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This contribution discusses the nonlinear dynamics of a pin-ended elasto-plastic beam with both
kinematic and isotropic hardening. An iterative numerical procedure based on the operator split
technique is developed in order to deal with the nonlinearities in the equations of motion. Free and
forced responses for harmonic sinusoidal and square wave excitations are investigated. Numerical
simulations present many interesting behaviors such as jump phenomena, sensitivity to initial
conditions, chaos and transient chaos. These results indicate that there are practical problems in
predicting the response of the beam even when periodic steady state response is expected.
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Introduction

The study of elasto-plastic structures is important in many engineering problems and the dynamical
response of these systems is very rich. Shanley (1947) proposes a model where a pin-ended beam is
represented by two rigid links joined by an elasto-plastic element, referred as a cell. This element has
two short flanges where each one is elastic-perfectly plastic and therefore, hardening effect is not
considered. Symonds and Yu (1985) studied this problem either by finite element method or by
employing a simplified Shanley model. Poddar et al. (1988) investigate the chaotic behavior of the
Symonds’ model when it is periodically excited by a series of positive and negative impulses. Many
other studies are focused on the response of different elasto-plastic oscillators with bilinear hysteretic
models. Pratap et al. (1994a,b) present a model where the elasto-plastic cell is replaced by a torsional
spring and kinematic hardening is considered to describe the constitutive behavior of this spring. Judge
and Pratap (1998) revisit this problem including viscous damping in the analysis. Savi and Pacheco
(1997) consider an elasto-plastic oscillator with both kinematic and isotropic hardening, proposing a
numerical procedure to solve equations of motion. Chaotic motion is also concerned in the studies of
Pratap and Holmes (1995) and Symonds et al. (1986).

The present work revisits the Symonds’ model. Small displacement hypothesis, considered on the
earlier models, is not assumed here. Ideal plasticity and hardening effect are both in focus. The
hardening effect is represented by a combination of kinematic and isotropic hardening and the inclusion
of these effects on the Symonds’ model represents one of the main contributions of this article. The
operator split technique (Ortiz et al., 1983) associated with an iterative numerical procedure is
developed in order to deal with the nonlinearities in the equations of motion. As in Savi and Pacheco
(1997), which uses a similar algorithm, the proposed procedure proved to be an efficient tool to
simulate nonlinear dynamical systems. In order to show the potentiality of the proposed algorithm, two
different excitations are conceived: harmonic sinusoidal and square wave. Numerical investigations for
free and forced responses present many interesting behaviors such as jump phenomena, sensitivity to
initial conditions, chaos and transient chaos.

Model for an Elasto-Plastic Beam

Shanley (1947) proposes a model where a pin-ended beam with length 2L, and uniform rectangular
cross section of area A = ba’, is represented by two rigid links, each of length L, joined by an elasto-
plastic element. The two rigid bars are assumed to have mass per unit length ρ, the same as for the
uniform beam. The beam model is depicted in Figure 1.
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Figure 1. Elasto-plastic beam.

Geometric considerations allows one to define the relation between the cell position, x, and the
angle of rotation, ϕ. Also, it is possible to establish similar relations involving the semi-extension of the
cell centerline, e, and the semi-extension of each flange, e1 and e2, as follows
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where ϕ0 defines the angle ϕ at the initial instant.
In the present article, a constitutive equation with linear kinematic and isotropic hardening is

considered (Savi and Pacheco, 1997),

)( pE εεσ −=  ,
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where sign( ! ) = ( ! ) / | ! |; σ is the one-dimensional stress, ε and εp are the total and plastic one-
dimensional strain, respectively; β is the back stress and α is the internal hardening variable. The
variables β and α are associated with kinematic and isotropic hardening, respectively, and γ represents
the rate at which plastic deformations take place. The parameter E is the Young modulus and H is the
kinematic hardening parameter.

The yield function, h(σ,α,β), the Kuhn-Tucker conditions and the consistency condition are given
by (Savi and Pacheco, 1997):

)(),,( ασβσβασ Kh Y +−−=

0≥γ ,  0),,( =βασγh ,  0),,( =βασγh!     if    0),,( =βασh . (3)

Here, K is the plastic modulus and σY is the yield stress. The yield function shows that kinematic
hardening causes the elastic domain translation, while isotropic hardening causes its expansion.

