
Shock and Vibration 10 (2003) 37–50 37
IOS Press

Evaluating noise sensitivity on the time series
determination of lyapunov exponents applied
to the nonlinear pendulum

L.F.P. Franca and M.A. Savi∗
Instituto Militar de Engenharia, Department of Mechanical and Materials Engineering, 22.290.270, Rio de
Janeiro, RJ, Brazil

Received 14 November 2001

Revised 30 May 2002

Abstract. This contribution presents an investigation on noise sensitivity of some of the most disseminated techniques employed
to estimate Lyapunov exponents from time series. Since noise contamination is unavoidable in cases of data acquisition, it is
important to recognize techniques that could be employed for a correct identification of chaos. State space reconstruction and the
determination of Lyapunov exponents are carried out to investigate the response of a nonlinear pendulum. Signals are generated
by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate
experimental data sets, a random noise is introduced in the signal. Basically, the analyses of periodic and chaotic motions are
carried out. Results obtained from mathematical model are compared with the one obtained from time series analysis, evaluating
noise sensitivity. This procedure allows the identification of the best techniques to be employed in the analysis of experimental
data.
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1. Introduction

The analysis of chaotic behavior is becoming com-
mon in many different fields of science as engineer-
ing [1–3], medicine [4], ecology [5], biology [6] and
economy [7,8]. The study of chaos employs proper
mathematical and geometrical aspects and, therefore,
new analytical, computational and experimental meth-
ods are developed to analyze the response of nonlin-
ear dynamical systems. Alligood et al. [9] say that “of
course, the idea of a real experiment being governed
by a set of equations is a fiction. A set of differential
equations, or a map, may model the process closely
enough to achieve useful goals”. An approach to deal
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with the response of dynamical system is based on the
analysis of data derived from an experiment [10].

The first problem on the experimental analysis is that
data acquisition furnishes a time series of the observ-
able measurements and it is necessary to convert ob-
servations into state vectors. Therefore, state space re-
construction needs to be employed and, basically, there
are two different methods for this aim: derivative co-
ordinates and delay coordinates [11–13]. The method
of delay coordinates has proven to be a powerful tool
to analyze chaotic behavior of dynamical system. Ru-
elle [14], Packard et al. [11] and Takens [12] have in-
troduced the basic ideas of this method and one of the
drawbacks in its application is the determination of de-
lay parameters.

The other problem in the experimental data is the
noise contamination, which is unavoidable in cases of
data acquisition. Many studies are devoted to evalu-
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ate noise suppression and its effects in the analysis of
chaos, however, there are a small number of reports
devoted to the effects of the system noise on chaos [15].

Nonlinear analysis also involves the determination
of quantities, known as dynamical invariants, which
are important to identify chaotic behavior. Lyapunov
exponent is an example that evaluates the sensitive de-
pendence to initial conditions estimating the exponen-
tial divergence of nearby orbits. These exponents have
been used as the most useful dynamical diagnostic tool
for chaotic system analysis. The signs of the Lya-
punov exponents provide a qualitative picture of the
system’s dynamics and any system containing at least
one positive exponent presents chaotic behavior. Lya-
punov exponents can also be used for the calculation
of other invariant quantities as the attractor dimension,
which may be determined by the Kaplan-Yorke conjec-
ture [16]. The determination of Lyapunov exponents
of dynamical system with an explicitly mathematical
model, which can be linearized, is well established
from the algorithm proposed by Wolf et al. [17]. On the
other hand, the determination of these exponents from
time series is quite more complex. Basically, there are
two different classes of algorithms: Trajectories, real
space or direct method [17,19,19,20];and perturbation,
tangent space or Jacobian matrix method [21–28].

This article is concerned with the analysis of nonlin-
ear dynamics from time series, and the main purpose is
to evaluate noise sensitivity of some of the most dissem-
inated procedures employed either to state space recon-
struction or the determination of Lyapunov exponents.
Signals are generated by numerical integration of the
nonlinear pendulum mathematical model, selecting a
single variable of the system as a time series. In order
to simulate experimental data sets a random noise is
introduced in the signal. State space reconstruction and
the determination of Lyapunov exponents are carried
out regarding periodic and chaotic signals. The number
of data points is chosen as the minimum required for
a correct estimation of the desirable measure. Results
obtained from mathematical model are compared with
the ones obtained from time series analysis, evaluating
noise sensitivity. This procedure allows the identifica-
tion of the best techniques to be applied in the analysis
of experimental data.

