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This contribution reports on a dynamic analysis of an elasto–plastic oscillator. Kinematic
and isotropic hardening are considered. The equations of motion have five state variables
associated with complementary conditions. System dynamics is treated by performing a
split in phase space in two parts. This split is suggested by an analysis of the equations
of motion near equilibrium points and permits conclusions about high dimensional
dynamical system by analyzing subspaces with lower dimension. This physical
consideration is in close agreement with the operator split technique used for the numerical
solution. Some numerical results are shown for free and forced vibrations of the oscillator
with kinematic, isotropic and kinematic/isotropic hardening.
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1. INTRODUCTION

The elasto–plastic behavior describes the deformation mechanisms of most metals and
alloys at room temperature. The theories of elasticity and plasticity are both based on
experimental studies of stress-strain relations in polycrystalline aggregate under simple
load conditions. Elasto–plasticity theory describes the well known behavior of bodies that
present an elastic reponse until a limit, defined by the yield surface, is reached. After this
limit, the body presents a plastic response which is associated with irreversible strains.

The hardening effect represents the way of how plastic strains modify the yield surface.
It is a normal situation and can occur in many different ways, depending specifically on
the material considered. There are many idealized models to describe this phenomenon.
A great number of situations can be properly represented by a combination of kinematic
and isotropic hardening. Kinematic hardening is characterized by the translation of the
yield surface. Isotropic hardening corresponds to a uniform expansion of yield surface. The
understanding of elasto–plastic behavior is important in many engineering problems,
structural integrity and mechanical conformation being examples. This contribution
reports on a dynamic analysis of an elasto–plastic oscillator with kinematic and isotropic
hardening. Simple constitutive equations are considered to describe the elasto–plastic
behavior. Despite the deceiving simplicity of the model used, its non-linear dynamic
response may represent the qualitative response of elasto–plastic structures.
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The oscillator equations of motion have five state variables associated with
complementary conditions. System dynamics can be treated performing a split in phase
space in two parts. One part is called phase plane and includes displacement and velocity.
The other part is the internal variables space and includes plastic displacement and internal
variables associated with kinematic and isotropic hardening. The proposed split is
suggested by an analysis of the equations of motion near equilibrium points. This physical
consideration is in close agreement with the operator split technique used for the numerical
solution and permits one to analyze a high dimensional dynamical system from subspaces
with lower dimension. With these assumptions, a numerical method is developed using an
integration scheme associated with the so-called return mapping algorithm. Some
numerical results are shown for free and forced vibrations of the oscillator with kinematic,
isotropic and kinematic/isotropic hardening.

2. ELASTO–PLASTIC MODEL

Elasto–plasticity theory describes the behavior of bodies that, when subjected to
a load P, present an elastic response until the elastic limit, defined by the yield
surface, is reached. After this limit, the body has an irreversible response which is
associated with plastic displacements [1]. The hardening phenomenon, observed on most
metals and alloys, can be represented by a combination of kinematic and isotropic
hardening.

Figure 1 shows qualitative plots of elasto–plastic behavior with kinematic and isotropic
hardening. Consider a load history imposed on the body. By increasing the load from the
origin of the force–displacement space, there is an elastic domain until the limit Py is
reached (point A). Outside the elastic domain, irreversible plastic displacement begins
to occur. Displacement continues to increase until point B is reached. At this instant,
load begins to decrease and the body presents an elastic reponse. Point C shows the
residual displacement imposed by this load process. If the load continues to be decreased,
the body keeps presenting an elastic response until the new elastic limit is reached (point
D). This limit was altered by the load history. Kinematic hardening requires that the
yield surface conserves its original size while it varies its position, whose center is originally
at the point O (Figure 1(a)). Isotropic hardening, on the other hand, requires that the
yield surface expands but conserves its original center which is initially at the point
O (Figure 1(b)). Point D represents the new position of the yield surface limits for both
cases.