The force and moment resultants in the cell (N and M, respectively) are taken by considering the
same relations of those of a sandwich beam, consisting of two bars each in simple tension or
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compression (Symonds and Yu, 1985). Hence, employing indices 1 and 2 to denote the variables on
each flange,
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where A is the area on each flange.
Assuming that the total strain on each flange is obtained by dividing the semi-extension by the

semi-length of the beam, and the area of each flange is a half of the beam cross section area, the
following relation is written
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where p
ie  is the plastic semi-extension on each flange.

In order to formulate the governing equations of the model, equilibrium of moment on the half
beam are established. Neglecting the inertia of the elasto-plastic element and assuming a linear viscous
external dissipation,
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where µ = 3 / ρL3 and c is the linear viscous dissipation parameter. N and M are given by equations (1-
6). Now, consider the following definitions,
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where AN YY σ=  and 2/aNM YY = . Denoting the non-dimensional time derivative by τdd /)()( =′ ,

the following system can be written,
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As a matter of fact, the state space includes more variables than y1 and y2 (Poddar et al., 1988),
however, the analysis is developed on a subspace of dimension 2 (Savi and Pacheco, 1997). The
numerical solution procedure here proposed uses the operator split technique (Ortiz et al., 1983),
associated with an iterative procedure in order to assure the convergence of the process (Savi and
Pacheco, 1997). In the first step of the procedure, equation (9) is integrated employing any classical
scheme, like fourth order Runge-Kutta, assuming that variables n and m are known parameters which
are evaluated with an elastic predictor step, where plastic variable, εp, remains constant from the
previous time instant. The next step of solution procedure consists on a plastic corrector step where the
feasibility of the trial state is evaluated employing the return mapping algorithm (Simo and Taylor,
1985). In order to assure the convergence of the process, these steps must be repeated until the values
converge for two consecutive iterations.
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Free Vibrations

In this Section, the free response of the elasto-plastic beam is discussed. This is done by letting f(τ)
vanish in the equations of motion (9). Free response of the elasto-perfectly plastic beam and the
hardening beam are similar. In all simulations, one has taken L = 0.10m, b = 0.02m, a’ = 0.04m, a =
0.68a’, ρ = 0.216 kg/m, E = 120 GPa, σY = 0.3 GPa, K = 0.10 GPa, H = 0.44 GPa (Poddar et al., 1988).
Also, the initial condition ϕ0 = 0 is considered. The procedure converges with time steps with 1,000
points per period.

Figure 2. Phase portrait.

Figure 3. Steady state envelope of maximum and minimum angular displacement for different initial
conditions. (a) c0 = 0; (b) c0 = 0.2; (c) c0 = 1.5.



Marcelo A. Savi et al.: Chaos and Unpredictability in the Vibration of an Elasto-Plastic Beam 257

In order to illustrate the free response, a system with no external dissipation is considered (c0 = 0).
Figure 2 presents results from simulations in the form of phase portrait. Different initial conditions
cause different plastification of the cell and, as a consequence, alter the position of equilibrium points in
phase space.

Poddar et al. (1988) show the fractal basin boundaries of the system under free vibration, using this
conclusion to explain the discrepancy among some finite element results shown in Symonds and Yu
(1985). Figure 3 shows the steady state envelope of maximum and minimum angular displacement, y1,
for different initial conditions with null initial angular velocity. Figure 3a shows the response of a beam
with no external dissipation (c0 = 0), and reproduces the result obtained in Symonds and Yu (1985).
Notice that a global change in the response occurs when initial conditions are in the range from 0.086 to
0.092. When an external dissipation is considered, asymptotic behavior is expected. Therefore, envelope
of maximum and minimum angular displacement becomes a line. When c0 = 0.2, global changes are
characterized by jumps (Figure 3b). For high values of this parameter, for example c0 = 1.5, global
changes do not occur anymore (Figure 3c).

Ideal Plasticity

This section considers the forced response of the elastic-perfectly plastic beam. The constitutive
equation for ideal plasticity theory may be obtained simplifying equations (2-3) as follows,

)( pE εεσ −=  ,    )sign(σγε =p! (10)

The yield function, h(σ), Kuhn-Tucker conditions and the consistency condition are now given by:

Yh σσσ −=)(

0≥γ ,  0)( =σγh ,  0)( =σγh!     if    0)( =σh . (11)

In order to analyze the forced response of elastic-perfectly plastic beam, the following sections
discuss two different excitations: harmonic sinusoidal and square wave.