2. Nonlinear pendulum

Consider the motion of a nonlinear pendulum where
θ defines its position,α is the linear viscous damper pa-

rameter andωn is associated with the natural frequency
of the system. Furthermore, a harmonic forcing with
amplitudeρ and frequencyΩ is considered. With these
assumptions, the dynamical system is governed by the
well-known equation of motion

θ̈ + αθ̇ + ω2
n sin(θ) = ρ cos(Ωt) (1)

This equation may be rewritten as a system,u̇ =
f(u), u ∈ R3, whereu1 = x = θ, u2 = y = θ̇ and
u3 = Ωt. Numerical simulations are carried out em-
ploying the fourth-order Runge-Kutta method with time
steps less than∆t = 2π/100Ω. For all simulations,
parametersα = 0.2 andωn = Ω = 1.0 are considered.
In order to simulate experimental data sets, a signal
s = x+η is defined whereη = AR(−1,+1) represents
noise, withA being the amplitude, andR(−1,+1) is
related to random number within the interval(−1,+1).
If η = 0, there is no noise and an ideal experimental
data is simulated. In this article, two other noise levels
are contemplated:A = 0.314 andA = 0.628, repre-
senting, respectively, 5% and 10% of the maximum sig-
nal amplitude. The number of data points,N , is chosen
as the minimum required for a correct estimation of the
desirable measure.

Basically, periodic and chaotic signals are analyzed.
When the forcing amplitude isρ = 2.56, the pendulum
presents a period-2 motion. Figure 1 shows the steady
state orbit on phase space for this motion projected on
a cylindrical space and on the plane. Whenρ = 2.50,
the motion becomes chaotic. Figure 2 presents the
strange attractor of the motion projected on cylindrical
and plane spaces.

3. State space reconstruction

The basic idea of the state space reconstruction is
that a signal contains information about unobserved
state variables, which can be used to predict the present
state. Therefore, a scalar time series,s(t), may be used
to construct a vector time series that is equivalent to
the original dynamics from a topological point of view.
The state space reconstruction needs to form a coordi-
nate system to capture the structure of orbits in state
space. The method of delay coordinates could be done
using lagged variables,s(t + τ), whereτ is the time
delay. Then, considering an experimental signal,s(t),
wheret = t0 + (n − 1)∆t with n = 1, 2, 3, . . . , N ,
it is possible to use a collection of time delays to cre-
ate a vector in aDe-dimensional space,u(t), which
represents the reconstructed dynamics of the system.
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(a) (b) 

Fig. 1. Period-2 motion. (a) Cylindrical phase space; (b) Plane phase space.

u(t) = {s(t), s(t+ τ), . . . ,
(2)

s(t+ (De − 1)τ)}T

The method of delays was first proposed by Ru-
elle [14] and Packard et al. [11] and then by Takens [12]
and Sauer et al. [29]. Its use has become popular for
dynamical reconstruction, however, the choice of the
delay parameters,τ – time delay, andDe – embedding
dimension, has not been fully developed. This article
employs the average mutual information method to de-
termine time delay [30] and the method of false nearest
neighbors to estimate embedding dimension [31].

In order to start the analysis of the nonlinear pendu-
lum state space reconstruction employing the method of
delay coordinates, a period-2 signal withN = 20,000,
is considered. Figure 3 presents results of the mutual
information and the false nearest neighbors analysis,
for different noise levels. Concerning the time delay
determination, there is a difficulty to determine the first
minimum of the information curve whenA = 0, ideal
signal. Nevertheless, time delay may be estimated
defining a region limited by the first global maximum of
the curveI versusτ (vertical line). Under this assump-
tion, the time delay can be chosen as the first global
minimum of this region furnishing values that present
good results. The analysis for different noise levels fur-

nishes the following values:τ = 1.319 s whenA = 0;
τ = 1.256 s whenA = 0.314; τ = 1.256 s when
A = 0.628. On the other hand, embedding dimension
analysis estimatesDe = 3, which is in agreement with
the mathematical model. Notice that noise does not
have any influence on this result.

