits themselves are fou
quite easily, it is surprisingly difficult to obtain reliable est
mates of their stability in the presence of noise. Inupo , a
small perturbation is iterated along the orbit and the unsta
eigenvalue is determined by the rate of its separation fr
the periodic orbit.

The user ofupo has to specify the embedding dime
sion, the period~which may also be smaller! and the kernel
bandwidth. For efficiency, one may choose to skip trials w
very similar points. Orbits are counted as distinct only wh
they differ by a specified amount. The routine finds the
bits, their expanding eigenvalue, and possible sub-perio
Figure 8 shows the determination of all period six orb
from 1000 iterates of the He´non map, contaminated by 10%
Gaussian white noise.

D. Locally linear prediction

If there is a good reason to assume that the rela
sn115 f (sn) is fulfilled by the experimental data in goo
approximation~say, within 5%! for some unknownf and that

g,
ic-
FIG. 8. Orbits of period six, or a sub-period thereof, of the He´non map,
determined from noisy data. The He´non attractor does not have a perio
three orbit.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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f is smooth, predictions can be improved by fitting local li
ear models. They can be considered as the local Taylor
pansion of the unknownf, and are easily determined by min
mizing

s25 (
sj PUn

~sj 112ansj2bn!2, ~11!

with respect toan andbn , whereUn is thee-neighborhood of
sn , excluding sn itself, as before. Then, the prediction
ŝn115ansn1bn . The minimization problem can be solve
through a set of coupled linear equations, a standard lin
algebra problem. This scheme is implemented inonestep .
For moderate noise levels and time series lengths this
give a reasonable improvement overzeroth and pre-
dict . Moreover, as discussed in Sec. VI, these linear m
are needed for the computation of the Lyapunov spectrum
locally linear approximation was introduced in Refs. 45, 4
We should note that the straight least squares solution of
~11! is not always optimal and a number of strategies
available to regularize the problem if the matrix becom
nearly singular and to remove the bias due to the errors in
‘‘independent’’ variables. These strategies have in comm
that any possible improvement is bought with a considera
complication of the procedure, requiring subtle parame
adjustments. We refer the reader to Refs. 51, 52 for advan
material.

In Fig. 9 we show iterated predictions of the Poinca´
map data from the CO2 laser~Fig. 4! in a delay representa
tion ~usingnstep in two dimensions!. The resulting data do
not only have the correct marginal distribution and pow
spectrum, but also form a perfect skeleton of the origi
noisy attractor. There are of course artifacts due to noise
the roughness of this approach, but there are good reaso
assume that the line-like substructure reflects fractality of
unperturbed system.

Casdagli53 suggested the use of local linear models a
test for nonlinearity: He computed the average forecast e
as a function of the neighborhood size on which the fit foran

and bn is performed. If the optimum occurs at large neig
borhood sizes, the data are~in this embedding space! best
described by a linear stochastic process, whereas an opti
at rather small sizes supports the idea of the existence
nonlinear almost deterministic equation of motion. This p
tocol is implemented in the routinell-ar ; see Fig. 10.

FIG. 9. A time delay representation of 5000 iterations of the local lin
predictornstep in two dimensions, starting from the last delay vector
Fig. 4.
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E. Global function fits

The local linear fits are very flexible, but can go wron
on parts of the phase space where the points do not spa
available space dimensions and where the inverse of the
trix involved in the solution of the minimization does no
exist. Moreover, very often a large set of different line
maps is unsatisfying. Therefore many authors suggested
ting global nonlinear functions to the data, i.e., to solve

s25(
n

„sn112 f p~sn!…2, ~12!

where f p is now a nonlinear function in closed form wit
parametersp, with respect to which the minimization i
done. Polynomials, radial basis functions, neural nets,
thogonal polynomials, and many other approaches have b
used for this purpose. The results depend on how far
chosen ansatzf p is suited to model the unknown nonlinea
function, and on how well the data are deterministic at
We included the routinesrbf andpolynom in the TISEAN

package, wheref p is modeled by radial basis functions54,55

and polynomials,56 respectively. The advantage of these tw
models is that the parametersp occur linearly in the function
f and can thus be determined by simple linear algebra,
the solution is unique. Both features are lost for mod
where the parameters enter nonlinearly.

In order to make global nonlinear predictions, one has
supply the embedding dimension and time delay as us
Further, forpolynom the order of the polynomial has to b
given. The program returns the coefficients of the model
rbf one has to specify the number of basis functions to
distributed on the data. The width of the radial basis fun
tions ~Lorentzians in our program! is another parameter, bu
since the minimization is so fast, the program runs many t
values and returns parameters for the best. Figure 11 sh
the result of a fit to the CO2 laser time series~Fig. 4! with
radial basis functions.

If global models are desired in order to infer the stru
ture and properties of the underlying system, they should
tested by iterating them. The prediction errors, althou

r

FIG. 10. The Casdagli test for nonlinearity: The rms prediction error
local linear models as a function of the neighborhood sizee. Lower curve:
The CO2 laser data. These data are obviously highly deterministic inm
54 dimensions and with lagt56. Central curve: The breath rate da
shown in Fig. 12 withm54 andt51. Determinism is weaker~presumably
due to a much higher noise level!, but still the nonlinear structure is domi
nant. Upper curve: Numerically generated data of an AR~5! process, a lin-
early correlated random process~m55, t51!.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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small in size, could be systematic and thus repel the itera
trajectory from the range where the original data are loca
It can be useful to study a dependence of the size or the
of the prediction errors on the position in the embedd
space, since systematic errors can be reduced by a diffe
model. Global models are attractive because they y
closed expressions for the full dynamics. One must not
get, however, that these models describe the observed
cess only in regions of the space which have been visited
the data. Outside this area, the shape of the model dep
exclusively on the chosen ansatz. In particular, polynom
diverge outside the range of the data and hence can be
stable under iteration.

V. NONLINEAR NOISE REDUCTION

Filtering of signals from nonlinear systems requires
use of special methods since the usual spectral or other li
filters may interact unfavorably with the nonlinear structu
Irregular signals from nonlinear sources exhibit genu
broad band spectra and there is no justification to iden
any continuous component in the spectrum as noise. Non
ear noise reduction does not rely on frequency information
order to define the distinction between signal and noise.
stead, structure in the reconstructed phase space will be
ploited. General serial dependencies among the meas
ments $sn% will cause the delay vectors$sn% to fill the
availablem-dimensional embedding space in an inhomo
neous way. Linearly correlated Gaussian random varia
will for example be distributed according to an anisotrop
multivariate Gaussian distribution. Linear geometric filteri
in phase space seeks to identify the principal directions
this distribution and project onto them; see Sec. II E. No
linear noise reduction takes into account that nonlinear
nals will form curved structures in delay space. In particu
noisy deterministic signals form smeared-out lowe
dimensional manifolds. Nonlinear phase space filtering se
to identify such structures and project onto them in orde
reduce noise.

There is a rich literature on nonlinear noise reduct
methods. Two articles of review character are available;
by Kostelich and Schreiber,57 and one by Davies.58 We refer
the reader to these articles for further references and for
discussion of approaches not described in the present ar
Here we want to concentrate on two approaches that re

FIG. 11. Attractor obtained by iterating the model that has been obtaine
a fit with 40 radial basis functions in two dimensions to the time se
shown in Fig. 4. Compare also Fig. 9.
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sent the geometric structure in phase space by a local
proximation. The first and simplest does so to constant or
the more sophisticated uses local linear subspaces plus
vature corrections.