Harmonic Excitation
This section considers a beam subjected to a harmonic sinusoidal excitation, f(τ) = δ sin(Ωτ).

Numerical simulations employs time steps smaller than ∆τ = 2π / 1000Ω. In order to start the analysis,
bifurcation diagrams representing the stroboscopically sampled angular displacement values, y1, under
the slow quasi-static increase of the driving force amplitude, δ, are considered. Dissipation parameter is
c0 = 1.5 and different values of frequency parameters are considered. The first 30 cycles are neglected
(Figure 4).

These diagrams allow one to identify regions where a small variation in forcing amplitude causes a
jump in the angular displacement value. The cloud of points, usually associated with chaotic motion,
does not appear in the considered range of parameters.

In order to analyze jump phenomenon, steady state response is regarded. For frequency parameter Ω
= 0.75, jump occurs near δ = 0.17 and again near δ = 0.30. When Ω = 1, the jump occurs for δ = 0.24
and δ = 0.40. Figure 5a shows steady state response for Ω = 0.75 and two different driving force
amplitudes very close: δ = 0.17 and δ = 0.18. Figure 5b shows similar behavior when frequency
parameter is Ω = 1 and driving force amplitudes are δ = 0.24 and δ = 0.25. Notice that small change in
the forcing amplitude leads to a shift in the center of the steady state oscillations.
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Figure 4. Bifurcation diagrams: Ideal plasticity and sinusoidal excitation. (a) ΩΩΩΩ = 0.75; (b) ΩΩΩΩ = 1.

  
Figure 5. Jump phenomenon on the elasto-perfectly plastic beam subjected to sinusoidal excitation. (a) ΩΩΩΩ =

0.75, δδδδ = 0.17 and δδδδ = 0.18; (b) ΩΩΩΩ = 1, δδδδ = 0.24 and δδδδ = 0.25.

In spite of the beam does not exhibit chaotic motion with the previous physical parameters, jump
phenomenon introduces difficulties to predict the beam behavior. Sensitivity to initial conditions also
introduces this kind of difficulty. Poddar et al. (1988) show that chaotic motion occurs in Symonds’
beam when it is subjected to periodic impulses. Therefore, it is interesting to consider different values
of parameters to evaluate the possibility of chaotic motion. With this aim, a dissipation parameter c0 =
0.2 is assumed. Figure 6 shows the bifurcation diagram with frequency parameter Ω = 1 and now, it is
possible to identify regions with cloud of points associated with chaos.
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Figure 6. Bifurcation diagram: Ideal plasticity and sinusoidal excitation with c0 = 0.2 and ΩΩΩΩ = 1.

Figure 7a shows the strange attractor of the motion for δ = 0.13, while Figure 7b presents the
periodic phase plane for δ = 0.15. The Fast Fourier Transform (FFT) analysis allows one to clearly
identify the difference between both responses (Figure 8). As it is well known, the FFT of a chaotic
signal presents continuous spectrum over a limited range. The energy is spread over a wider bandwidth.
On the other hand, the FFT of a periodic signal presents discrete spectrum, where a finite number of
frequencies contribute to the response (Moon, 1992; Mullin, 1993).

   
Figure 7. Response of the elasto-perfectly plastic beam subjected to sinusoidal excitation with ΩΩΩΩ = 1 and c0 =

0.2. (a) Strange attractor for δδδδ = 0.13; (b) Phase plane for δδδδ = 0.15.
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Figure 8. FFT analysis of the elasto-perfectly plastic beam subjected to sinusoidal excitation with ΩΩΩΩ = 1 and
c0 = 0.2. (a) Chaotic, δδδδ = 0.13; (b) Periodic, δδδδ = 0.15.

Square Wave Excitation
This section considers a beam subjected to a square wave excitation. As a matter of fact, the square

wave uses 1% of the period to load or unload. In order to start the analysis, bifurcation diagrams are
considered (Figure 9). Dissipation parameter is c0 = 1.5 and different values of frequency parameters
are conceived, neglecting the first 30 cycles.

