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Abstract. The experimental analysis of nonlinear dynamical systems furnishes a scalar sequence of measure-
ments, which may be analyzed using state space reconstruction and other techniques related to nonlinear analysis.
The noise contamination is unavoidable in cases of data acquisition and, therefore, it is important to recognize
techniques that can be employed for a correct identification of chaos. The present contribution discusses the exper-
imental analysis of a nonlinear pendulum, considering state space reconstruction, frequency domain analysis and
the determination of dynamical invariants, Lyapunov exponents and attractor dimension. A procedure to construct
Poincaré map of the signal is presented. The analyses of periodic and chaotic motions are carried out in order
to establish a difference between them. Results show that it is possible to distinguish periodic and chaotic time
series obtained from an experimental set up employing proper procedures even though noise suppression is not
contemplated.
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1. Introduction

The experimental analysis of nonlinear dynamical systems furnishes a scalar sequence of
measurements. Therefore, a time series associated with system dynamics is available, being
interesting to analyze it using state space reconstruction and other techniques related to non-
linear analysis. The noise contamination is unavoidable in cases of data acquisition and noise
suppression is essential in signal processing, especially in chaos analysis. Many studies are
devoted to evaluate noise suppression and its effects in the analysis of chaos [1–5]. However,
there are a small number of reports devoted to the effects of the system noise on chaos [1].

The analysis of nonlinear dynamical systems from time series involves state space recon-
struction. Basically, there are two different methods for this aim: derivative coordinates and
delay coordinates [6–8]. The method of delay coordinates has proven to be a powerful tool to
analyze chaotic behavior of dynamical system. Ruelle [9], Packard et al. [6] and Takens [7]
introduced the basic idea of this method and the main problem arising is the determination of
the embedding parameters.

Nonlinear analysis also involves the determination of quantities, known as dynamical in-
variants, which are important to identify chaotic behavior. Lyapunov exponents and attractor
dimension are some examples. Lyapunov exponents evaluate the sensitive dependence to ini-
tial conditions estimating the exponential divergence of nearby orbits. These exponents have
been used as the most useful dynamical diagnostic tool for chaotic system analysis. The signs
of the Lyapunov exponents provide a qualitative picture of the system’s dynamics and any
system containing at least one positive exponent presents chaotic behavior. The determination
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of Lyapunov exponents of dynamical system with an explicitly mathematical model, which
can be linearized, is well established from the algorithm proposed by Wolf et al. [10]. On the
other hand, the determination of these exponents from time series is quite more complex. Ba-
sically, there are two different classes of algorithms: Trajectories, real space or direct method
[10–12]; and perturbation, tangent space or Jacobian matrix method [13–20].

The attractor dimension counts the effective number of degrees of freedom in the dynami-
cal system. The strangeness of the chaotic attractor is associated with its dimension in which
instance it is described by a noninteger dimension. There are a variety of different forms to
define or quantify the dimension of an attractor. Farmer et al. [21] presents an overview of
these definitions, considering two general types: those that depend only on metric properties
and those that depend on the frequency with which a typical trajectory visits different regions
of the attractor. Furthermore, there is the Kaplan–Yorke conjecture that defines the Lyapunov
dimension calculated from Lyapunov exponents.

The main purpose of this contribution is to present proper procedures which are capable to
distinguish periodic and chaotic signals obtained from an experimental nonlinear pendulum.
Noise suppression is not contemplated and the signal is analyzed without filtering. State space
reconstruction, frequency domain analysis and the determination of dynamical invariants,
Lyapunov exponents and attractor dimension, are considered. Furthermore, it is necessary
to present a procedure to construct a Poincaré map of the signal, which is also discussed. The
choice of algorithms to be employed is based on the analysis of noise sensitivity developed
in [22–24]. Algorithms proposed by Kantz [11] and by Rosenstein et al. [12] are conceived
to estimate Lyapunov exponents. The use of these algorithms implies the determination of
parameters before performing signal analysis. A calibration procedure is employed in order to
define these parameters, which may be used for all signals, allowing their correct identifica-
tion. Concerning to the attractor dimension, the algorithm due to Hegger et al. [25] to estimate
correlation dimension is employed. Results show that it is possible to distinguish periodic and
chaotic signals even though noise suppression is not contemplated. The authors agree that
these procedures can be employed to other dynamical systems.

2. Nonlinear Analysis

This section presents a brief overview of the main techniques employed in nonlinear time
series analysis [26–29]. Linear signal processing, state space reconstruction and the evaluation
of dynamical invariants, Lyapunov exponents and attractor dimension, are discussed.