Figure 1. Load-displacement curves for an elasto-plastic body. (a) Kinematic hardening, (b) isotropic
hardening.
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A constitutive model to describe this elasto–plastic behavior is considered assuming an
additive decomposition, i.e., the total displacement, x may be divided into an elastic part,
xe, and a plastic part, xp. Hence, the force–displacement relation is given by

P=K(x− xp), (1)

where K is a stiffness parameter.
The isotropic hardening is described by introducing an internal variable, a, referred to

as the internal hardening variable. A simple evolution equation of this variable considers
that the hardening is linear in the amount of plastic flow, ẋp, and independent of the sign
of this flow, sign (ẋp)= ẋp/=ẋp= [2]. This may be expressed by

ȧ= =ẋp=. (2)

The kinematic hardening is described by introducing a new internal variable, b, referred
to as the back load. An evolution equation of the back load is defined by means of Ziegler’s
rule [2]:

b� =Hẋp, (3)

where H is a kinematic hardening parameter.
Experimental observations establish that plastic displacement has the following

evolution equation [2]:

ẋp = g sign (P− b), (4)

where g represents the rate at which plastic displacements take place.
The yield surface, which defines the elastic domain limit, is expressed by

h(P, a, b)= =P− b =−(Py +Ga)=0, (5)

where G is the plastic modulus. The form of this function shows that kinematic hardening
causes the elastic domain translation, while isotropic hardening causes the expansion of
this domain. Figure 2 shows the expansion caused by the isotropic hardening in the
load–internal hardening plane.

The irreversible nature of plastic flow is represented by means of the Kuhn–Tucker
conditions [3]. Another constraint must be satisfied when h(P, a, b)=0. It is referred to
as the consistency condition and corresponds to the physical requirement that a load point
on the yield surface must persist on it [2]. These conditions are presented as follows:

ge 0, gh(P, a, b)=0, gh� (P, a, b)=0 if h(P, a, b)=0. (6)

Figure 2. Elastic domain evolution in the load–internal hardening plane as a consequence of isotropic
hardening.
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3. ELASTO–PLASTIC OSCILLATOR

Considering a single-degree-of-freedom oscillator with mass m and an external linear
viscous dissipation parameter c, the balance of linear momentum is expressed by the
following equation:

mẍ+ cẋ+P(x, xp, a, b)=F(t), (7)

where P(x, xP, a, b) is the elasto–plastic restitution force of the oscillator and F(t) is an
external force.

If the variable y= ẋ is defined, and a periodic excitation F(t)=F0 sin (Vt) is considered,
it is possible to write the following equations of motion using equations (1–4) for the
restitution force. It must be noted that, by considering X=(x, y, xp, a, b), the equations
of motion have the form X� = f(X, t), X $R5, associated with complementary conditions
(5, 6).

ẋ= y, ẏ= d sin (Vt)− c0y−v2
0 (x− xp), ẋp = g sign (P− b),

ȧ= g, b� = gH sign (P− b), h(P, a, b)= =P− b =−(Py +Ga), ge 0,

gh(P, a, b)=0, gh� (P, a, b)=0 if h(P, a, b)=0. (8)

Here, d=F0/m, c0 = c/m and v2
0 =K/m.

4. EQUILIBRIUM POINTS

Considering free vibrations (d=0), equilibrium points of the oscillator, X�, are defined
when f(X�)=0. Hence,

ȳ= ḡ=0, x̄= xp. (9)

The system has only one equilibrium point which can vary continuously on the x-axis,
since the plastic displacement, xp, can do so. Another characteristic is that it occurs in the
elastic region since ḡ=0 implies that h(P, a, b)E 0.

Linearization of the equations of motion near the equilibrium point can be considered
by defining a new variable h=(h1, h2, h3, h4, h5):

h=X−X�. (10)

The linearization establishes that ḣ3 = ḣ4 = ḣ5 =0. Hence, h3, h4 and h5 assume constant
values. This behavior suggests a split in phase space in two parts. One part is called the
phase plane and includes the variables x, y, or in the linearized problem the pair
hp =(h1, h2). The other part is the internal variables space and includes xp, a, b, or h3, h4, h5

for linearized problem. Similar considerations apply to other dynamical systems. Savi and
Braga [4] have studied the behavior of a shape memory oscillator with internal constraints
using the same methodology.