Following the determination of delay parameters, the
method of delay coordinates can be applied in order to
reconstruct the state space. The numerical state space
of the motion is presented in Fig. 4 together with the
reconstructed spaces for different noise levels. The
comparison among numerical and reconstructed state
spaces allows one to observe just a small coordinate
change from one to another.

The forthcoming analysis regards a chaotic signal
with N = 20,000. Figure 5 considers results of the
mutual information and the false nearest neighbor anal-
ysis, for different noise levels. The same procedure
applied in the determination of time delay of periodic
signal can be employed here, resulting on the follow-
ing values: τ = 2.262 s whenA = 0; τ = 1.885 s
whenA = 0.314; τ = 1.822 s whenA = 0.628. Once
again, the analysis of the embedding dimension esti-
matesDe = 3 and the noise does not have significant
influence on the results.

Figure 6 presents the Poincaré map obtained either
by numerical simulation or by reconstruction using
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(a) (b) 

Fig. 2. Strange attractor. (a) Cylindrical phase space; (b) Plane phase space.

the method of delay coordinates for three noise lev-
els: A = 0, A = 0.314 andA = 0.628. A strange
attractor is clearly identified, presenting a fractal-like
structure. The comparison among numerical and re-
constructed state spaces allows one to observe just a
small coordinate change from one to another.

4. Lyapunov exponents

Lyapunov exponents have been used as the most use-
ful dynamical diagnostic tool for chaotic system analy-
sis. These exponents evaluate the sensitive dependence
to initial conditions estimating the exponential diver-
gence of nearby orbits. The dynamics of the system
transform aD-sphere of states in aD-ellipsoid and,
when there is a chaotic motion, a complex evolution ex-
ists. Lyapunov exponents are related to the expanding
and contracting nature of different directions in phase
space and the signs of these exponents provide a quali-
tative picture of the system’s dynamics. The existence
of positive Lyapunov exponents defines directions of
local instabilities in the dynamics of the system and
any system containing at least one positive exponent
presents chaotic behavior.

The determination of Lyapunov exponents of dy-
namical system with an explicitly mathematical model,
which can be linearized, is well established from the
algorithm proposed by Wolf et al. [17]. On the other
hand, the determination of these exponents from time
series is quite more complex. Basically, there are two
different classes of algorithms: Trajectories, real space
or direct method; and perturbation, tangent space or
Jacobian matrix method.

Trajectories method has been originally developed
by Wolf et al. [17] and the basic idea associated with
it is analyzing the evolution of two nearby orbits in the
tangent space. This method calculates only the largest
exponent, which is sufficient to identify chaotic behav-
ior but, on the other hand, cause some difficulties when
the determination of other quantities is needed. Other
similar algorithms have also been developed exploiting
the same idea [18,19]. These algorithms consider that
the divergence rate trajectories fluctuates along the tra-
jectory, with the fluctuation given by the spectrum of
effective Lyapunov exponents. The average of effec-
tive Lyapunov exponent along the trajectory is the true
Lyapunov exponent and, therefore, it may be calcu-
lated from the slope of a curve associated with a greater
instability direction.



L.F.P. Franca and M.A. Savi / Evaluating noise sensitivity on the time series determination 41

0 20 40 60 80 100 120 140 160 180 200
T im e D elay (x 0 .0628  s)

8

9

10

11

12

13

14

M
ut

ua
l I

nf
or

m
at

io
n 

(b
its

)

A  =  0 .3 1 4

A  =  0

A  =  0 .6 2 8

(a)

0
8

9

5
D e

0.00

0.20

0.40

0.60

0.80

%
 o

f F
al

se
 N

ei
gh

bo
rs

 (
x1

00
)

A  =  0

A  =  0 .31 4

A  =  0 .62 8

(b)

1 2 3 4 5

Fig. 3. Period-2 signal. (a) Mutual information versus time delay; (b) Percentage of false neighbors versus embedding dimension.