A. Simple nonlinear noise reduction

The simplest nonlinear noise reduction algorithm w
know of replaces the central coordinate of each embedd
vector by the local average of this coordinate. This amou
to a locally constant approximation of the dynamics and
based on the assumption that the dynamics is continu
The algorithm is described in Ref. 59, a similar approach
proposed in Ref. 43. In an unstable, for example chao
system, it is essential not to replace the first and last coo
nates of the embedding vectors by local averages. Due to
instability, initial errors in these coordinates are magnifi
instead of being averaged out.

This noise reduction scheme is implemented quite eas
First an embedding has to be chosen. Except for extrem
oversampled data, it is advantageous to choose a short
delay. The programlazy always uses unit delay. The em
bedding dimensionm should be chosen somewhat high
than that required by the embedding theorems. Then for e
embedding vector$sn%, a neighborhoodU e

(n) is formed in
phase space containing all points$sn8% such thatisn2sn8i
,e. The radius of the neighborhoodse should be taken large
enough in order to cover the noise extent, but still sma
than a typical curvature radius. These conditions cannot
ways be fulfilled simultaneously, in which case one has
repeat the process with several choices and carefully eval
the results. If the noise level is substantially smaller than
typical radius of curvature, neighborhoods of radius ab
2–3 times the noise level gave the best results with artifi
data. For each embedding vectorsn5(sn2(m21) ,...,sn) ~the
delay time has been set to unity!, a corrected middle coordi
nateŝn2m/2 is computed by averaging over the neighborho
U e

(n) :

ŝn2m/25
1

uU e
~n!u (

sn8PU e
~n!

sn82m/2 . ~13!

After one complete sweep through the time series, all m
surementssn are replaced by the corrected valuesŝn . Of
course, for the first and last (m21)/2 points~if m is odd!, no
correction is available. The average correction can be ta
as a new neighborhood radius for the next iteration. Note
the neighborhood of each point at least contains the p
itself. If that is the only member, the average, Eq.~13!, is
simply the uncorrected measurement and no change is m
Thus one can safely perform multiple iterations with d
creasing values ofe until no further change is made.

Let us illustrate the use of this scheme with an examp
a recording of the air flow through the nose of a human as
indicator of breath activity.~The data is part of data set B o
the Santa Fe time series contest held in 1991/92;17 see
Rigneyet al.60 for a description.! The result of simple non-
linear noise reduction is shown in Fig. 12.
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B. Locally projective nonlinear noise reduction

A more sophisticated method makes use of the hypo
eses that the measured data is composed of the output
low-dimensional dynamical system and of random or hig
dimensional noise. This means that in an arbitrarily hig
dimensional embedding space the deterministic part of
data would lie on a low-dimensional manifold, while th
effect of the noise is to spread the data off this manifold
we suppose that the amplitude of the noise is sufficien
small, we can expect to find the data distributed clos
around this manifold. The idea of the projective nonline
noise reduction scheme is to identify the manifold and
project the data onto it. The strategies described here go
to Ref. 61. A realistic case study is detailed in Ref. 62.

Suppose the dynamical system, Eq.~1! or Eq.~2!, form a
q-dimensional manifoldM containing the trajectory. Ac-
cording to the embedding theorems, there exists a one-to
image of the attractor in the embedding space, if the emb
ding dimension is sufficiently high. Thus, if the measur
time series were not corrupted with noise, all the embedd
vectorssn would lie inside another manifoldM̃ in the em-
bedding space. Due to the noise, this condition is no lon
fulfilled. The idea of the locally projective noise reductio
scheme is that for eachsn there exists a correctionQn , with
iQni small, in such a way thatsn2QnPM̃ and thatQn is
orthogonal onM̃. Of course, a projection to the manifol
can only be a reasonable concept if the vectors are embe
in spaces which are higher dimensional than the mani
M̃. Thus we have to over-embed inm-dimensional space
with m.q.

FIG. 12. The simple nonlinear noise reduction of human breath rate d
Three iterations have been carried out, staring with neighborhoods of
0.4 units. Embeddings in 7 dimensions at unit delay have been used. A
ably, the resulting series~lower panel! is less noisy. However, in Sec. VII
we will show evidence that the noise is not just additive and independe
the signal.
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The notion of orthogonality depends on the metric us
Intuitively one would think of using the Euclidean metri
But this is not necessarily the best choice. The reason is
we are working with delay vectors which contain tempo
information. Thus, even if the middle parts of two dela
vectors are close, the late parts could be far away from e
other due to the influence of the positive Lyapunov exp
nents, while the first parts could diverge due the nega
ones. Hence it is usually desirable to correct only the cen
part of delay vectors and leave the outer parts mostly
changed, since their divergence is not only a consequenc
the noise, but also of the dynamics itself. It turns out that
most applications it is sufficient to fix just the first and th
last component of the delay vectors and correct the rest. T
can be expressed in terms of a metric tensorP which we
define to be61

Pi j 5 H1: i 5 j and 1, i , j ,m,
0: elsewhere, ~14!

where m is the dimension of the ‘‘over-embedded’’ dela
vectors.

Thus we have to solve the minimization problem,

(
i

~QiP
21Q i !5

!

min, ~15!

with the constraints

an
i ~sn2Qn!1bn

i 50, for i 5q11,...,m ~16!

and

an
i Pan

j 5d i j , ~17!

where thean
i are the normal vectors ofM̃ at the pointsn

2Qn .
These ideas are realized in the programsghkss ,

project , andnoise in TISEAN. While the first two work
asa posteriorifilters on complete data sets, the last one c
be used in a data stream. This means that it is possible t
the corrections online, while the data is coming in~for more
details see Sec. V C!. All three algorithms mentioned abov
correct for curvature effects. This is done by either po
processing the corrections for the delay vectors~ghkss ! or
by preprocessing the centers of mass of the local neigh
hoods~project !.

The idea used in theghkss program is the following.
Suppose the manifold were strictly linear. Then, provided
noise is white, the corrections in the vicinity of a point on t
manifold would point in all directions with the same pro
ability. Thus, if we added all the correctionsQ we expect
them to sum to zero~or ^Q&5O). On the other hand, if the
manifold is curved, we expect that there is a trend towa
the center of curvature (^Q&5Qav). Thus, to correct for this
trend each correctionQ is replaced byQ2Qav.

A different strategy is used in the programproject .
The projections are done in a local coordinate system wh
is defined by the condition that the average of the vector
the neighborhood is zero. Or, in other words, the origin
the coordinate systems is the center of mass^sn&U of the
neighborhoodU. This center of mass has a bias towards
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center of the curvature.2 Hence, a projection would not lie o
the tangent at the manifold, but on a secant. Now we
compute the center of mass of these points in the neigh
hood ofsn . Let us call it^^sn&&U . Under fairly mild assump-
tions this point has twice the distance from the manifold th
^sn&U . To correct for the bias the origin of the local coord
nate system is set to the point:^^sn&&U22^sn&U .