With this assumption, the linearized system in the phase plane is treated as follows:

ḣp =[A]hp + b or 6ḣ1

ḣ27=$ 0
−v2

0

1
−c0%6h1

h27+6 0
v2

0h37. (11)
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The behavior of the linearized system near the equilibrium point depends on the
eigenvalues of matrix [A], which are

l1,2 =−c0/22 iz4v2
0 − c2

0, (12)

where i=z−1.
If c0 =0, the equilibrium point represents a center, and if c0 $ 0, equation (12) represents

a stable spiral [5].
It is important to observe that the dynamics of the linearized system near the equilibrium

point was analyzed just from the phase plane, since the matrix [A] can be obtained from
the linearization of this plane. No considerations about the internal variables space need
be done to calculate the eigenvalues of [A]. The use of this procedure is very useful in the
study of non-linear dynamics, since the geometric point of view is very important in chaotic
dynamics analysis [5–10].

5. NUMERICAL PROCEDURE

The numerical solution procedure here proposed uses the operator split technique
[11–13] to divide the space of variables into two parts. One part is the phase plane and
includes the variables x, y and the other one is the internal variables space and includes
xp, a, b. This approach is similar to the one proposed in the preceding section which
established a physical meaning for the operator split technique.

With the proposed split, it is possible to develop a numerical procedure using any
integration scheme associated with the return mapping algorithm which consists of an
elastic predictor step associated with a plastic corrector. An iterative process takes place
until the convergence is achieved. The following sections present details on each part of
the procedure.

5.1.  

The time integration of equations of motion in the phase plane can be done by any
integration scheme, since the internal variables xp, a, b are considered as known
parameters. As a first trial, an elastic predictor step is assumed, where the value of xp, a, b

remains constant from the previous time instant.
The next step of the solution procedure consists of a plastic corrector step. Hence, the

feasibility of trial state is evaluated and the return mapping algorithm is considered [14].

5.2.   

At this point, a trial state xn+1, yn+1 is known. This is considered as an input for the
return mapping algorithm. To present this algorithm, one first defines an auxiliary variable,

z=P− b. (13)

A trial state is defined by considering an elastic predictor step. Using the implicit Euler
algorithm to time discretize the evolution equations (1–5), it is possible to write the
following equations, which define the trial state:

Ptrial
n+1 =K(xn+1 − xp

n ), (xp
n+1)trial = xp

n , atrial
n+1 = an , (14–16)

btrial
n+1 = bn , htrial

n+1 = =ztrial
n+1 =−(Py −Gan ). (17, 18)

If htrial
n+1 E 0, it means that the state is in the elastic domain and the trial state is the actual

one. Otherwise, if htrial
n+1 q 0, one is outside the elastic domain and a plastic step must be
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considered. Hence, the trial state must be corrected. Simo and Taylor [14] have shown that
the correction of the trial state must be done as follows:

Pn+1 =Ptrial
n+1 −KDg sign (ztrial

n+1), xp
n+1 = (xp

n+1)trial +Dg sign (ztrial
n+1), (19, 20)

an+1 = atrial
n+1 +Dg, bn+1 = btrial

n+1 +HDg sign (ztrial
n+1), (21, 22)

where

Dg= htrial
n+1/(K+G+H). (23)

5.3.  

Now, it is necessary to return to the phase plane equations and recalculate the variables
using new values of the parameters xp, a, b. This procedure must be repeated until it
converges. This situation occurs when the difference between the actual and trial state
reaches a prescribed tolerance.