 
Figure 9. Bifurcation diagrams: Ideal plasticity and square wave excitation. (a) ΩΩΩΩ = 0.75; (b) ΩΩΩΩ = 1.
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The response of the beam subjected to square wave excitation is similar to the response obtained
under harmonic excitation. Observing bifurcation diagrams it is possible to see jump phenomenon for
different driving force amplitude. As in the previous section, notice that even when a periodic elasto-
plastic response is expected, jump phenomenon introduces difficulties to predict the beam behavior.

Chaotic motion may also occur when parameter dissipation is altered for c0 = 0.2, for example.
Figure 10 shows the bifurcation diagram for this situation when Ω = 1. The strange attractor of the
motion for δ = 0.08 is depicted in Figure 11a, while Figure 11b presents the periodic phase plane for δ =
0.04.

Figure 10. Bifurcation diagram: Ideal plasticity and square wave excitation with c0 = 0.2 and ΩΩΩΩ = 1.

 
Figure 11. Response of the elasto-perfectly plastic beam subjected to square wave excitation with ΩΩΩΩ = 1 and

c0 = 0.2. (a) Strange attractor for δδδδ = 0.08; (b) Phase plane for δδδδ = 0.04.

Kinematic and Isotropic Hardening

At this time, the forced response of the elasto-plastic beam with hardening is considered. Kinematic and
isotropic hardening are both included in the model and the constitutive behavior is described by
equations (2-3). Again, in order to analyze the forced response of hardening model beam, the following
sections discuss two different excitations: harmonic sinusoidal and square wave.
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Harmonic Excitation
This section presents the beam response under harmonic sinusoidal excitation, f(τ) = δ sin(Ωτ).

Numerical simulations considers time steps smaller than ∆τ = 2π / 1000Ω. Savi and Pacheco (1997)
show that an elasto-plastic oscillator with isotropic hardening tends to an elastic steady state response.
For the same reasons, similar behavior may be expected in the beam response and, therefore, after a
transient, an elastic steady state is reached where plastic variables remain constant.

Once again, the analysis begins considering bifurcation diagrams which presents stroboscopically
sampled angular displacement values, y1, under the slow quasi-static increase of the driving force
amplitude, δ. The dissipation parameter is c0 = 1.5 and different values of frequency parameters are
considered. Only the first 30 cycles are neglected, even though the steady state response is not reached.
These bifurcation diagrams show regions with clouds of points, usually associated to chaotic behavior,
and jumps (Figure 12).

 
Figure 12. Bifurcation diagrams: Hardening and sinusoidal excitation. (a) ΩΩΩΩ = 0.75; (b) ΩΩΩΩ = 1.

Figure 13 shows the Poincaré section of the motion when Ω = 0.75 and δ = 0.3, presenting a
transient strange attractor. Notice that after 1300 cycles, this motion tends to a single point meaning a
periodic response. The FFT analysis allows one to clearly identify the difference between the two kinds
of response. During transient chaos, the FFT presents continuous spectrum (Figure 14a). After this
transient, the response becomes periodic, and the FFT presents discrete spectrum (Figure 14b).

Figure 13. Transient strange attractor: Sinusoidal excitation (ΩΩΩΩ  = 0.75, δδδδ = 0.3).
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As it is well known, chaotic motion presents sensitivity to initial conditions and, in spite of the
periodic steady state behavior, transient chaos causes unpredictability. Assuming different initial
conditions, very close from the previous case, different steady state responses may be observed. Figure
15 illustrates this behavior. The previous example considers (y1, y2) = (0,0), and other situations are
analyzed for (y1, y2) = (0,−1e−4), (y1, y2) = (0,+1e−4), (y1, y2) = (−2.5e−4,0) and (y1, y2) = (+2.5e−4,0).
These conditions represent variations less than 0.1% of the maximum angular displacement and velocity
at steady state. Hence, transient chaos may cause practical problems in predicting the beam response.
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Figure 14. FFT analysis of the beam including hardening effect subjected to sinusoidal excitation with ΩΩΩΩ =
0.75, δδδδ = 0.3. (a) Transient chaos (500th to 632nd cycles); (b) Steady State (1300th to 1432nd cycles). (a) Transient

chaos (500th to 632nd cycles); (b) Steady State (1300th to 1432nd cycles).