The implementation and use of locally projective no
reduction as realized inproject andghkss is described
in detail in Refs. 61, 62. Let us recall here the most import
parameters that have to be set individually for each ti
series. The embedding parameters are usually chosen
differently from other applications since considerable ov
embedding may lead to better noise averaging. Thus,
delay time is preferably set to unity and the embedding
mension is chosen to provide embedding windows of reas
able lengths. Only for highly oversampled data~like the
magneto-cardiogram, Fig. 15, at about 1000 samples
cycle!, larger delays are necessary so that a substantial
tion of a cycle can be covered without the need to work
prohibitively high-dimensional spaces. Next, one has to
cide how many dimensionsq to leave for the manifold sup
posedly containing the attractor. The answer partly depe
on the purpose of the experiment. Rather brisk projecti
can be optimal in the sense of the lowest residual devia
from the true signal. Low rms error can, however, coex
with systematic distortions of the attractor structure. Thus
a subsequent dimension calculation, a more conserva
choice would be in order. Remember, however, that po
are only movedtowardsbut not onto the local linear sub-
space and too low a value ofq does not do as much harm a
may be thought.

The noise amplitude to be removed can be selecte
some degree by the choice of the neighborhood size. In
nonlinear projective filtering can be seen independently
the dynamical systems background as filtering by amplit
rather than by frequency or shape. To allow for a clear se
ration of noise and signal directions locally, neighborhoo
should be at least as large as the supposed noise level, r
larger. This of course competes with curvature effects.
small initial noise levels, it is recommended to also specif
minimal number of neighbors in order to permit stable l
earizations. Finally, we should remark that in success
cases most of the filtering is done within the first one to th
iterations. Going further is potentially dangerous since f
ther corrections may lead mainly to distortion. One sho
watch the rms correction in each iteration and stop as soo
it does not decrease substantially any more.

As an example for nonlinear noise reduction we treat
data obtained from a NMR laser experiment.63 Enlargements
of two-dimensional delay representations of the data
shown in Fig. 13. The upper panel shows the raw experim
tal data which contains about 1.1% of noise. The lower pa
was produced by applying three iterations of the noise red
tion scheme. The embedding dimension wasm57, the vec-
tors were projected down to two dimensions. The size of
local neighborhoods were chosen such that at least 50 ne
bors were found. One clearly sees that the fractal structur
the attractor is resolved fairly well.
ownloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP lic
n
r-

n

t
e
ite
-
e

i-
n-

er
c-

-

ds
s
n
t
r
ve
ts

to
ct,
f
e
a-
s
her
r

a

l
e
-
d
as

e

re
n-
el
c-

e
h-
of

The main assumption for this algorithm to work is th
the data is well approximated by a low-dimensional ma
fold. If this is not the case it is unpredictable what results
created by the algorithm. In the absence of a real manif
the algorithm must pick statistical fluctuations and spuriou
interprets them as structure. Figure 14 shows a result of
ghkss program for pure Gaussian noise. The upper pa
shows a delay representation of the original data, the lo
shows the outcome of applying the algorithm for 10 ite
tions. The structure created is purely artificial and has no
ing to do with structures in the original data. This means t

FIG. 13. A two-dimensional representation of the NMR Laser data~top! and
the result of theghkss algorithm ~bottom! after three iterations.

FIG. 14. A two-dimensional representation of a pure Gaussian process~top!
and the outcome of theghkss algorithm ~bottom! after 10 iterations. Pro-
jections fromm57 down to two dimensions were performed.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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if one wants to apply one of the algorithms, one has to ca
fully study the results. If the assumptions underlying the
gorithms are not fulfilled in principle anything can happe
One should note, however, that the performance of the
gram itself indicates such spurious behavior. For data wh
is indeed well approximated by a lower-dimensional ma
fold, the average corrections applied should rapidly decre
with each successful iteration. This was the case with
NMR laser data and, in fact, the correction was so small a
three iteration that we stopped the procedure. For the w
noise data, the correction only decreased at a rate that c
sponds to a general shrinking of the point set, indicatin
lack of convergence towards a genuine low-dimensio
manifold. Below, we will give an example where an appro
mating manifold is present without pure determinism. In th
case, projecting onto the manifold does reduce noise
reasonable way. See Ref. 64 for material on the danger
geometric filtering.

C. Nonlinear noise reduction in a data stream

In Ref. 65, a number of modifications of the above p
cedure have been discussed which enable the use of no
ear projective filtering in a data stream. In this case, o
points in the past are available for the formation of neig
borhoods. Therefore the neighbor search strategy has t
modified. Since the algorithm is described in detail in R
65, we only give an example of its use here. Figure 15 sh
the result of nonlinear noise reduction on a magne
cardiogram~see Figs. 1 and 3! with the programnoise .
The same program has also been used successfully fo
extraction of the fetal ECG.66

VI. LYAPUNOV EXPONENTS

Chaos arises from the exponential growth of infinite
mal perturbations, together with global folding mechanis
to guarantee boundedness of the solutions. This expone
instability is characterized by the spectrum of Lyapun
exponents.67 If one assumes a local decomposition of t

FIG. 15. The real time nonlinear projective filtering of a magne
cardiogram time series. The top panel shows the unfiltered data. Bot
Two iterations were done using projections fromm510 down to q52
dimensions~delay 0.01 s!. Neighborhoods were limited to a radius of 0
units ~0.05 in the second iteration! and to maximally 200 points. Neighbor
were only sought up to 5 s back in time. Thus the first 5 s of data are not
filtered optimally and are not shown here. Since the output of each itera
leaps behind its input by one delay window, the last 0.2 s cannot be
cessed given the data in the upper panel.
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phase space into directions with different stretching or c
traction rates, then the spectrum of exponents is the pro
average of these local rates over the whole invariant set,
thus consists of as many exponents as there are space d
tions. The most prominent problem in time series analysi
that the physical phase space is unknown, and that ins
the spectrum is computed in some embedding space. T
the number of exponents depends on the reconstruction,
might be larger than in the physical phase space. Such a
tional exponents are calledspurious, and there are severa
suggestions to either avoid them68 or to identify them. More-
over, it is plausible that only as many exponents can be
termined from a time series as are entering the Kaplan Yo
formula ~see below!. To give a simple example: Conside
motion of a high-dimensional system on a stable limit cyc
The data cannot contain any information about the stab
of this orbit against perturbations, as long as they are exa
on the limit cycle. For transients, the situation can be diff
ent, but then data are not distributed according to an inv
ant measure and the numerical values are thus difficul
interpret. Apart from these difficulties, there is one releva
positive feature: Lyapunov exponents are invariant un
smooth transformations and are thus independent of the m
surement function or the embedding procedure. They car
dimension of an inverse time and have to be normalized
the sampling interval.

A. The maximal exponent

The maximal Lyapunov exponent can be determin
without the explicit construction of a model for the tim
series. A reliable characterization requires that the indep
dence of embedding parameters and the exponential law
the growth of distances are checked69,70 explicitly. Consider
the representation of the time series data as a trajectory in
embedding space, and assume that you observe a very
return sn8 to a previously visited pointsn . Then one can
consider the distanceD05sn2sn8 as a small perturbation
which should grow exponentially in time. Its future can b
read from the time seriesD l5sn1 l2sn81 l . If one finds that
uD l u'D0el l then l is ~with probability one! the maximal
Lyapunov exponent. In practice, there will be fluctuatio
because of many effects, which are discussed in detail in
69. Based on this understanding, one can derive a ro
consistent and unbiased estimator for the maximal Lyapu
exponent. One computes

S~e,m,t !5K lnS 1

uUnu (
sn8PUn

usn1t2sn81tu D L
n

. ~18!