Tangent space methods seem to be most promising
for the calculation of the Lyapunov spectrum from time
series. The product of the Jacobians along the trajec-
tory can determine the spectrum of Lyapunov expo-
nents from the evaluation of eigenvalues of this matrix.
To make use of this, the mapx(t+ 1) = f(x(t)) must
at least approximately be known and there are several
approaches to extract this map from a time series. Sano
and Sawada [21] and Eckmann et al. [22] have devel-
oped similar algorithms where the Jacobian matrix is
evaluated with a least square error algorithm. Brown
et al. [27] and Briggs [24] consider a high order poly-
nomial approximation to define the Jacobian matrix.
Kruel et al. [25] improve the algorithm due to Sano
and Sawada with a different form to evaluate one of the
covariant matrix that generates the Jacobian matrix.

In the present contribution, Lyapunov exponents
are determined employing the algorithms proposed by
Wolf et al. [17], Kantz [18], Rosenstein et al. [19] and
Sano and Sawada [21]. Algorithms developed by Heg-
ger et al. [32] are employed for all simulations except
the ones due to Wolf et al. [17]. Results are compared
with reference values calculated from the algorithm for
differential equations proposed by Wolf et al. [17].

4.1. Algorithm due to Wolf et al.

Trajectories method proposed by Wolf et al. [17]
to determine Lyapunov exponents from time series
considers the reconstructed attractor and examines or-
bital divergence on length scales, working in tangent

space. The method monitors the long-term evolution
of a single pair of nearby orbits and is able to esti-
mate non-negative Lyapunov exponents. In principle,
this method permit to compute all Lyapunov spectrum
but in reality it is limited to the maximum one [18].
Wolf et al. adopts the following definition of Lyapunov
exponents:

λi =
1

tM − t0

M∑
k=1

log2

(
L′(tk)

L(tk − 1)

)
(3)

whereM is the total number of replacement steps. The
distanceL(t) is defined as the Euclidean norm between
two points. Besides reconstruction parameters, the al-
gorithm has three parameters to be determined, which
have a great influence on the exponent calculation: the
signal length,N ; the smaller distance between the tra-
jectories,dmin, which is associated with noise; and a
constant propagation time,tEV .

In order to start the analysis employing the algorithm
due to Wolf et al., a period-2 signal withN = 10,000
is considered. For this situation, the reference value
calculated from the differential equation [17] isλmax =
0. Figure 7(a) shows the maximum Lyapunov exponent
for three different noise levels assumingdmin = 0.0001
andtEV = 1. The time series algorithm for the ideal
signal furnishesλmax = 0. For noisy signals, however,
the algorithm is not able to identify periodic response
meaning that noise and chaos cannot be distinguished
(Fig. 7(a)). Nevertheless, it should be pointed out that
the alteration of parameterstEV and dmin, improve
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Fig. 4. Phase space for period-2 signal. (a) Numerical; (b) Reconstructed,A = 0; (c) Reconstructed,A = 0.314; (d) Reconstructed,A = 0.628.

the results and the exponent values converge to zero,
as it is desirable. To elucidate the influence of this
alteration, Fig. 7(b) shows results whentEV = 15 for
A = 0.314 andtEV = 30 forA = 0.628. Even though
a convenient variation of these parameters can reduce
the noise effect, notice that this procedure is difficult
to be employed on experimental data when a reference
value is not known.

At this point, a chaotic signal withN = 30,000 is
considered usingdmin = 0.0001 andtEV = 1. Lya-
punov exponents predicted by the algorithms for differ-
ential equation and time series are presented in Fig. 8.
The first algorithm furnishesλmax = +0.16, which is

considered as a reference value. On the other hand, the
algorithm for time series applied to the ideal signal fur-
nishesλmax = +0.39. The maximum Lyapunov ex-
ponent assumes greater values when noise level grows,
exhibiting the difficulty to its estimation. The alter-
ation of the parametertEV allows one to reduce the
discrepancy among the previous results. By consider-
ing tEV = 5 whenA = 0.314 andtEV = 10 when
A = 0.628, values of maximum exponents converge to
the reference value. Again, this procedure is not satis-
factory to identify chaotic motion on experimental data
when a reference value is not known.
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Fig. 5. Chaotic signal. (a) Mutual information versus time delay; (b) Percentage of false Neighbors versus embedding dimension.