6. NUMERICAL SIMULATIONS

This section presents some numerical simulations on the behavior of the elasto–plastic
oscillator using the proposed procedure. Free and forced vibrations are considered for
three different situations: kinematic, isotropic and kinematic/isotropic hardening.

The mid-point rule is used to perform the time integration of the phase plane equations.
This procedure is unconditionally stable and introduces no spurious dissipation [2]. The
same results can be obtained using the fourth order Runge–Kutta method. Good
convergence is obtained for time steps, Dt, lower than 2p/(200v0).

6.1.  

This section is focused on the analysis of the elasto–plastic oscillator with kinematic
hardening. Hence, isotropic hardening is neglected and the variable a is not considered.
All simulations consider an oscillator with parameters presented in Table 1 and an unitary
mass.

6.1.1 Free Vibrations
The free vibrations of the elasto–plastic oscillator are considered by letting d vanish in

equation (8). A system with no external dissipation (c0 =0) is considered. Results from
simulations are presented in the form of phase portraits, where each orbit is associated
with different initial conditions. Figure 3 shows the phase portrait in the phase plane
(Figure 3(a)) and in the internal variables plane (Figure 3(b)). Initial conditions in the
elastic domain cause linear responses. Outside the elastic domain, initial conditions cause
a variation of the equilibrium point which is associated with plastic displacements. The
phase portrait in the internal variables plane occupies a restricted region of the plane as
a consequence of complementary conditions (6) (Figure 3(b)).

Figure 4 shows a particular orbit associated with initial conditions which are outside
the elastic domain. The motion occurs around the equilibrium point whose position on

T 1

Parameters of the oscillator with kinematic hardening

K (MN/m) H (kN/m) Py (kN)

54·9 78·5 31·4
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Figure 3. Phase portrait of the oscillator with kinematic hardening. (a) Phase plane, (b) internal variables
plane.

Figure 4. Response of the oscillator with kinematic hardening for a particular initial condition. (a) Phase plane,
(b) force–displacement curve.

the x-axis is defined by the plastic displacement, xp. Figure 4(a) shows the phase plane
while Figure 4(b) shows the force–displacement curve.

The energy dissipation of the plastification process can be seen by considering an initial
condition with a null displacement and a non-zero velocity. Figure 5 shows the response
for (x, y)= (0,6) and (xp, b)= (0,0). Figure 5(a) shows the phase plane while Figure 5(b)
shows the load–displacement curve.

By considering an external dissipation, asymptotic behavior is expected. Figure 6 shows
the phase plane and the displacement time history for a dissipation parameter
c0 =2000 s−1. The phase plane presents a stable spiral orbit that tends to the equilibrium
point defined by the plastic displacement, xp.

Figure 5. Energy dissipation during the plastification process in the oscillator with kinematic hardening.
(a) Phase plane, (b) force–displacement curve.
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Figure 6. Response of the oscillator with kinematic hardening and external dissipation (c0 =2000 s−1).
(a) Phase plane, (b) displacement time history.

Free vibration numerical simulations agree with the analysis of linearized system
(presented in section 4).

6.1.2. Forced Vibrations
In the forced vibration analysis it is clear that a forcing amplitude smaller than the elastic

limit causes a linear response. Hence, one is interested in forcing amplitudes that cause
plastic displacements. The elasto–plastic oscillator has two kinds of dissipation: an external
linear viscous dissipation and an internal plastic dissipation. The effect of external
dissipation is analyzed by considering different dissipation parameters: c0 =0 (with no
external dissipation) and c0 =2000 s−1. A forcing frequency V=1000 rads−1 is considered
for all simulations. The other parameters are identical to the one used in the free vibrations
analysis.

Periodic excitation tends to cause a steady state response where plastic variables have
a stabilized cycle. This is a consequence of kinematic hardening which imposes that the
yield surface modifies its position. In the transient response, the translation of the yield
surface causes a non-symmetric response for tensile and compressive behavior. In steady
state response, a symmetric situation occurs and system variables present periodic
responses.