If S(e,m,t) exhibits a linear increase with identical slope f
all m larger than somem0 and for a reasonable range ofe,
then this slope can be taken as an estimate of the max
exponentl1 .

The formula is implemented in the routineslyap –k and
lyapunov in a straightforward way. ~The program
lyap –r implements the very similar algorithm of Ref. 70
where only the closest neighbor is followed for each ref
ence point. Also, the Euclidean norm is used.! Apart from
parameters characterizing the embedding, the initial ne

m:
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borhood sizee is of relevance: The smallere, the large the
linear range ofS, if there is one. Obviously, noise and th
finite number of data points limite from below. The default
values oflyap –k are rather reasonable for map-like data
is not always necessary to extend the average in Eq.~18!
over the whole available data, reasonable averages ca
obtained already with a few hundred reference pointssn . If
some of the reference points have very few neighbors,
corresponding inner sum in Eq.~18! is dominated by fluc-
tuations. Therefore one may choose to exclude those re
ence points which have less than, say, ten neighbors. H
ever, discretion has to be applied with this parameter sinc
may introduce a bias against sparsely populated regions.
could in theory affect the estimated exponents due to mu
fractality. Like other quantities, Lyapunov estimates may
affected by serial correlations between reference points
neighbors. Therefore, a minimum time forun2n8u can and
should be specified here as well. See also Sec. VII.

Let us discuss a few typical outcomes. The data und
lying the top panel of Fig. 16 are the values of the maxima
the CO2 laser data. Since this laser exhibits low-dimensio
chaos with a reasonable noise level, we observe a clear li
increase in this semi-logarithmic plot, reflecting the exp
nential divergence of nearby trajectories. The exponen
l'0.38 per iteration~map data!!, or, when introducing the
average time interval, 0.007 perms. In the bottom panel we
show the result for the same system, but now computed
the original flow-like data with a sampling rate of 1 MHz. A
an additional structure, an initial steep increase and reg
oscillations are visible. The initial increase is due to no
normality and effects of alignment of distances towards
locally most unstable direction, and the oscillations are
effect of the locally different velocities and thus differe
densities. Both effects can be much more dramatic in

FIG. 16. Estimating the maximal Lyapunov exponent of the CO2 laser data.
The top panel shows results for the Poincare´ map data, where the averag
time intervalTav is 52.2 samples of the flow, and the straight line indica
l50.38. For comparison: The iteration of the radial basis function mode
Fig. 11 yieldsl50.35. Bottom panel: Lyapunov exponents determined
rectly from the flow data. The straight line has slopel50.007. In a good
approximation,lmap5lflowTav . Here, the time windoww to suppress cor-
related neighbors has been set to 1000, and the delay time was 6 unit
ownloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP lic
t

be

e

r-
w-
it

his
i-
e
nd

r-
f
l
ar

-
is

n

ar
-
e
n

ss

favorable cases, but as long as the regular oscillations
sess a linearly increasing average, this can be taken as
estimate of the Lyapunov exponent. Normalizing by the sa
pling rate, we again findl'0.007 perms, but it is obvious
that the linearity is less pronounced than for the map-l
data. Finally, we show in Fig. 17 an example of a negat
result: We study the human breath rate data used before
linear part exists, and one cannot draw any reasonable
clusion. It is worth considering the figure on a doubly log
rithmic scale in order to detect a power law behavior, whi
with power 1/2, could be present for a diffusive growth
distances. In this particular example, there is no convinc
power law either.

B. The Lyapunov spectrum

The computation of the full Lyapunov spectrum requir
considerably more effort than just the maximal exponent.
essential ingredient is some estimate of the local Jacobi
i.e., of the linearized dynamics, which rules the growth
infinitesimal perturbations. One either finds it from direct fi
of local linear models of the typesn115ansn1bn , such that
the first row of the Jacobian is the vectoran , and (J) i j

5d i 21,j for i 52,...,m, wherem is the embedding dimen
sion. Thean is given by the least squares minimizations2

5( l(sl 112ansl2bn)2 where$sl% is the set of neighbors o
sn .45,71Or one constructs a global nonlinear model and co
putes its local Jacobians by taking derivatives. In both ca
one multiplies the Jacobians one by one, following the t
jectory, to as many different vectorsuk in tangent space a
one wants to compute Lyapunov exponents. Every few st
one applies a Gram–Schmidt orthonormalization proced
to the set ofuk , and accumulates the logarithms of the
rescaling factors. Their average, in the order of the Gra
Schmidt procedure, give the Lyapunov exponents in
scending order. The routinelyap –spec uses this method
which goes back to Refs. 71 and 45, employing local lin
fits. Apart from the problem of spurious exponents, th
method contains some other pitfalls: Itassumesthat there
exist well defined Jacobians, and does not test for their
evance. In particular, when attractors are thin in the emb
ding space, some~or all! of the local Jacobians might b
estimated very badly. Then the whole product can su
from these bad estimates and the exponents are corresp
ingly wrong. Thus the global nonlinear approach can be
perior, if a modeling has been successful; see Sec. IV.

f
-

FIG. 17. The breath rate data~cf. Fig. 12! exhibit no linear increase, reflect
ing the lack of exponential divergence of nearby trajectories.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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In Table I we show the exponents of the strobosco
NMR laser data in a three-dimensional embedding as a fu
tion of the neighborhood size. Using global nonlinear mo
els, we find the numbers given in the last two rows. Mo
material is discussed in Ref. 2. The spread of values in
table for this rather clean data set reflects the difficulty
estimating Lyapunov spectra from time series, which has
be done with great care. In particular, when the algorithm
blindly applied to data from a random process, it can
internally check for the consistency of the assumption of
underlying dynamical system. Therefore a Lyapunov sp
trum is computed which now is completely meaningless.

The computation of the first part of the Lyapunov spe
trum allows for some interesting cross-checks. It w
conjectured,72 and is found to be correct in most physic
situations, that the Lyapunov spectrum and the fractal dim
sion of an attractor are closely related. If the expanding
least contracting directions in space are continuously fi
and only one partial dimension is fractal, then one can
for the dimensionality of a~fractal! volume such that it is
invariant, i.e., such that the sum of the correspond
Lyapunov exponents vanishes, where the last one
weighted with the noninteger part of the dimension:

DKY5k1
( i 51

k l i

ulk11u
, ~19!

wherek is the maximum integer such that the sum of thek
largest exponents is still non-negative.DKY is conjectured to
coincide with the information dimension.

The Pesin identity is valid under the same assumpti
and allows us to compute the KS-entropy:

hKS5(
i 51

m

Q~l i !l i . ~20!