4.2. Algorithm due to Kantz and due to Rosenstein et
al.

The algorithm proposed by Kantz [18] considers the
same idea of the one proposed by Wolf et al. [17], es-
tablishing that the divergence rate trajectories fluctu-
ates along the trajectory, with the fluctuation given by
the spectrum of effective Lyapunov exponents. The av-
erage of effective Lyapunov exponent along the trajec-
tory is the true Lyapunov exponent and the maximum
exponent is given by

λ(t) = lim
ε→0

1
δ

ln
( |u(t+ δ) − uε(t+ δ)|

ε

)
(4)

where|u(0) − uε(0)| = ε andu(t) − uε(t) = εvu(t),
with vu(t) representing the eigenvectors associated
with the maximum Lyapunov exponent,λmax.

From an arbitrary pointut = (st−m+1, . . . , st),
all delay vectors of the series falling into theε-
neighborhoodofut will be regarded as the beginning of
the neighboring trajectories, which are simply given by
the points of the time series consecutive in time. If the
distance between neighboring trajectories is measured
in their true phase space, it is possible to observe the
fluctuations of the divergence rate described by the dis-
tribution of effective Lyapunov exponents. In order to
evaluate the distance between the reference trajectory,
ut, and a neighbor,ui, after a relative timeδ referring
to the time index of the point where the distance be-
gin to be greater thanε, δ(0), one defines a distance,
dist(ut, ui, δ) = |ut+δ − ui+δ|, which represents the

modulus of theδth scalar component of the two trajec-
tories. These distances are projections of the difference
vectors in the true phase space onto a one-dimensional
subspace spanned by the observable. Therefore, they
are modulated with| cosφ|, whereφ is the angle be-
tween the eigenvector corresponding toλmax and the
local direction of the subspace on which the observable
lives. Taking into account the time average over the full
length of the time series, and also considering the loga-
rithm of the average distance, the Lyapunov exponents
are computed by,

S(δ)
(5)

=
1
N

N∑
t=1

ln

(
1

|Ut|
∑
i∈Ut

dist(ut, ui; δ)

)

Initially, the difference vectors in the true phase space
are pointing in a general direction, however, for in-
termediate range ofδ, S(δ) increases linearly with the
slopeλ which corresponds an estimation of the Lya-
punov exponent.

S(δ) = {ln[dist(ut, ui, δ)]

− ln[dist(ut, ui, δ − 1)]}t (6)

∼= λ

Rosenstein et al. [19] have proposed a similar algo-
rithm where the distance between the trajectories is de-
fined as the Euclidean norm in the reconstructed phase
space and, also, they have used only one neighbor tra-
jectory.
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Fig. 6. Strange attractors. (a) Numerical; (b) Reconstructed,A = 0; (c) Reconstructed,A = 0.314; (d) Reconstructed,A = 0.628.

Both algorithms present good results for discrete sys-
tems (maps), nevertheless, results are not so good for
continuous systems (differential equations). Notice,
however, that a continuous system can be converted
to a discrete system regarding a time series that is the
Poincaŕe map of the signal. Both algorithms needs the
following parameters, besides reconstruction parame-
ters: the signal length,N ; andε related to the trajectory
neighbor. Furthermore, Kantz’s algorithm considers a
range where parameterε is varied.

At this point, results predicted by algorithms pro-
posed by Kantz and by Rosenstein et al. are focused.
The analysis is done regarding time series that represent

Poincaŕe maps of signals where∆T = 6.28 s, resulting
in N = 2, 000. Since embedding theorems [29] estab-
lishes that embedding dimension needs to be greater
than2De + 1 in order to obtain an appropriate recon-
struction, one consider different values of this parame-
ter in order to obtain better results. After several tests,
De = 6 is adopted andε varies from 20 to 25 in Kantz’s
algorithm. Firstly, period-2 signals with different noise
levels are contemplated. The reference value associ-
ated with these signals isλmax = 0, calculated from the
differential equation. Figure 9 shows theS(δ) curves
predicted by both algorithms presenting the same hor-
izontal curves. The slope of these curves defines the