Figure 7 shows the transient response for the first 30 loading cycles with d=41·4
K ms−2, where no external dissipation is considered (c0 =0). A considerable amount of
plastic displacements in the first cycles causes a high level of internal dissipation. This
establishes that the initial transient response vanishes quickly and a stabilized
elasto–plastic cyclic response is observed after a few cycles of loading. Figures 7(a–d) show
the time history of displacement, velocity, plastic displacement and back load, respectively,
while Figure 7(e) shows the load–displacement curve. In Figure 8, the phase plane for
the first 100 cycles shows a small drift in orbits position until a steady state response is
reached.

When external dissipation is considered, the system response presents smaller
displacement in the first cycles. This behavior causes a decrease of plastic displacements
in these first cycles and, as a consequence, smaller energy dissipation is present.
Furthermore, the transient response is longer than the previous case. It is possible to see
this behavior by comparing the variables stabilization of both cases, presented in Figures 7,
8 and Figures 9, 10, respectively.

In the foregoing analysis, steady state responses are considered. Figures 11–14 show
phase plane, load-displacement curve, time history and the Fast Fourier Transform (FFT)
of displacement for different driving force amplitudes.
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Figure 7. Behavior of the oscillator with kinematic hardening and no external dissipation. (a) Displacement
time history, (b) velocity time history, (c) plastic displacement time history, (d) back load time history, (e)
load–displacement curve.

Figure 8. Phase plane orbits of the oscillator with kinematic hardening and no external dissipation for the first
100 loading cycles: —, 100th cycle; ----, evolution of the orbits.

Figure 11 shows the oscillator response for d=31·4 K ms−2. FFT analysis shows that
response and forcing frequency are the same. When increasing the driving force amplitude,
a superharmonic response is present. Figures 12–14 show the oscillator response for
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Figure 9. Behavior of the oscillator with kinematic hardening and external dissipation. (a) Displacement time
history, (b) velocity time history, (c) plastic displacement time history, (d) back load time history,
(e) load–displacement curve.

Figure 10. Phase plane orbits of the oscillator with kinematic hardening and external dissipation for the first
loading cycles: —, 100th cycle;----, evolution of the orbits.

d=41·4 K ms−2, d=51·4 K ms−2 and d=61·4 K ms−2, respectively. FFT analysis of the
displacement signal showed that the superharmonic response is associated with odd
multiples of the forcing frequency.
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Figure 11. Steady state response of the oscillator with kinematic hardening for d=31·4 K ms−2. (a) Phase
plane, (b) load–displacement curve, (c) displacement steady state response, (d) displacement frequency
response.

Figure 12. Steady state response of the oscillator with kinematic hardening for d=41·4 K ms−2. (a) Phase
plane, (b) load–displacement curve, (c) displacement steady state response, (d) displacement frequency
response.
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Figure 13. Steady state response of the oscillator with kinematic hardening for d=51·4 K ms−2. (a) Phase
plane, (b) load–displacement curve, (c) displacement steady state response, (d) displacement frequency
response.

Figure 14. Steady state response of the oscillator with kinematic hardening for d=61·4 K ms−2. (a) Phase
plane, (b) load–displacement curve, (c) displacement steady state response, (d) displacement frequency
response.
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T 2

Parameters of the oscillator with isotropic hardening

K (MN/m) G (N/m) Py (kN)

54·9 345·6 31·4

6.2.  

This section is focused on the analysis of an elasto–plastic oscillator with isotropic
hardening. Hence, kinematic hardening is neglected and the variable b is not considered.
All simulations consider an oscillator with parameters presented in Table 2 and a unitary
mass.

6.2.1 Free Vibrations
Free vibrations of an elasto–plastic oscillator with kinematic and with isotropic

hardening are similar. The phase portrait in the phase plane is shown in Figure 15(a).
Figure 15(b) shows the phase portrait in the internal variables plane where it is possible
to see that a restricted region of the plane is occupied as a consequence of the
complementary conditions (6). Since the yield surface expands, the parameter a is always
positive.