VII. DIMENSIONS AND ENTROPIES

Solutions of dissipative dynamical systems cannot fil
volume of the phase space, since dissipation is synonym
with a contraction of volume elements under the action
the equations of motion. Instead, trajectories are confine
lower-dimensional subsets which have measure zero in
phase space. These subsets can be extremely complic
and frequently they possess a fractal structure, which me
that they are in a nontrivial way self-similar. Generaliz
dimensions are one class of quantities to characterize
fractality. TheHausdorff dimensionis, from the mathemati-
cal point of view, the most natural concept to character

TABLE I. Lyapunov exponents of the NMR laser data, determined wit
three-dimensional embedding. The algorithms described in Sec. VI A
l150.360.02 for the largest exponent.

Method l1 l2 l3

Local linear k520 0.32 20.40 21.13
Local linear k540 0.30 20.51 21.21
Local linear k5160 0.28 20.68 21.31
Radial basis functions 0.27 20.64 21.31
Polynomial 0.27 20.64 21.15
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fractal sets,67 whereas theinformation dimensiontakes into
account the relative visitation frequencies and is theref
more attractive for physical systems. Finally, for the char
terization of measured data, other similar concepts, like
correlation dimension, are more useful. One general rema
is highly relevant in order to understand the limitations
any numerical approach: dimensions characterize a set o
invariant measure whose support is the set, whereas any
set contains only a finite number of points representing
set or the measure. By definition, the dimension of a finite
of points is zero. When we determine the dimension of
attractor numerically, we extrapolate from finite leng
scales, where the statistics we apply is insensitive to the
niteness of the number of data, to the infinitesimal sca
where the concept of dimensions is defined. This extrap
tion can fail for many reasons which will be partly discuss
below. Dimensions are invariant under smooth transform
tions and thus again computable in time delay embedd
spaces.

Entropies are an information theoretical concept to ch
acterize the amount of information needed to predict the n
measurement with a certain precision. The most popular
is the Kolmogorov–Sinai entropy. We will discuss here on
the correlation entropy, which can be computed in a mu
more robust way. The occurrence of entropies in a section
dimensions has to do with the fact that they can be de
mined both by the same statistical tool.

A. Correlation dimension

Roughly speaking, the idea behind certain quantifiers
dimensions is that the weightp(e) of a typicale-ball cover-
ing part of the invariant set scales with its diameter li
p(e)'eD, where the value forD depends also on the precis
way one defines the weight. Using the square of the pr
ability pi to find a point of the set inside the ball, the dime
sion is called the correlation dimensionD2 , which is com-
puted most efficiently by the correlation sum:73

C~m,e!5
1

Npairs
(
j 5m

N

(
k, j 2w

Q~e2usj2sku!, ~21!

where si are m-dimensional delay vectors,Npairs5(N2m
2w)(N2m2w11)/2 the number of pairs of points covere
by the sums,Q is the Heaviside step function, andw will be
discussed below. On sufficiently small length scales a
when the embedding dimensionm exceeds the correlation
dimension of the attractor,74

C~m,e!}eD2. ~22!

Since one does not know the correlation-dimension bef
doing this computation, one checks for convergence of
estimated values ofD2 in m.

The literature on the correct and spurious estimation
the correlation dimension is huge and this is certainly not
place to repeat all the arguments. The relevant caveats
misconceptions are reviewed, for example, in Refs. 75,
76, 2. The most prominent precaution is to exclude tem
rally correlated points from the pair counting by the so cal
Theiler windoww.75 In order to become a consistent estim
tor of the correlationintegral ~from which the dimension is

e
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derived! the correlationsumshould cover a random samp
of points drawn independently according to the invaria
measure on the attractor. Successive elements of a tim
ries are not usually independent. In particular, for high
sampled flow data subsequent delay vectors are highly
related. Theiler suggested to remove this spurious effec
simply ignoring all pairs of points in Eq.~21! whose time
indices differ by less thanw, where w should be chosen
generously. WithO(N2) pairs available, the loss ofO(wN)
pairs is not dramatic as long asw!N. At the very least, pairs
with j 5k have to be excluded,77 since otherwise the stron
bias toD250, the mathematically correct value for a fini
set of points, reduces the scaling range drastically. Choo
w, the first zero of the auto-correlation function, sometim
even the decay time of the auto-correlation function, are
large enough since they reflect only overall line
correlations.75,76 The space–time-separation plot~Sec. III B!
provides a good means of determining a sufficient value
w, as discussed, for example in Ref. 41, 2. In some ca
notably processes with inverse power law spectra, inspec
requiresw to be of the order of the length of the time serie
This indicates that the data does not sample an invar
attractor sufficiently and the estimation of invariants likeD2

or Lyapunov exponents should be abandoned.
Parameters in the routinesd2 , c2 , andc2naive are as

usual the embedding parametersm andt, the time delay, and
the embedding dimension, as well as the Theiler window

Fast implementation of the correlation sum have be
proposed by several authors. At small length scales, the c
putation of pairs can be done inO(N logN) or evenO(N)
time rather thanO(N2) without losing any of the preciou
pairs; see Ref. 20. However, for intermediate size data
we also need the correlation sum at intermediate len
scales where neighbor searching becomes expensive. M
authors have tried to limit the use of computational resour
by restricting one of the sums in Eq.~21! to a fraction of the
available points. By this practice, however, one loses va
able statistics at the small length scales where points ar
scarce anyway that all pairs are needed for stable result
Ref. 62, both approaches were combined for the first time
using a fast neighbor search fore,e0 and restricting the sum
for e>e0 . The TISEAN implementationsc2 and d2 go one
step further and select the range for the sums individually
each length scale to be processed. This turns out to gi
major improvement in speed. The user can specify a des
number of pairs which seems large enough for a stable
mation of C(e), typically 1000 pairs will suffice. Then the
sums are extended to a range which guarantees that nu
of pairs, or, if this cannot be achieved, to the whole tim
series. At the largest length scales, this range may be ra
small and the user may choose to give a minimal numbe
reference points to ensure a representative average. Stil
ing the programc2 the whole computation may thus at larg
scales be concentrated on the first part of the time se
which seems fair for stationary, nonintermittent data~nonsta-
tionary or strongly intermittent data is usually unsuitable
correlation dimension estimation anyway!. The programd2
is safer with this respect. Rather than restricting the rang
the sums, only a randomly selected subset is used. The
ownloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP lic
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domization, however, requires a more sophisticated prog
structure in order to avoid an overhead in computation tim

1. Takens –Theiler estimator

Convergence to a finite correlation dimension can
checked by plotting scale-dependent ‘‘effective dimension
versus length scale for various embeddings. The easiest
to proceed is to compute~numerically! the derivative of
logC(m,e) with respect to loge, for example, by fitting
straight lines to the log–log plot ofC(e). In Fig. 18~a! we
see the output of the routinec2 acting on data from the
NMR laser, processed byc2d in order to obtain local slopes
By default, straight lines are fitted over one octave ine;
larger ranges give smoother results. We can see that on

FIG. 18. The dimension estimation for the~noise filtered! NMR laser data.
Embedding dimensions 2 to 7 are shown. From above:~a! slopes are deter-
mined by straight line fits to the log–log plot of the correlation sum, E
~21!. ~b! The Takes–Theiler-estimator of the same slope.~c! Slopes are
obtained by straight line fits to the Gaussian kernel correlation sum,
~25!. ~d! Instead of the correlation dimension, it has been attempted
estimate the information dimension.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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large scales, self-similarity is broken due to the finite ext
sion of the attractor, and on small but yet statistically sign
cant scales we see the embedding dimension instead
saturated,m-independent value. This is the effect of nois
which is infinite dimensional, and thus fills a volume in e
ery embedding space. Only on the intermediate scales we
the desiredplateauwhere the results are in good approxim
tion independent ofm and e. The region where scaling i
established, not just the range selected for straight line fi
ting, is called thescaling range.