L.F.P. Franca and M.A. Savi / Evaluating noise sensitivity on the time series determination 45

0 2000 4000 6000 8000 1000 0
t(s )

-0 .40

-0 .20

0 .0 0

0 .2 0

0 .4 0

0 .6 0

0 .8 0

1 .0 0

1 .2 0

Ly
a

pu
no

v 
E

xp
on

en
t (

bi
ts

/s
)

R eference  =  -0 .11

A  =  0 .6 2 8

A  =  0 .3 1 4

A  =  0

(a)

0
n

0 2 0 00 4 0 00 6 0 00 8 0 00 1 0 00 0
n

-0.40

-0.20

0.00

0.20

0.40

0.60

Ly
ap

un
ov

 E
xp

on
en

t (
bi

ts
/s

)

A  =  0 .31 4

A  =  0 .62 8

A  =  0

(b)

0

n

Fig. 7. Periodic signal: Algorithm due to Wolf et al. (1985). (a)tEV = 1; (b) tEV = 15 for A = 0.314 andtEV = 30 for A = 0.628.
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Fig. 8. Chaotic signal: Algorithm due to Wolf et al. (1985). (a)tEV = 1; (b) tEV = 5 for A = 0.314 andtEV = 10 for A = 0.628.

Lyapunov exponent, meaning thatλmax = 0, the same
value predicted by the algorithm due to Wolf et al. for
ideal signal. Notice, however, that noise does not in-
fluence results, which is an important improvement to
the algorithm due to Wolf et al. In addition, it should
be emphasized that either the number of data points,
N , or the embedding dimension,De, may alter the
slope of the curveS(δ). Therefore, the determination
of these parameters may introduce difficulties to evalu-
ate Lyapunov exponents when a reference value is not
known.

A chaotic signal is now in focus. Figure 10 presents
the curvesS(δ) for an ideal chaotic signal (A = 0),
with N = 2, 000,De = 6 andε varying from20 to 25
in Kantz’s algorithm. TheS(δ) curve presents a linear
range which tends to reach a stabilized value. The slope
of the curve in this linear range estimates the maximum
Lyapunov exponent and may be computed employing a
linear regression. The algorithm due to Kantz predicts
λmax = +0.184 ± 0.004, while the algorithm due to
Rosenstein et al. predictsλmax = +0.201 ± 0.002,
and both values are near the reference value,λmax =
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+0.16.
TheS(δ) curves for noisy signals are presented in

Fig. 11. Employing linear regression, Kantz’s algo-
rithm predictsλmax = +0.202 ± 0.002 for both noise
levels, while Rosenstein’s predictsλmax = +0.185 ±
0.001. These results are again close to the reference
valueλmax = +0.16 and one can conclude that noise

does not have a significant influence on the results.

4.3. Algorithm due to Sano and Sawada

The algorithm proposed by Sano and Sawada [21]
is a tangent space method that is based on the multi-
plicative ergodic theorem by Oseledec [33]. One of the
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Fig. 12. Spectrum of Lyapunov exponents obtained from the algorithm due to Sano and Sawada: Ideal periodic signal (A = 0).

advantages of tangent space methods is the estimation
of the Lyapunov spectrum, in contrast of the maximum
exponent calculated by trajectories methods. Before
proceeding to a description of the algorithm due to Sano
and Sawada, one considers a trajectorys(t), in aD-
dimensional space, which is the solution of an ordinary
differential equation, The evolution of a tangent vector

ξ, in a tangent space ats(t), is represented by lineariz-
ing the differential equation,̇ξ = Bξ, whereB is the
Jacobian matrix off . The solution of this equation
is expressed asξ(t) = Btξ(0), whereBt is the linear
operator which maps tangent vectorξ(0) to ξ(t). Sano
and Sawada have established a procedure for estimat-
ing a linearized flow mapB t from the observed data.
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Fig. 13. Spectrum of Lyapunov exponents obtained from the algorithm due to Sano and Sawada: Noisy periodic signal. (a)A = 0.314; (b) 0.628.
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Fig. 14. Spectrum of Lyapunov exponents obtained from the algorithm due to Sano and Sawada: Ideal chaotic signal (A = 0).

