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Abstract. This contribution presents an investigation on noise sensitivity of some of the most disseminated techniques employed
to estimate Lyapunov exponents from time series. Since noise contamination is unavoidable in cases of data acquisition, it is
important to recognize techniques that could be employed for a correct identification of chaos. State space reconstruction and the
determination of Lyapunov exponents are carried out to investigate the response of a nonlinear pendulum. Signals are generated
by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate
experimental data sets, a random noise is introduced in the signal. Basically, the analyses of periodic and chaotic motions are
carried out. Results obtained from mathematical model are compared with the one obtained from time series analysis, evaluating
noise sensitivity. This procedure allows the identification of the best techniques to be employed in the analysis of experimental
data.
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1. Introduction with the response of dynamical system is based on the
analysis of data derived from an experiment [10].

The analysis of chaotic behavior is becoming com-  Thefirst problem on the experimental analysis is that
mon in many different fields of science as engineer- data acquisition furnishes a time series of the observ-
ing [1-3], medicine [4], ecology [5], biology [6] and  able measurements and it is necessary to convert ob-
economy [7,8]. The study of chaos employs proper servations into state vectors. Therefore, state space re-
mathematical and geometrical aspects and, therefore, construction needs to be employed and, basically, there
new analytical, computational and experimental meth- are two different methods for this aim: derivative co-
ods are developed to analyze the response of nonlin- ordinates and delay coordinates [11-13]. The method
ear dynamical systems. Alligood et al. [9] say that “of  of delay coordinates has proven to be a powerful tool
course, the idea of a real experiment being governed to analyze chaotic behavior of dynamical system. Ru-
by a set of equations is a fiction. A set of differential  g|le [14], Packard et al. [11] and Takens [12] have in-
equations, or a map, may model the process closely troduced the basic ideas of this method and one of the
enough to achieve useful goals™. An approach to deal grawbacks in its application is the determination of de-

lay parameters.
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ate noise suppression and its effects in the analysis of rameter and,, is associated with the natural frequency
chaos, however, there are a small number of reports of the system. Furthermore, a harmonic forcing with
devoted to the effects of the system noise on chaos [15]. amplitudep and frequency? is considered. With these
Nonlinear analysis also involves the determination assumptions, the dynamical system is governed by the
of quantities, known as dynamical invariants, which well-known equation of motion
are important to identify chaotic behavior. Lyapunov - : 9 .
expongnt is an examplfgthat evaluates the seynsF;tive de- 0+ af + w, sin(6) = pcos(Q2t) (1)
pendence to initial conditions estimating the exponen-  This equation may be rewritten as a systems=
tial divergence of nearby orbits. These exponents have f(u), u € R3, whereu; = = = 0, us = y =  and
been used as the most useful dynamical diagnostic tool u3 = 2¢t. Numerical simulations are carried out em-
for chaotic system analysis. The signs of the Lya- ployingthe fourth-order Runge-Kutta method withtime
punov exponents provide a qualitative picture of the steps less thatht = 27/1002. For all simulations,
system’s dynamics and any system containing at least parametera = 0.2 andw,, = 2 = 1.0 are considered.
one positive exponent presents chaotic behavior. Lya- In order to simulate experimental data sets, a signal
punov exponents can also be used for the calculation s = x+nis definedwherg = AR(—1,+1) represents
of other invariant quantities as the attractor dimension, noise, withA being the amplitude, an®(—1, +1) is
which may be determined by the Kaplan-Yorke conjec- related to random number within the interyall, +1).
ture [16]. The determination of Lyapunov exponents If n = 0, there is no noise and an ideal experimental
of dynamical system with an explicitly mathematical data is simulated. In this article, two other noise levels
model, which can be linearized, is well established are contemplatedA = 0.314 andA = 0.628, repre-
from the algorithm proposed by Wolf et al. [17]. Onthe  senting, respectively, 5% and 10% of the maximum sig-
other hand, the determination of these exponents from nal amplitude. The number of data poim, is chosen
time series is quite more complex. Basically, there are as the minimum required for a correct estimation of the
two different classes of algorithms: Trajectories, real desirable measure.
space or direct method [17,19,19,20]; and perturbation,  Basically, periodic and chaotic signals are analyzed.
tangent space or Jacobian matrix method [21-28]. When the forcing amplitude js = 2.56, the pendulum
This article is concerned with the analysis of nonlin-  presents a period-2 motion. Figure 1 shows the steady
ear dynamics from time series, and the main purpose is state orbit on phase space for this motion projected on
to evaluate noise sensitivity of some of the most dissem- a cylindrical space and on the plane. Whe#: 2.50,
inated procedures employed either to state space recon-the motion becomes chaotic. Figure 2 presents the
struction or the determination of Lyapunov exponents. strange attractor of the motion projected on cylindrical
Signals are generated by numerical integration of the and plane spaces.
nonlinear pendulum mathematical model, selecting a
single variable of the system as a time series. In order
to simulate experimental data sets a random noise is 3. State space reconstruction
introduced in the signal. State space reconstructionand
the determination of Lyapunov exponents are carried  The basic idea of the state space reconstruction is
out regarding periodic and chaotic signals. The number that a signal contains information about unobserved
of data points is chosen as the minimum required for state variables, which can be used to predict the present
a correct estimation of the desirable measure. Results state. Therefore, a scalar time serig$), may be used
obtained from mathematical model are compared with to construct a vector time series that is equivalent to
the ones obtained from time series analysis, evaluating the original dynamics from a topological point of view.
noise sensitivity. This procedure allows the identifica- The state space reconstruction needs to form a coordi-
tion of the best techniques to be applied in the analysis nate system to capture the structure of orbits in state
of experimental data. space. The method of delay coordinates could be done
using lagged variablest + 7), wherer is the time
delay. Then, considering an experimental sigag),
2. Nonlinear pendulum wheret = to + (n — 1)At with n = 1,2,3,..., N,
it is possible to use a collection of time delays to cre-
Consider the motion of a nonlinear pendulum where ate a vector in a.-dimensional spacey(t), which
0 defines its positiony is the linear viscous damper pa-  represents the reconstructed dynamics of the system.
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Fig. 1. Period-2 motion. (a) Cylindrical phase space; (b) Plane phase space.