Figure 15. Steady state response of the beam including hardening effect subjected to sinusoidal excitation
with ΩΩΩΩ = 0.75, δδδδ = 0.3. Different initial conditions are considered for (y1 , y2): (0,0), (0,−−−−1e−−−−4), (0,+1e−−−−4), (−−−−2.5e−−−−4,0)

and (+2.5e−−−−4,0).
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Grebogi et al. (1983) defines crises phenomenon as a collision between a chaotic attractor and a
coexisting unstable fixed point or periodic orbit. In this situation, chaotic behavior appears or disappears
for some parameter change. In transient chaos, after a finite time, the orbit leaves the chaotic region,
establishing a periodic or quasiperiodic motion (Moon, 1992). The term transient chaos is used here to
describe a chaotic-like response, which becomes periodic after some cycles. A particular set of physical
parameters is considered. This behavior may be understood as the crises of the system where the
parameters are represented by the internal variables related to plastic behavior, with values varying in
time.

As can be seen in bifurcation diagrams, jump phenomenon also exists on the response of the
hardening beam. When Ω = 1, jump is near δ = 0.25. Figure 16 shows steady state response for Ω = 1
and two forcing amplitudes very close (δ = 0.24 and δ = 0.25). Again, small change in the forcing
amplitude leads to different positions of the steady state oscillations in phase space.

Figure 16. Jump phenomenon on the beam including hardening effect subjected to sinusoidal excitation
with ΩΩΩΩ = 1 and two forcing amplitudes δδδδ = 0.24 and δδδδ = 0.25.

Square Wave Excitation
A square wave excitation is now in focus. Initially, bifurcation diagrams are considered where

dissipation parameter is c0 = 1.5 and different values of frequency parameters are considered. Only the
first 30 cycles are neglected, even though the steady state response is not reached (Figure 17).

 
Figure 17. Bifurcation diagrams: Hardening and square wave excitation. (a) ΩΩΩΩ = 0.75; (b) ΩΩΩΩ = 1.
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Transient chaos may also exist when the beam is subjected to a square wave excitation. In order to
establish a comparison between the sinusoidal and square wave excitation, one conceives an example
treated in the preceding section with Ω  = 1 and δ = 0.5. In this example simulation, a transient strange
attractor occurs during transient chaos and, after this, the response converges to a small region of the
phase space (Figure 18).

Figure 18. Transient strange attractor: Square wave excitation (ΩΩΩΩ  = 1, δδδδ = 0.5).

Small variations on initial conditions may cause, again, considerable changes in the steady state
response of the beam. In order to illustrate this, one investigates the same variations imposed on the
previous section, that is, (y1, y2) = (0,0), (y1, y2) = (0,−1e−4), (y1, y2) = (0,+1e−4), (y1, y2) = (−2.5e−4,0)
and (y1, y2) = (+2.5e−4,0), which are presented in Figure 19.

Figure 19. Steady state response of the beam including hardening effect subjected to square wave excitation
with ΩΩΩΩ = 1, δδδδ = 0.5. Different initial conditions are considered for (y1 , y2): (0,0), (0,−−−−1e−−−−4), (0,+1e−−−−4), (−−−−2.5e−−−−4,0)

and (+2.5e−−−−4,0).

Conclusions

A dynamical analysis of the Symonds’ model for a pin-ended elasto-plastic beam is considered. Ideal
plasticity theory and hardening effect are both in focus. The numerical method proposed in this work
proved to be an efficient tool to evaluate the response of elasto-plastic dynamical systems, and allows
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the use of a combination of classical algorithms. Numerical simulations for forced vibrations subjected
to harmonic sinusoidal and square wave excitation are evaluated. Results show that the beam response
has many interesting behaviors. Jump phenomenon causes considerable variations in the steady state
response for very small changes in the forcing parameter. Transient chaos, which may exists when the
hardening effect is included in the model, may be understood as the crises of the system where the
parameters are represented by the internal variables related to plastic behavior, with values varying in
time. Sensitivity to initial conditions may occur as a consequence of fractal basin boundaries and/or
transient chaos. All these effects may cause practical problems in predicting the response of the beam
even when a periodic steady state response is expected.
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