Hence, Lyapunov exponents can be computed as

λi = lim
n→∞

1
ntEV

n∑
j=1

ln ‖B̂ej
i‖,

(7)
(i = 1, 2, . . . , De)

whereB̂ is an approximation of the flow mapB t and
{ej

i} is a set of basis vectors of tangent space. Be-

sides signal and reconstruction parameters, the algo-
rithm needs the following parameters:R0, radius of the
sphere andNNEIGH , number of neighboring points.

In order to start the analysis of the algorithm due to
Sano and Sawada, an ideal period-2 signal (A= 0) with
N = 70, 100 is considered, assumingNNEIGH = 30
andR0 = N/1000. Notice that this algorithm needs
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Fig. 15. Spectrum of Lyapunov exponents obtained from the algorithm due to Sano and Sawada: Noisy chaotic signal. (a)A = 0.314; (b) 0.628.

large data points to estimate the Lyapunov spectrum.
Figure 12 shows the spectrum for this signal where all
the exponents tend to zero, meaning that the motion is
periodic.

Noisy signals are now considered (A = 0.314 and
A = 0.628). Figure 13 presents Lyapunov spectra cal-
culated withNNEIGH = 30 andR0 = N/1000. No-
tice that as the noise level increases,values of Lyapunov
exponents decrease. Since results converge to negative
values, the algorithm is capable to identify a periodic
motion. Nevertheless, this characteristic causes prob-
lems on the determination of other dynamical invari-
ants.

The forthcoming analysis considers chaotic signals
and, at first, an ideal signal (A = 0) with N =
70, 100, is contemplated. Figure 14 shows the Lya-
punov spectrum calculated withNNEIGH = 30 and
R0 = N/1000. The maximum exponent converges to
a positive value,λ1 = +0.016, which is ten times less
than the reference value (λmax = +0.16). Again, this
is not a problem to identify chaotic motion but for the
determination of the dynamical invariants.

Figure 15 shows Lyapunov spectra for noisy chaotic
signals (A = 0.314 andA = 0.628) withN = 70, 100,
and assumingNNEIGH = 30 andR0 = N/1000.
Once again, as the noise level increases, values of Lya-
punov exponents decrease and, since results converge
to negative values, the algorithm is not capable of dis-
tinguish noise from chaos, presenting noise sensitivity.

5. Conclusions

This contribution evaluates noise sensitivity of some
of the most disseminated techniques employed on the
state space reconstruction and the determination of Lya-
punov exponents from time series. Signals are gener-
ated by numerical integration of the nonlinear pendu-
lum mathematical model, selecting a single variable of
the system as a time series. In order to simulate ex-
perimental data sets, a random noise is introduced in
the time series. Results obtained from mathematical
model are compared from the one obtained from time
series analysis, evaluating noise sensitivity. State space
reconstruction is done employing the method of delay
coordinates. The determination of delay parameters,
time delay and embedding dimension, are made em-
ploying, respectively, the method of average mutual in-
formation and the false nearest neighbors. Both meth-
ods present good results and are not noise sensitive.
Lyapunovexponents are calculated employing four dif-
ferent algorithms: Wolf et al., Kantz, Rosenstein et al.
and Sano and Sawada. Algorithms due to Wolf et al.
and due to Sano and Sawada are noise sensitive and are
not capable to distinguish noise from chaos. On the
other hand, algorithms due to Kantz and due to Rosen-
stein et al. are not noise sensitive. Nevertheless, the
use of these algorithms present difficulties on the de-
termination of parameters, especially when there is no
reference value. The authors agree that this contribu-
tion is useful to identify the best techniques that may be
applied on experimental analysis, however, the inves-



50 L.F.P. Franca and M.A. Savi / Evaluating noise sensitivity on the time series determination

tigation of other physical systems and different kinds
of noise are necessary to confirm these conclusions.
Recently, the authors apply these conclusions in time
series obtained from an experimental pendulum [34]
showing that Kantz’s algorithm allows one to establish
a difference between periodic and chaotic motion. The
algorithm due to Rosenstein et al., on the other hand,
does not present good results for periodic motion.
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