u(t) ={s(t),st+71),...,
s(t+ (D — 1)7)}7T

The method of delays was first proposed by Ru-
elle [14] and Packard et al. [11] and then by Takens [12]
and Sauer et al. [29]. Its use has become popular for
dynamical reconstruction, however, the choice of the
delay parameters,— time delay, and) . — embedding
dimension, has not been fully developed. This article
employs the average mutual information method to de-
termine time delay [30] and the method of false nearest
neighbors to estimate embedding dimension [31].

In order to start the analysis of the nonlinear pendu-
lum state space reconstruction employing the method of
delay coordinates, a period-2 signal with= 20,000,
is considered. Figure 3 presents results of the mutual
information and the false nearest neighbors analysis,
for different noise levels. Concerning the time delay
determination, there is a difficulty to determine the first
minimum of the information curve wheA = 0, ideal
signal. Nevertheless, time delay may be estimated
defining a region limited by the first global maximum of
the curvel versusr (vertical line). Under this assump-
tion, the time delay can be chosen as the first global
minimum of this region furnishing values that present
good results. The analysis for different noise levels fur-

(2)

nishes the following values: = 1.319 s whenA = 0;

7 = 1.256 s whenA = 0.314; 7 = 1.256 s when

A = 0.628. On the other hand, embedding dimension
analysis estimateB. = 3, which is in agreement with
the mathematical model. Notice that noise does not
have any influence on this result.

Following the determination of delay parameters, the
method of delay coordinates can be applied in order to
reconstruct the state space. The numerical state space
of the motion is presented in Fig. 4 together with the
reconstructed spaces for different noise levels. The
comparison among numerical and reconstructed state
spaces allows one to observe just a small coordinate
change from one to another.

The forthcoming analysis regards a chaotic signal
with N = 20,000. Figure 5 considers results of the
mutual information and the false nearest neighbor anal-
ysis, for different noise levels. The same procedure
applied in the determination of time delay of periodic
signal can be employed here, resulting on the follow-
ing values: T = 2.262 s whenA = 0; 7 = 1.885 s
whenA = 0.314; 7 = 1.822 s whenA = 0.628. Once
again, the analysis of the embedding dimension esti-
matesD. = 3 and the noise does not have significant
influence on the results.