Since the statistical fluctuations in plots like Fig. 18~a!
show characteristic ~anti-!correlations, it has been
suggested78,79 to apply a maximum likelihood estimator t
obtain optimal values forD2 . The Takens–Theiler-estimato
reads as

DTT~e!5
C~e!

E
0

e C~e8!

e8
de8

, ~23!

and can be obtained by processing the output ofc2 by c2t .
Since C(e) is available only at discrete values$e i , i
50,...,I %, we interpolate it by a pure power law@or, equiva-
lently, the log–log plot by straight lines: logC(e)5ai loge
1bi# in between these. The resulting integrals can be sol
trivially and summed:

E
0

e C~e8!

e8
de85(

i 51

I

ebiE
e i 21

e i
~e8!ai21 de8

5(
i 51

I
ebi

ai
~e i

ai2e i 21
ai !. ~24!

Plotting DTT vs e @Fig. 18~b!# is an interesting alternative t
the usual local slopes plot, Fig. 18~a!. It is tempting to use
such an ‘‘estimator of dimension’’ as a black box to provi
a number one might quote as a dimension. This would im
the unjustified assumption that all deviations from exact s
ing behavior is due to the statistical fluctuations. Instead,
still has to verify the existence of a scaling regime. On
then,DTT(e) evaluated at the upper end of the scaling ran
is a reasonable dimension estimator.

2. Gaussian kernel correlation integral

The correlation sum, Eq.~21!, can be regarded as a
average density of points where the local density is obtai
by a kernel estimator with a step kernelQ(e2r ). A natural
modification for small point sets is to replace the sharp s
kernel by a smooth kernel function ofbandwidthe. A par-
ticularly attractive case that has been studied in
literature80 is given by the Gaussian kernel, that is,Q(e
2r ) is replaced bye2r 2/4e2

. The resulting Gaussian kerne
correlation sumCG(e) has the same scaling properties as
usualC(e). It has been observed in Ref. 3 thatCG(e) can be
obtained fromC(e) via

CG~e!5
1

2e2 E
0

`

dẽ e2 ẽ2/4e2
ẽC~ ẽ !, ~25!

without having to repeat the whole computation. IfC(e) is
given at discrete values ofe, the integrals in Eq.~25! can be
ownloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP lic
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carried out numerically by interpolatingC(e) with pure
power laws. This is done inc2g which uses a 15 poin
Gauss–Kronrod rule for the numerical integration.

B. Information dimension

Another way of attaching weight toe-balls, which is
more natural, is the probabilitypi itself. The resulting scaling
exponent is called the information dimensionD1 . Since the
Kaplan–Yorke dimension of Sec. VI is an approximation
D1 , the computation ofD1 through scaling properties is
relevant cross-check for highly deterministic data.D1 can be
computed from a modified correlation sum, where, howev
unpleasant systematic errors occur. Thefixed mass
approach81 circumvents these problems, so that, includi
finite sample corrections,77 a rather robust estimator exist
Instead of counting the number of points in a ball one a
here for the diametere which a ball must have to contain
certain numberk of points when a time series of lengthN is
given. Its scaling withk and N yields the dimension in the
limit of small length scales by

D1~m!5 lim
k/N→0

d logk/N

d^ loge~k/N!&
. ~26!

The routinec1 computes the~geometric! mean length scale
exp̂ loge(k/N)& for which k neighbors are found inN data
points, as a function ofk/N. Unlike the correlation sum
finite sample corrections are necessary ifk is small.77 Essen-
tially, the log ofk has to be replaced by the digamma fun
tion C(k). The resulting expression is implemented inc1 .
Given m and t, the routine variesk and N such that the
largest reasonable range ofk/N is covered with moderate
computational effort. This means that for 1/N<k/N<K/N
~default: K5100!, all N available points are searched fo
neighbors andk is varied. ForK/N,k/N<1, k5K is kept
fixed andN is decreased. The result for the NMR laser da
is shown in Fig. 18~d!, where a nice scaling withD1'1.35
can be discerned. For comparability, the logarithmic deri
tive of k/N is plotted versus exp^loge(k,N)& and notvice
versa, althoughk/N is the independent variable. One eas
detects again the violations of scaling discussed before: C
off on the large scales, noise on small scales, fluctuations
even smaller scales, and a scaling range in between. In
example,D1 is close toD2 , and multifractality cannot be
established positively.

C. Entropy estimates

The correlation dimension characterizes thee depen-
dence of the correlation sum inside the scaling range. I
natural to ask what we can learn from itsm-dependence,
oncem is larger thanD0 . The number ofe-neighbors of a
delay vector is an estimate of the local probability dens
and, in fact, it is a kind of joint probability: All
m-components of the neighbor have to be similar to those
the actual vector simultaneously. Thus when increasingm,
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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joint probabilities covering larger time spans get involve
The scaling of these joint probabilities is related to the c
relation entropyh2 , such that

C~m,e!'eD2e2mh2. ~27!

As for the scaling ine, also the dependence onm is valid
only asymptotically for largem, which one will not reach
due to the lack of data points. So one will studyh2(m) vs m
and try to extrapolate to largem. The correlation entropy is a
lower bound of the Kolmogorov Sinai entropy, which in tu
can be estimated by the sum of the positive Lyapunov ex
nents. The programd2 produces as output the estimates
h2 directly, from the other correlation sum programs it has
be extracted by post-processing the output.

The entropies of first and second order can be deri
from the output ofc1 and c2 , respectively. An alternate
means of obtaining these and the other generalized entro
is by a box counting approach. Letpi be the probability to
find the system state in boxi, then the orderq entropy is
defined by the limit of small box size and largem of

(
i

pi
q'e2mhq. ~28!

To evaluate( i pi
q over a fine mesh of boxes inm@1 dimen-

sions, economical use of memory is necessary: A sim
histogram would take (1/e)m storage. Therefore the progra
boxcount implements the mesh of boxes as a tree w
(1/e)-fold branching points. The tree is worked through r
cursively so that at each instance at most one comp
branch exists in storage. The current version does not im
ment finite sample corrections to Eq.~28!.

VIII. TESTING FOR NONLINEARITY

Most of the methods and quantities discussed so far
most appropriate in cases where the data show strong
consistent nonlinear deterministic signatures. As soon
more than a small or at most moderate amount of addi
noise is present, scaling behavior will be broken and pred
ability will be limited. Thus we have explored the oppos
extreme, nonlinear and fully deterministic, rather than
classical linear stochastic processes. The bulk of real w
time series falls in neither of these limiting categories b
cause they reflect nonlinear responses and effectively
chastic components at the same time. Little can be done
many of these cases with current methods. Often it will
advisable to take advantage of the well founded machin
of spectral methods and venture into nonlinear territory o
if encouraged by positive evidence. This section is ab
methods to establish statistical evidence for nonlinearity
yond a simple rescaling in a time series.