6.2.2 Forced Vibrations
The behavior of an elasto–plastic oscillator with periodic excitation is now considered

with a forcing frequency V=1000 rads−1 and an amplitude d=41·4 K ms−2. It is assumed
that the other parameters are identical to the one used in the free vibrations analysis. By
prescribing loads, isotropic hardening tends to cause an elastic stabilized response in steady
state. It is a different behavior from the one obtained by the oscillator with kinematic
hardening where a stabilized elasto-plastic response occurs.

Figure 16 shows the transient response for the first 30 loading cycles, where no external
dissipation is considered (c0 =0). Steady state is reached after a few cycles. This situation
is similar to the one presented by the oscillator with kinematic hardening. Figures 16(a,
b) show the time history of displacement and velocity. The initial superharmonic response
can be observed which is caused by the cyclic response of the plastic displacements.

Figure 15. Phase portrait of the oscillator with isotropic hardening. (a) Phase plane, (b) internal variables
plane.
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Figure 16. Behavior of the oscillator with isotropic hardening and no external dissipation. (a) Displacement
time history, (b) velocity time history, (c) plastic displacement time history, (d) internal hardening time history,
(e) load–displacement curve.

Figure 17. Phase plane orbits of the oscillator with isotropic hardening and no external dissipation for the
10th (—) and 100th (----) loading cycle.

Figure 16(c) shows the time history of plastic displacement while the internal hardening
variable stabilization is observed in Figure 16(d). The load–displacement curve is presented
in Figure 16(e).
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Figure 18. Behavior of the oscillator with isotropic hardening and external dissipation. (a) Displacement time
history, (b) velocity–time history, (c) plastic displacement time history, (d) internal hardening time history,
(e) load-displacement curve.

Figure 19. Phase plane orbits of the oscillator with isotropic hardening and external dissipation for the 10th
(—) and 100th (----) loading cycle.

When steady state is reached, there is an elastic response where plastic displacements
assume constant values while displacement and velocity present a periodic response. In the
phase plane, the orbits tend to an elliptical shape. Figure 17 shows different forms of orbits
for the 10th and 100th cycle.
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T 3

Parameters of the oscillator with kinematic/isotropic hardening

K (MN/m) G (kN/m) H (kN/m) Py (kN)

54·9 345·6 78.5 31·4

As in the case with kinematic hardening, by considering external dissipation, the system
response presents a reduction of plastic displacements in the first cycles. This implies an
internal dissipation decrease and a longer transient response is expected (Figure 18).

Figure 19 shows different forms of phase plane orbits for the 10th and 100th loading
cycles. Again, the orbits tend to an elliptical shape.

6.3.    

In this section, an analysis of an elasto–plastic oscillator with a combination of
kinematic and isotropic hardening is considered. All simulations consider an oscillator
with parameters presented in Table 3 and a unitary mass.

Figure 20. Behavior of the oscillator with kinematic/isotropic hardening and no external dissipation.
(a) Displacement time history, (b) velocity time history, (c) plastic displacement time history, (d) internal
hardening time history, (e) back load time history, (f) load–displacement curve.
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The free vibrations present the same behavior as the one observed in kinematic or
isotropic hardening. Hence, the following analysis is dedicated to the force vibration
problem. A forcing frequency V=1000 rads−1 and an amplitude d=41·4 K ms−2 is
considered.

Since isotropic hardening tends to expand the yield surface and the loads are prescribed,
it is expected that the oscillator with kinematic/isotropic hardening presents an elastic
response in steady state, as it is observed in the response of an oscillator with isotropic
hardening (kinematic hardening is neglected).