Figure 6 presents the Poinéamap obtained either
by numerical simulation or by reconstruction using
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Fig. 2. Strange attractor. (a) Cylindrical phase space; (b) Plane phase space.

the method of delay coordinates for three noise lev-  The determination of Lyapunov exponents of dy-
elst A =0, A=0314andA = 0.628. A strange namical system with an explicitly mathematical model,
attractor is clearly identified, presenting a fractal-like which can be linearized, is well established from the
structure. The comparison among numerical and re- algorithm proposed by Wolf et al. [17]. On the other
constructed state spaces allows one to observe just ahand, the determination of these exponents from time
small coordinate change from one to another. series is quite more complex. Basically, there are two
different classes of algorithms: Trajectories, real space
or direct method; and perturbation, tangent space or
4. Lyapunov exponents Jacobian matrix method.
Trajectories method has been originally developed
Lyapunov exponents have been used as the most use-by Wolf et al. [17] and the basic idea associated with
ful dynamical diagnostic tool for chaotic system analy- it is analyzing the evolution of two nearby orbits in the
sis. These exponents evaluate the sensitive dependencdangent space. This method calculates only the largest
to initial conditions estimating the exponential diver- ~exponent, which is sufficient to identify chaotic behav-
gence of nearby orbits. The dynamics of the system ior but, on the other hand, cause some difficulties when
transform aD-sphere of states in ®-ellipsoid and, the determination of other quantities is needed. Other
when there is a chaotic motion, a complex evolution ex-  similar algorithms have also been developed exploiting
ists. Lyapunov exponents are related to the expanding the same idea [18,19]. These algorithms consider that
and contracting nature of different directions in phase the divergence rate trajectories fluctuates along the tra-
space and the signs of these exponents provide a quali-jectory, with the fluctuation given by the spectrum of
tative picture of the system’s dynamics. The existence effective Lyapunov exponents. The average of effec-
of positive Lyapunov exponents defines directions of tive Lyapunov exponent along the trajectory is the true
local instabilities in the dynamics of the system and Lyapunov exponent and, therefore, it may be calcu-
any system containing at least one positive exponent lated from the slope of a curve associated with a greater
presents chaotic behavior. instability direction.
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Fig. 3. Period-2 signal. (a) Mutual information versus time delay; (b) Percentage of false neighbors versus embedding dimension.

Tangent space methods seem to be most promising

space. The method monitors the long-term evolution

for the calculation of the Lyapunov spectrum fromtime  of a single pair of nearby orbits and is able to esti-
series. The product of the Jacobians along the trajec- mate non-negative Lyapunov exponents. In principle,
tory can determine the spectrum of Lyapunov expo- this method permit to compute all Lyapunov spectrum

nents from the evaluation of eigenvalues of this matrix.
To make use of this, the magit + 1) = f(x(¢)) must

at least approximately be known and there are several
approaches to extract this map from a time series. Sano
and Sawada [21] and Eckmann et al. [22] have devel-
oped similar algorithms where the Jacobian matrix is
evaluated with a least square error algorithm. Brown
et al. [27] and Briggs [24] consider a high order poly-
nomial approximation to define the Jacobian matrix.
Kruel et al. [25] improve the algorithm due to Sano
and Sawada with a different form to evaluate one of the
covariant matrix that generates the Jacobian matrix.

In the present contribution, Lyapunov exponents
are determined employing the algorithms proposed by
Wolf et al. [17], Kantz [18], Rosenstein et al. [19] and
Sano and Sawada [21]. Algorithms developed by Heg-
ger et al. [32] are employed for all simulations except
the ones due to Wolf et al. [17]. Results are compared
with reference values calculated from the algorithm for
differential equations proposed by Wolf et al. [17].

4.1. Algorithmdueto Wolf et al.

Trajectories method proposed by Wolf et al. [17]
to determine Lyapunov exponents from time series
considers the reconstructed attractor and examines or-
bital divergence on length scales, working in tangent

but in reality it is limited to the maximum one [18].
Wolf et al. adopts the following definition of Lyapunov

exponents:
L'(ty)
<L(tk - 1))

whereM is the total number of replacement steps. The
distancel.(t) is defined as the Euclidean norm between
two points. Besides reconstruction parameters, the al-
gorithm has three parameters to be determined, which
have a great influence on the exponent calculation: the
signal length V; the smaller distance between the tra-
jectories,d,;n, Which is associated with noise; and a
constant propagation timegy .