A. The concept of surrogate data

The degree of nonlinearity can be measured in sev
ways. But how much nonlinear predictability, say, is nec
sary to exclude more trivial explanations? All quantifiers
nonlinearity show fluctuations but the distributions, or er
bars if you wish, are not available analytically. It is therefo
necessary to use Monte Carlo techniques to assess the
ownloaded 13 Sep 2004 to 132.203.76.16. Redistribution subject to AIP lic
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nificance of the results. One important method in this cont
is the method of surrogate data.82 A null hypothesis is for-
mulated, for example, that the data has been created
stationary Gaussian linear process, and then it is attempte
reject this hypothesis by comparing results for the data
appropriate realizations of the null hypothesis. Since the n
assumption is not a simple one but leaves room for f
parameters, the Monte Carlo sample has to take these
account. One approach is to constructconstrained realiza-
tions of the null hypothesis. The idea is that the free para
eters left by the null are reflected by specific properties of
data. For example, the unknown coefficients of an auto
gressive process are reflected in the autocorrelation func
Constrained realizations are obtained by randomizing
data subject to the constraint that an appropriate set of
rameters remains fixed. For example, random data wit
given periodogram can be made by assuming random ph
and taking the inverse Fourier transform of the given pe
odogram. Random data with the same distribution as a gi
data set can be generated by permuting the data rando
without replacement. Asking for a given spectrum and
given distribution at the same time poses already a m
more difficult question.

B. Iterative Fourier transform method

Very few real time series which are suspected to sh
nonlinearity follow a Gaussian single time distribution. No
Gaussianity is the simplest kind of nonlinear signature bu
may have a trivial reason: The data may have been disto
in the measurement process. Thus a possible null hypoth
would be that there is a stationary Gaussian linear stocha
process that generates a sequence$xn%, but the actual obser
vations aresn5s(xn) wheres(•) is a monotonic function.
Constrained realizations of this null hypothesis would
quire the generation of random sequences with the s
power spectrum~fully specifying the linear process! and the
same single time distribution~specifying the effect of the
measurement function! as the observed data. TheAmplitude
Adjusted Fourier Transform ~AAFT! method proposed in
Ref. 82 attempts to invert the measurement functions(•) by
rescaling the data to a Gaussian distribution. Then the F
rier phases are randomized and the rescaling is inverted
discussed in Ref. 83, this procedure is biased towards a
ter spectrum since the inverse ofs(•) is not available ex-
actly. In the same reference, a scheme is introduced
removes this bias by iteratively adjusting the spectrum a
the distribution of the surrogates. Alternatingly, the sur
gates are rescaled to the exact values taken by the data
then the Fourier transform is brought to the exact amplitu
obtained from the data. The discrepancy between both s
either converges to zero with the number of iterations or t
finite inaccuracy which decreases with the length of the ti
series. The programsurrogates performs iterations until
no further improvement can be made. The last two stages
returned, one having the exact Fourier amplitudes and
taking on the same values as the data. For not too exotic
these two versions should be almost identical. The rela
discrepancy is also printed.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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In Fig. 19 we used this procedure to assess the hyp
esis that the noise reduction on the breath data reporte
Fig. 12 removed an additive noise component which w
independent of the signal. If the hypothesis were true,
could equally well add back on the noise sequence or a
domized version of it which lacks any correlations to t
signal. In the upper panel of Fig. 19 we show the origin
data. In the lower panel we took the noise reduced vers
~cf. Fig. 12, bottom! and added a surrogate of the suppos
noise sequence. The result is similar but still significan
different from the original to make the additivity assumpti
implausible.

Fourier based randomization schemes suffer from so
caveats due to the the inherent assumption that the data
stitutes one period of a periodic signal, which is not what
really expect. The possible artifacts are discussed, for
ample, in Ref. 84 and can, in summary, lead to spuri
rejection of the null hypothesis. One precaution that sho
be taken when usingsurrogates is to make sure that the
beginning and the end of the data approximately match
value and phase. Then, the periodicity assumption is not
far wrong and harmless. Usually, this amounts to the los
a few points of the series. One should note, however, tha
routine may truncate the data by a few points itself in or
to be able to perform afastFourier transform which require
the number of points to be factorizable by small prime fa
tors.

C. General constrained randomization

In Ref. 85 a general method has been proposed to cr
random data which fulfill specified constraints. With th
method, the artifacts and remaining imprecision of the F

FIG. 19. Upper: The human breath rate data from Fig. 12. Lower: the n
component extracted by the noise reduction scheme has been randomi
order to destroy correlations with the signal. The result appears slightly
significantly less structured than the original.
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rier based randomization schemes can be avoided by sp
fying the autocorrelation function rather than the Four
transform. The former does not assume periodic contin
tion. Maybe more importantly, the restriction to a rather n
row null hypothesis can be relaxed since, in principle, ar
trary statistical observables can be imposed on
surrogates. A desired property of the data has to be for
lated in terms of a cost function which assumes an abso
minimum when the property is fulfilled. States arbitrari
close to this minimal cost can be reached by the method
simulated annealing. The cost function is minimized amo
all possible permutations of the data. See Ref. 85 for a
scription of the approach.

The TISEAN package contains the building blocks for
library of surrogate data routines implementing user spe
fied cost functions. Currently, only the autocorrelation fun
tion with and without periodic continuation have been imp
mented. Further, a template is given from which the u
may derive her/his own routines. A module is provided th
drives the simulated annealing process through an expo
tial cooling scheme. The user may replace this module
other scheme of her/his choice. A module that performs r
dom pair permutations is given which allows us to exclud
list of points from the permutation scheme. More sophis
cated permutation schemes can be substituted if des
Most importantly, the cost function has to be given as a
other module. The autocorrelation modules u
maxt51

tmaxuC(t)2C(t)datau/t, whereC(t) is the autocorrelation
function with or without periodic continuation.

In Fig. 20 we show an example fulfilling the null hy
pothesis of a rescaled stationary Gaussian linear stoch
process which has been contaminated by an artifac
samples 200–220. The Fourier based schemes are unab
implement the artifact part of the null hypothesis. Th
spread the structure given by the artifact evenly over
whole time span, resulting in more spikes and less pred
ability. In fact, the null hypothesis of a stationary rescal
Gaussian linear stochastic process can be rejected at the
level of significance using nonlinear prediction errors. T
artifact would spuriously be mistaken for nonlinearity. Wi
the programrandomize –auto –exp –random , we can

e
d in
ut

FIG. 20. Upper trace: Data from a stationary Gaussian linear stocha
process (xn50.7xn211hn) measured bys(xn)5xn

3 . Samples 200–220 are
an artifact. With the Fourier based scheme~middle trace! the artifact results
in an increased number of spikes in the surrogates and reduced predic
ity. In the lower trace, the artifact has been preserved along with the di
bution of values and lags 1,...,25 of the autocorrelation function.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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exclude the artifact from the randomization scheme and
tain a correct test.

As an example of a more exotic cost function, let
show the randomization of 500 iterates of the He´non map,
Fig. 21~a!. Panel~b! shows the output ofsurrogates hav-
ing the same spectrum and distribution. Starting from a r
dom permutation~c!, the cost function,

C5^xn21xn&1^xn22xn&1^xn21
2 xn&1^xn21xn

2&

1^xn22
2 xn&1^xn22xn21xn&1^xn21

2 xn
2&1^xn21xn

3&

1^xn21
3 xn&, ~29!

is minimized ~randomize –generic –exp –random !. It
involves are all the higher order autocorrelations wh
would be needed for a least squares fit with the ansatzxn

5c2axn21
2 1bxn22 and in this sense fully specifies the qu

dratic structure of the data. The random shuffle yie
C52400, panels~c!–~f! correspond toC5150,15,0.002, re-
spectively.