2.1. LINEAR SIGNAL PROCESSING

The most common and very useful way of analyzing a time series using linear signal process-
ing techniques is to construct the power spectrum and its Fast Fourier Transform (FFT) [29].
As it is well known, the FFT of a chaotic signal presents continuous spectra over a limited
range and the energy is spread over a wider bandwidth. On the other hand, FFT of a peri-
odic signal presents discrete spectra, where a finite number of frequencies contribute for the
response [29, 30]. Another useful measure that can be employed in the signal analysis is the
autocorrelation function [29].

One of the clues to detecting chaos is the appearance of a broad spectrum of frequencies
in the output when the input is a single-frequency harmonic motion. Therefore, even though
these techniques are very useful, one must be cautioned on their application. In large degrees
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of freedom systems, for example, the use of the Fourier spectrum may not be of much help in
detecting chaos [30]. Hence, in many situations it may become difficult to distinguish noise
and chaos. This contribution considers the FFT as the first step on the analysis of experimental
signals.

2.2. STATE SPACE RECONSTRUCTION

The basic idea of the state space reconstruction is that a signal contains information about
unobserved state variables which can be used to predict the present state. Therefore, a scalar
time series, s(t), may be used to construct a vector time series that is equivalent to the original
dynamics from a topological point of view. The state space reconstruction needs to form a
coordinate system to capture the structure of orbits in state space which could be done using
lagged variables, s(t+τ), where τ is the time delay. Then, considering an experimental signal,
s(n), n = 1, 2, 3, . . . , N , where t = t0 + (n − 1)
t , it is possible to use a collection of time
delays to create a vector in a De-dimensional space,

u(t) = {s(t), s(t + τ), . . . , s(t + (De − 1)τ }T . (1)

The method of delays has become popular for dynamical reconstruction, however, the
choice of the delay parameters, τ (time delay) and De (embedding dimension) has not been
fully developed. Many researches have been developed considering the better approaches to
estimate delay parameters for different kinds of time series.

The literature reports many methods employed to determine time delay. The global singular
value method [8] and the autocorrelation function [31] are some examples. Nevertheless, the
mutual information method [32] presents better results, which disseminate its use.

The determination of embedding dimension, De, involves four different methods: the satu-
ration with dimension of system invariants [33]; the singular value decomposition (SVD) [8];
the false nearest neighbors (FNN) [34]; and the true vector fields [35]. Recently, the method
of averaged false neighbors (AFN) [36] and the method of false strand neighbors (FSN) [37]
are proposed as improvements of the FNN taking into account noise signals.

Since Franca and Savi [22–24] show that the average mutual information method and the
method of false nearest neighbors has no noise sensitivity, this contribution uses them in order
to determine the time delay and the embedding dimension, respectively.

2.2.1. Method of Mutual Information
Fraser and Swinney [32] establishes that the time delay τ corresponds to the first local mini-
mum of the average mutual information function I (τ), which is defined as follows:

I (τ) =
∑

�b(s(t), s(t + τ)) log2

[
�b(s(t), s(t + τ))

�b(s(t))�b(s(t + τ))

]
, (2)

where �b(s(t)) is the probability of the measure s(t), �b(s(t + τ)) is the probability of the
measure s(t + τ), and �b(s(t), s(t + τ)) is the joint probability of the measure of s(t) and
s(t+τ) [32]. The average mutual information is really a kind of generalization to the nonlinear
phenomena from the correlation function in the linear phenomena. When the measures s(t)

and s(t +τ) are completely independent, I (τ) = 0. On the other hand, when s(t) and s(t +τ)

are equal, I (τ) is maximum. Therefore, plotting I (τ) versus τ makes it possible to identify
the best value for the time delay which is related to the first local minimum.
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2.2.2. Method of False Nearest Neighbors
The FNN algorithm was originally developed for determining the number of time delay coor-
dinates needed to recreate autonomous dynamics, but it is extended to examine the problem
of determining the proper embedding dimension.

In an embedding dimension that is too small to unfold the attractor, not all points that lie
close to one another will be neighbors because of the dynamics. Some will actually be far from
each other and simply appear as neighbors because the geometric structure of the attractor has
been projected down onto a smaller space [34].