In order to start the analysis employing the algorithm
due to Wolf et al., a period-2 signal witN = 10,000
is considered. For this situation, the reference value
calculated from the differential equation [L7Ng,.x =
0. Figure 7(a) shows the maximum Lyapunov exponent
for three different noise levels assumihg;, = 0.0001
andtgy = 1. The time series algorithm for the ideal
signal furnishes ., = 0. For noisy signals, however,
the algorithm is not able to identify periodic response
meaning that noise and chaos cannot be distinguished
(Fig. 7(a)). Nevertheless, it should be pointed out that
the alteration of parameters;y and dp,i,, improve

®3)
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Fig. 4. Phase space for period-2 signal. (a) Numerical; (b) Reconstrutted); (c) Reconstructed4d = 0.314; (d) Reconstructed! = 0.628.

the results and the exponent values converge to zero, considered as a reference value. On the other hand, the
as it is desirable. To elucidate the influence of this algorithm for time series applied to the ideal signal fur-
alteration, Flg 7(b) shows results WhEBV = 15 for nishes\,.x = +0.39. The maximum Lyapunov ex-
A=03l4and gy =30forAd =0.628. Eventhough  ponentassumes greater values when noise level grows,
a convenient variation of these parameters can reduce g, iniing the difficulty to its estimation. The alter-
the noise effect, notice that this procedure is difficult ation of the parametef, allows one to reduce the

to be employed on experimental data when a reference . : .
discrepancy among the previous results. By consider-

value is not known. )
ingtgy = 5whenA = 0.314 andt gy = 10 when

At this point, a chaotic signal witlv = 30,000 is .
considered using i, = 0.0001 andt gy = 1. Lya- A = 0.628, values of maximum exponents converge to

punov exponents predicted by the algorithms for differ- the reference value. Again, this procedure is not satis-
ential equation and time series are presented in Fig. 8. factory to identify chaotic motion on experimental data
The first algorithm furnishes,,.x = +0.16, which is when a reference value is not known.
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Fig. 5. Chaotic signal. (a) Mutual information versus time delay; (b) Percentage of false Neighbors versus embedding dimension.

4.2. Algorithm due to Kantz and due to Rosenstein et
al.

The algorithm proposed by Kantz [18] considers the
same idea of the one proposed by Wolf et al. [17], es-
tablishing that the divergence rate trajectories fluctu-
ates along the trajectory, with the fluctuation given by
the spectrum of effective Lyapunov exponents. The av-
erage of effective Lyapunov exponent along the trajec-
tory is the true Lyapunov exponent and the maximum
exponent is given by

) @

(

where|u(0) — u.(0)] = e andu(t) — us(t) = vy (t),
with v, (t) representing the eigenvectors associated
with the maximum Lyapunov exponemnt,, .

From an arbitrary points; = (S¢t—m+1,.-.,5t),
all delay vectors of the series falling into the
neighborhood ofi; will be regarded as the beginning of
the neighboring trajectories, which are simply given by
the points of the time series consecutive in time. If the
distance between neighboring trajectories is measured
in their true phase space, it is possible to observe the
fluctuations of the divergence rate described by the dis-
tribution of effective Lyapunov exponents. In order to
evaluate the distance between the reference trajectory,
ug, and a neighbory;, after a relative time referring
to the time index of the point where the distance be-
gin to be greater than, §(0), one defines a distance,
dist(us, ui, 0) = |ut+s — uits|, Which represents the

[u(t +6) — ue(t + )]
€

1
= lim <In

A(t)

modulus of thefth scalar component of the two trajec-
tories. These distances are projections of the difference
vectors in the true phase space onto a one-dimensional
subspace spanned by the observable. Therefore, they
are modulated with cos ¢|, where¢ is the angle be-
tween the eigenvector corresponding\t@... and the
local direction of the subspace on which the observable
lives. Taking into account the time average over the full
length of the time series, and also considering the loga-
rithm of the average distance, the Lyapunov exponents

are computed by,
) 5)

S5(0)
N
1 1
== In|—
v (o
Initially, the difference vectors in the true phase space
are pointing in a general direction, however, for in-
termediate range of, S(9) increases linearly with the
slope \ which corresponds an estimation of the Lya-
punov exponent.