Since the annealing process can be very CPU time c
suming, it is important to provide an efficient code for t
cost function. Specifyingtmax lags forN data points requires
O(Ntmax) multiplications for the calculation of the cost func
tion. An update after a pair has been exchanged, howe
can be obtained withO(tmax) multiplications. Often, the full
sum or supremum can be truncated since after the first te
it is clear that a large increase of the cost is unavoidable.
driving Metropolis algorithm provides the current maxim
permissible cost for that purpose.

The computation time required to reach the desired
curacy depends on the choice and implementation of the

FIG. 21. Randomization of 500 points generated by the the He´non map.~a!
Original data;~b! the same autocorrelations and distribution;~c!–~f! differ-
ent stages of annealing with a cost functionC involving three- and four-
point correlations.~c! A random shuffle,C52400; ~d! C5150; ~e! C
515; ~f! C50.002. See the text.
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function but also critically on the annealing schedule. Th
is a vast literature on simulated annealing which cannot
reviewed here. Experimentation with cooling schem
should keep in mind the basic concept of simulated ann
ing. At each stage, the system—here the surrogate to
created—is kept at a certain ‘‘temperature.’’ Like in therm
dynamics, the temperature determines how likely fluct
tions around the mean energy—here the value of the
function C—are. At temperatureT, a deviation of sizeDC
occurs with the Boltzmann probability}exp(2DC/T). In a
Metropolis simulation, this is achieved by acceptingall
downhill changes (DC,0), but also uphill changes with
probability exp(2DC/T). Here the changes are permutatio
of two randomly selected data items. The present implem
tation offers an exponential cooling scheme, that is, the te
perature is lowered by a fixed factor whenever one of t
conditions is fulfilled: Either a specified number of chang
has beentried, or a specified number of changes has be
accepted. Both these numbers and the cooling factor can
chosen by the user. If the state is cooled too fast it gets st
or ‘‘freezes’’ in a false minimum. When this happens, t
system must be ‘‘melted’’ again and cooling is taken up a
slower rate. This can be done automatically until a goal
curacy is reached. It is, however, difficult to predict ho
many steps it will take. The detailed behavior of the sche
is still subject to ongoing research and in all but the simpl
cases, experimentation by the user will be necessary. To
cilitate the supervision of the cooling, the current state
written to a file whenever a substantial improvement h
been made. Further, the verbosity of the diagnostic ou
can be selected.

D. Measuring weak nonlinearity

When testing for nonlinearity, we would like to us
quantifiers that are optimized for the weak nonlinearity lim
which is not what most time series methods of chaos the
have been designed for. The simple nonlinear predict
scheme~Sec. IV B! has proven quite useful in this context.
used as a comparative statistic, it should be noted that so
times seemingly inadequate embeddings or neighborh
sizes may lead to rather big errors which have, howev
small fluctuations. The tradeoff between bias and varia
may be different from the situation where predictions a
desiredper se. The same rationale applies to quantities d
rived from the correlation sum. Neither the small scale lim
genuine scaling, or the Theiler correction, are formally n
essary in a comparative test. However, any temptation
interpret the results in terms like ‘‘complexity’’ or ‘‘dimen
sionality’’ should be resisted, even though ‘‘complexity
does not seem to have an agreed-upon meaning any
Apart from average prediction errors, we have found the s
bilities of short periodic orbits~see Sec. IV C! useful for the
detection of nonlinearity in surrogate data tests. As an al
native to the phase space based methods, more tradit
measures of nonlinearity derived from higher order autoc
relation functions~Ref. 86, routineautocor3 ! may also be
considered. If a time-reversal asymmetry is present, its
tistical confirmation~routine timerev ! is a very powerful
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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detector of nonlinearity.87 Some measures of weak nonlin
earity are compared systematically in Ref. 88.

IX. CONCLUSION AND PERSPECTIVES

The TISEAN project makes available a number of alg
rithms of nonlinear time series analysis to people interes
in applications of the dynamical systems approach. To m
proper use of these algorithms, it is not essential to h
written the programs from scratch, an effort we intend
spare the user by makingTISEAN public. Indispensable, how
ever, is a good knowledge of what the programs do, and w
they do what they do. The latter requires a thorough ba
ground in the nonlinear time series approach which can
be provided by this paper, but rather by textbooks like
Refs. 10, 2, reviews,11,12,3 and the original literature.9 Here,
we have concentrated on the actual implementation as
realized inTISEAN and on examples of the concrete use of
programs.

Let us finish the discussion by giving some perspecti
on future work. So far, theTISEAN project has concentrate
on the most common situation of a single time series. Wh
for multiple measurements of a similar nature most progra
can be modified with moderate effort, a general framew
for heterogeneous multivariate recordings~say, blood pres-
sure and heart beat! has not been established so far in
nonlinear context. Nevertheless, we feel that concepts
generalized synchrony, coherence, or information flow
well worth pursuing and at some point should become av
able to a wider community, including applied research.

Initial experience with nonlinear time series methods
dicates that some of the concepts may prove useful eno
in the future to become part of the established time se
tool box. For this to happen, availability of the algorithm
and reliable information on their use will be essential. T
publication of a substantial collection of research level p
grams through theTISEAN project may be seen as one step
that direction. However, the potential user will still need co
siderable experience in order to make the right decision
about the suitability of a particular method for a specific tim
series, about the selection of parameters, about the inte
tation of the results. To some extent, these decisions coul
guided by software that evaluates the data situation and
results automatically. Previous experience with black box
mension or Lyapunov estimators has not been encourag
but for some specific problems, ‘‘optimal’’ answers can,
principle, be defined and computed automatically, once
optimality criterion is formulated. For example, the pred
tion programs could be encapsulated in a framework
automatically evaluates the performance for a range of
bedding parameters, etc. Of course, quantitative assess
of the results is not always easy to implement and depe
on the purpose of the study. As another example, it se
realistic to define ‘‘optimal’’ Poincare´ surfaces of section
and to find the optimal solutions numerically.

Like in most of the time series literature, the issue
stationarity has entered the discussion only as something
lack of which has to be detected in order to avoid spurio
results. Taking this point seriously amounts to rejecting
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substantial fraction of time series problems, including t
most prominent examples, that is, most data from finan
meteorology, and biology. It is quite clear that the mere
jection of these challenging problems is not satisfactory a
we will have to develop tools to actually analyze, unde
stand, and predict nonstationary data. Some suggestions
been made for the detection of fluctuating cont
parameters.89–92 Most of these can be seen as continuo
versions of the classification problem, another applicat
which is not properly represented inTISEAN yet.

Publishing software, or reviews and textbooks for th
matter, in a field evolving as rapidly as nonlinear time ser
analysis will always have the character of a snapshot of
state at a given time. Having the options either to wait un
the field has saturated sufficiently or to risk that programs
statements made, will become obsolete soon, we chose
second option. We hope that we can thus contribute to
further evolution of the field.
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