In order to consider the method of FFN, a D-dimensional space is conceived where the
point u(t) has rth nearest neighbors, u(r)(t). The square of the Euclidean distance between
these points is

r2
D(t, r) =

D−1∑
k=0

[s(t + kτ) − s(r)(t + kτ)]2. (3)

Now, going from dimension D to D + 1 by time delay, there is a new coordinate system
and, as a consequence, a new distance between u(t) and u(r)(t). When these distances alter
from one dimension to another, there are false neighbors. A natural criterion for catching
embedding errors is that the increase in distance between u(t) and u(r)(t) is large when going
from dimension D to D + 1. The increase in distance can be stated with distance equations
and some criteria must be established to designate the existence of false neighbors. Kennel et
al. [34] established proper criteria for this aim.

2.3. LYAPUNOV EXPONENTS

Lyapunov exponents evaluate the sensitive dependence to initial conditions considering the
exponential divergence of nearby orbits. Therefore, it is necessary to evaluate how trajectories
with nearby initial conditions diverge. The dynamics of the system transforms the D-sphere of
states in a D-ellipsoid and, mathematically, the Lyapunov exponents considers d(t) = d0b

λt ,
where b is a reference basis. The signs of the Lyapunov exponents provide a qualitative picture
of the system’s dynamics. The existence of positive Lyapunov exponents defines directions of
local instabilities in the system dynamics.

The determination of Lyapunov exponents of dynamical system with an explicitly mathe-
matical model, which can be linearized, is well established from the algorithm proposed by
Wolf et al. [10]. On the other hand, the determination of these exponents from time series is
quite more complex. Basically, there are two different classes of algorithms: trajectories, real
space or direct method [10–12]; and perturbation, tangent space or Jacobian matrix method
[13–20].

Franca and Savi [22–24] show that the algorithms due to Kantz [11] and due to Rosenstein
et al. [12] allow one to establish a difference between periodic and chaotic motion, presenting
no noise sensitivity. Hence, this contribution considers these algorithms in order to estimate
Lyapunov exponents.

The algorithm proposed by Kantz [11] uses the same idea of the one proposed by Wolf et
al. [10] which considers the reconstructed attractor and examines orbital divergence on length
scales, working in tangent space. The method monitors the long-term evolution of a single pair
of nearby orbits and is able to estimate the non-negative Lyapunov exponents. In principle,
this method allows one to compute all Lyapunov spectrum but in reality it is limited to the
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maximum one [11]. Kantz [11] considers that the divergence rate trajectories fluctuates along
the trajectory, with the fluctuation given by the spectrum of effective Lyapunov exponents. The
average of effective Lyapunov exponent along the trajectory is the true Lyapunov exponent
and the maximum value is given by

λ(t) = lim
ε→∞

1

δ
ln

( |u(t + δ) − uε(t + δ)|
ε

)
, (4)

where |u(0)− uε(0)| = ε and u(t)− uε(t) = εvu(t), with vu(t) representing the eigenvectors
associated with the maximum Lyapunov exponent, λmax; δ is a relative time referring to the
time index of the point where the distance begin to be greater than ε, δ(0).

Rosenstein et al. [12] proposed a similar algorithm where the distance between the trajec-
tories is defined as the Euclidean norm in the reconstructed phase space and, also, they have
used only one neighbor trajectory.

2.4. ATTRACTOR DIMENSION

There are a variety of different forms to define or quantify the dimension of an attractor.
Farmer et al. [21] presents an overview of these definitions, considering two general types:
those that depend only on metric properties and those that depend on the frequency with which
a typical trajectory visits different regions of the attractor. Furthermore, there is the Kaplan–
Yorke conjecture that defines the Lyapunov dimension calculated from Lyapunov exponents.

Regarding the conclusions in [22–24], this contribution considers the correlation dimen-
sion employing the algorithm discussed by Hegger et al. [23], based on the Theiler’s algorithm
[38]. The correlation dimension, DC , represents one of the most popular forms to measure the
dimension of the attractor. This measure has been successfully used by many experimentalists
and is defined as follows [30]:

DC = lim
ε→0

− log
∑

i �
2
i (ε)

log ε
, (5)

where �i is a correlation function of two points. Grassberger and Proccacia [33] and Takens
[39] suggest the use of the correlation integral, C(ε,N), to estimate

∑
i �

2
i . The popularity of

the correlation algorithm is based on its straightforward implementation.