Figure 20 shows the transient response for the first 30 loading cycles, where no external
dissipation is considered (c0 =0). Figures 20(a, b) show the time history of displacement
and velocity. The initial superharmonic response is shown which is caused by the cyclic
response of plastic displacements. As it is expected, the internal hardening variable, a,
tends to assume a constant value (Figure 20(d)). Constant values are also assumed for
the plastic displacement (Figure 20(c)) and the back load, b (Figure 20(e)), by a different
way that occurs when isotropic hardening is neglected. Figure 20(f) shows the
load–displacement curve. Since no external dissipation is considered, the initial transient
response vanishes quickly as a consequence of the high level of internal dissipation in the
first cycles.

Orbits in the phase plane tend to modify their form and position until steady state is
reached when an elliptical shape is assumed. Figure 21 shows different orbits for the 10th
and 100th cycle. When steady state is reached, plastic displacements assume constant
values while displacement and velocity present the periodic response.

When external dissipation is considered, a reduction of displacement amplitudes in the
first cycles takes place. This behavior tends to reduce internal dissipation causing a longer
transient response (Figure 22), as observed in the response of the oscillator with kinematic
or with isotropic hardening.

Phase plane orbits show, in a more drastic form, the response evolution due to the
combination of kinematic an isotropic hardening. Figure 23 shows different orbits for the
10th and 100th cycle.

Now, the frequency analysis is focused. One is interested in the effects of forcing
frequency variation on the oscillator steady state response. A system with no external
dissipation is considered. Figure 24 shows the behavior of the x-range, Dx= xmax − xmin ,
and the internal hardening variable, a, under the variation of forcing frequency. Similar
qualitative behavior may be observed in both cases. The response amplification, typical
behavior of system response under resonant conditions, can be observed when

Figure 21. Phase plane orbits of the oscillator with kinematic/isotropic hardening and no external dissipation
of the 10th (—) and 100th (----) loading cycle.
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Figure 22. Behavior of the oscillator with kinematic/isotropic hardening and external dissipation.
(a) Displacement time history, (b) velocity time history, (c) plastic displacement time history, (d) internal
hardening time history, (e) back load time history, (f) load–displacement curve.

Figure 23. Phase plane orbits of the oscillator with kinematic/isotropic hardening and external dissipation for
the 10th (—) and 100th (----) loading cycle.

6400QVQ 6800 rads−1. Since the elastic natural frequency is approximately 7400 rads−1,
it is clear that the plastic effect tends to reduce the resonant frequency as it is observed
when external dissipation is considered.
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Figure 24. Frequency response for d=41·4 K ms−2: (a) Dx, (b) a.

7. CONCLUSIONS

A dynamic analysis of an elasto-plastic oscillator with kinematic and isotropic hardening
was performed. Despite the deceiving simplicity of the model used, its non-linear dynamic
reponse may represent the qualitative response of general elasto-plastic structures. The
equations of motion have five state variables associated with the complementary
conditions. An analysis of equilibrium points suggest a split in phase space variables. This
procedure allows one to analyze the dynamics of a 5-dimensional system by considering
just a part of the space of state variables. The space split is in close agreement with the
operator split technique used in the numerical solution of equations of motion. The
numerical method proposed in this work permits the use of a combination of classical
algorithms to evaluate the response of elasto-plastic dynamical systems. Good convergence
is achieved using relatively large time steps. The periodic forcing response of an
elasto–plastic oscillator is considered for different hardening effects. Kinematic hardening
may cause a superharmonic steady state response where plastic variables assume periodic
responses. Isotropic hardening has an elastic steady state response where plastic variables
assume constant values. The combination of kinematic and isotropic hardening also
presents an elastic steady state response. By considering no external dissipation, a
considerable amount of plastic displacement in the first cycles causes high level of internal
dissipation, which establishes that the initial transient response vanishes quickly. On the
other hand, when an external linear viscous dissipation is considered, a reduction of the
displacement amplitudes in the first cycles results. It tends to reduce internal dissipation
causing a longer transient response. Frequency analysis shows that the elasto-plastic
resonant frequency is lower than the elastic natural frequency. This conclusion can be
obtained by evaluating the response amplification of the x-range or internal hardening
variable to the variation of forcing frequency.
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