S(6) = {In[dist(us, ui, 0)]
— ln[dist(ut, Uj, o — 1)]}t
= A

Z dist(u, u;; 0)

€Uy

(6)

Rosenstein et al. [19] have proposed a similar algo-
rithm where the distance between the trajectories is de-
fined as the Euclidean norm in the reconstructed phase
space and, also, they have used only one neighbor tra-
jectory.
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Fig. 6. Strange attractors. (a) Numerical; (b) Reconstructesd O; (c) Reconstructedd = 0.314; (d) Reconstructed! = 0.628.

Both algorithms present good results for discrete sys- Poincaé maps of signals whet®T = 6.28 s, resulting
tems (maps), nevertheless, results are not so good forin N = 2,000. Since embedding theorems [29] estab-
continuous systems (differential equations). Notice, lishes that embedding dimension needs to be greater
however, that a continuous system can be converted than2D,. + 1 in order to obtain an appropriate recon-
to a discrete system regarding a time series that is the struction, one consider different values of this parame-
Poincaé map of the signal. Both algorithms needs the ter in order to obtain better results. After several tests,
following parameters, besides reconstruction parame- D, = 6is adopted andvaries from 20to 25in Kantz's
ters: the signal lengthly; ande related to the trajectory  algorithm. Firstly, period-2 signals with different noise
neighbor. Furthermore, Kantz’s algorithm considers a levels are contemplated. The reference value associ-
range where parameteis varied. ated with these signalss,.x = 0, calculated from the

At this point, results predicted by algorithms pro- differential equation. Figure 9 shows ti8&J) curves
posed by Kantz and by Rosenstein et al. are focused. predicted by both algorithms presenting the same hor-
The analysis is done regarding time series that representizontal curves. The slope of these curves defines the



L.F.P. Franca and M.A. Savi / Evaluating noise sensitivity on the time series determination 45

1.20 T T T T T 0.60 T T T T T

L @ J (b)

1.00 |— —

0.80 [— —

0.20 H— A=0.314 ]

Lyapunov Exponent (bits/s)
Lyapunov Exponent (bits/s)

.0.40 1 | 1 | 1 | 1 | 1 .0.40 1 | 1 | 1 | 1 | 1

0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
n n

o

Fig. 7. Periodic signal: Algorithm due to Wolf et al. (1985). {8), = 1; (b) tgy = 15 for A = 0.314 andtgy = 30 for A = 0.628.

2.00 T T T T T T T T T 0.80

1.80 - A= 0628

1.60

0.60
1.40

1.20

A=0314

1.00 0.40

0.80

0.60

0.40 020

0.20

Lyapunov Exponent (bits/s)
Lyapunov Exponent (bits/s)

Reference

0.00

Reference 0.00

-0.20

-0.40

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
n n

-0.60
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Lyapunov exponent, meaning that,.x = 0, the same A chaotic signal is now in focus. Figure 10 presents
value predicted by the algorithm due to Wolf et al. for the curvesS(¢) for an ideal chaotic signalA = 0),
ideal signal. Notice, however, that noise does not in- with N = 2,000, D, = 6 ande varying from20 to 25
fluence results, which is an important improvementto in Kantz's algorithm. The5(9) curve presents a linear
the algorithm due to Wolf et al. In addition, it should range whichtends to reach a stabilized value. The slope
be emphasized that either the number of data points, of the curve in this linear range estimates the maximum
N, or the embedding dimensioi)., may alter the Lyapunov exponent and may be computed employing a
slope of the curves(6). Therefore, the determination  linear regression. The algorithm due to Kantz predicts
of these parameters may introduce difficulties to evalu- A\,.x = +0.184 £ 0.004, while the algorithm due to
ate Lyapunov exponents when a reference value is not Rosenstein et al. predicts,.x = +0.201 £+ 0.002,
known. and both values are near the reference valyg,x =
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+0.16. does not have a significant influence on the results.

The S(§) curves for noisy signals are presented in
Fig. 11. Employing linear regression, Kantz's algo-

4.3. Algorithm due to Sano and Sawada

rithm predicts\,,.x = +0.202 £ 0.002 for both noise

levels, while Rosenstein’s predickg,.x = +0.185 +

The algorithm proposed by Sano and Sawada [21]

0.001. These results are again close to the reference is a tangent space method that is based on the multi-
value A\,.x = +0.16 and one can conclude that noise plicative ergodic theorem by Oseledec [33]. One of the
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advantages of tangent space methods is the estimationg, in a tangent space aft), is represented by lineariz-
of the Lyapunov spectrum, in contrast of the maximum
exponent calculated by trajectories methods. Before
proceeding to a description of the algorithm due to Sano
and Sawada, one considers a trajectefty, in a D-
dimensional space, which is the solution of an ordinary
differential equation, The evolution of a tangent vector

ing the differential equation§ = B¢, whereB is the
Jacobian matrix off. The solution of this equation

is expressed agt) = B'¢(0), whereB! is the linear
operator which maps tangent vec{g) to {(¢). Sano

and Sawada have established a procedure for estimat-
ing a linearized flow ma@®B* from the observed data.
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Fig. 14. Spectrum of Lyapunov exponents obtained from the algorithm due to Sano and Sawada: Ideal chaotit sighal (

Hence, Lyapunov exponents can be computed as

1 < L
A= lim —— S In|[Be|,
lim_ ntEV;nll el

sides signal and reconstruction parameters, the algo-
rithm needs the following parameteiBy, radius of the
sphere andV y g 11, NumMber of neighboring points.
In order to start the analysis of the algorithm due to
(i=1,2,...,D,.) Sano and Sawada, an ideal period-2 sigAaH 0) with
whereB is an approximation of the flow maB* and N = 70,100 is considered, assumingx grcr = 30
{el} is a set of basis vectors of tangent space. Be- andR, = N/1000. Notice that this algorithm needs

@)
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large data points to estimate the Lyapunov spectrum. 5. Conclusions
Figure 12 shows the spectrum for this signal where all

the exponents tend to zero, meaning that the motion is This contribution evaluates noise Sensitivity of some
periodic. of the most disseminated techniques employed on the

state space reconstruction and the determination of Lya-
punov exponents from time series. Signals are gener-
ated by numerical integration of the nonlinear pendu-

I withV. = n = N/1000. No- . . : ;
ggeattr?:t ast theAr[1 Ji)fs;eve??nireda}zgs vall/J ezo(?f L ; unoy UM mathematical model, selecting a single variable of
’ yap the system as a time series. In order to simulate ex-

exponents decrease. Since results converge to negat|veIoerimental data sets, a random noise is introduced in

values, the algorithm is capable to identify a periodic  he time series. Results obtained from mathematical

lems on the determination of other dynamical invari- - series analysis, evaluating noise sensitivity. State space

Noisy signals are now considered & 0.314 and
A = 0.628). Figure 13 presents Lyapunov spectra cal-

ants. reconstruction is done employing the method of delay

The forthcoming analysis considers chaotic signals coordinates. The determination of delay parameters,
and, at first, an ideal signald( = 0) with N = time delay and embedding dimension, are made em-
70,100, is contemplated. Figure 14 shows the Lya- ploying, respectively, the method of average mutual in-
punov spectrum calculated WitN yzr¢r = 30 and formation and the false nearest neighbors. Both meth-

Ry = N/1000. The maximum exponent converges to 0ds present good results and are not noise sensitive.
a positive value), = +0.016, which is ten times less Lyapunov exponents are calculated employing four dif-
than the reference valu .. — +0.16). Again, this ferent algorithms: Wolf et al., Kantz, Rosenstein et al.

is not a problem to identify chaotic motion but for the and Sano and Sawada. Algorlthms_due to WOlf etal.
L o . and due to Sano and Sawada are noise sensitive and are
determination of the dynamical invariants.

. . . not capable to distinguish noise from chaos. On the
Figure 15 shows Lyapunov spectra for noisy chaotic other hand, algorithms due to Kantz and due to Rosen-
signals (1 = 0.314andA = 0.628) with N = 70, 100, stein et al. are not noise sensitive. Nevertheless, the
and assumingVypren = 30 and Ry = N/1000. use of these algorithms present difficulties on the de-
Once again, as the noise level increases, values of Lya- termination of parameters, especially when there is no
punov exponents decrease and, since results convergereference value. The authors agree that this contribu-
to negative values, the algorithm is not capable of dis- tion is useful to identify the best techniques that may be
tinguish noise from chaos, presenting noise sensitivity. applied on experimental analysis, however, the inves-
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tigation of other physical systems and different kinds

of noise are necessary to confirm these conclusions.
Recently, the authors apply these conclusions in time

series obtained from an experimental pendulum [34]
showing that Kantz's algorithm allows one to establish
a difference between periodic and chaotic motion. The

algorithm due to Rosenstein et al., on the other hand,

does not present good results for periodic motion.
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