3. Experimental Apparatus

The experimental data related to the nonlinear pendulum response is obtained from the appa-
ratus depicted in Figure 1. The pendulum is constructed by a disc with a lumped mass (1) and
is connected to a rotary motion sensor (3). The dissipation is provided by a magnetic device
(2), which is adjustable. A motor-string-spring device (4, 5) provides the excitation for the
pendulum. The motor (5), PASCO ME-8750, has the following characteristics: 12 V DC, 0.3–
3 Hz and 0–0.3 A. The signal measurement is done with the aid of two transducers. The rotary
motion sensor (3), PASCO encoder CI-6538, has 1440 orifices and a precision of 0.25◦. The
magnetic transducer (6) is employed in order to generate a frequency signal associated with
the forcing frequency of the motor, which is used to construct the Poincaré map of the signal.
The apparatus is connected with an A/D interface, Science Workshop Interface 500 (CI-6760)
where the sampling frequency varies from 2 Hz to 20 kHz. The interface oversamples the
signal 8 times for frequencies below 100 Hz and a single time for higher sampling rates.
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Figure 1. Experimental apparatus of the nonlinear pendulum: (1) disc with lumped mass; (2) magnetic damping
device; (3) rotary motion sensor: PASCO CI-6538; (4) spring; (5) DC Motor: PASCO ME-8750; (6) magnetic
transducer: TEKTRONIX; (7) Science Workshop interface: PASCO CI-6760.

Furthermore, this interface does not have any anti-aliasing filters and a 9 V AC-DC adapter
provides power supply.

All signals are analyzed with the aid of the Science Workshop Data Acquisition, which al-
lows one to evaluate angular velocity (y = θ̇ ) and angular position (x = θ). Noise suppression
is not contemplated and all signals are stored without filtering.

In order to perform the analysis of the nonlinear pendulum, one conceives that the time
series is a sequence of angular position measured from the experiment, s = x = θ . The
apparatus also permits to measure the angular velocity y = θ̇ , which is used to construct the
real phase space (x versus y), employed to perform a visual validation of the reconstructed
phase space.

3.1. IDENTIFICATION OF SYSTEM PARAMETERS

Some characteristics of the apparatus are now discussed in order to identify the parameters
of the pendulum. At first, the 12 V DC motor is considered. Figure 2 shows the frequency
(�e) versus voltage curve which is important to identify the forcing frequency of the system.
Other important parameter that needs to be quantified is the dissipation, related to a magnetic
damping device. A convenient procedure is the logarithmic decrement [40], which is defined
verifying the ratio between any two consecutive displacement amplitudes. The analysis of this
definition yields
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Figure 2. Identification of forcing frequency versus motor voltage.

γ = 1

j
ln

h1

hj+1
, (6)

where h1 and hj+1 are the amplitude of the displacements at time instants t1 and tj+1 =
t1+jTd , respectively, with j being an integer number and Td = 2π/ωd; ωd is the free damping
frequency. Under these assumptions, the non-dimensional viscous damping parameter, ς , is
defined as follows:

ς = γ√
(2π) + γ 2

. (7)

3.2. POINCARÉ MAPS

The Poincaré map is an important tool to observe the response of a nonlinear system. Experi-
mentally, this can be done in several ways. Moon [30] presents a procedure employing a signal
converter that stores the sampled data in a computer for display at a later time. Here, similar
procedure is conceived in order to generate two signals: one associated with the motion and
the other associated with the forcing frequency. The forcing frequency signal is generated
with the aid of a magnetic transducer, which induces electric pulses when a reference bolt,
connected to the motor, passes near it. These pulses are compared with the motion signal in
order to generate a third signal representing the Poincaré Map where only measures in these
time instants are contemplated.

4. Periodic Signal

In order to analyze a periodic response of the experimental nonlinear pendulum, a period-2
signal is considered with N = 38,090 points, generated with a motor voltage V = 4.2 V
(�e = 0.82 Hz), a sample frequency �s = 20 Hz and a damping parameter ς = 0.0065. The
time history evolution of part of the signal is presented in Figure 3.
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Figure 3. Periodic signal.

Figure 4. FFT of the periodic signal.

The analysis begins with the FFT spectrum, presented in Figure 4. This FFT shows a
discrete spectrum where two fundamental frequencies are noticeable: the forcing frequency,
�e = 0.8 Hz, and also 0.4 Hz. This evidences a period-2 motion, confirming the time history
presented in Figure 3. The next step of the analysis is the state space reconstruction.

4.1. STATE SPACE RECONSTRUCTION

The state space reconstruction considers the signal derived from experiment to form a coor-
dinate system that captures the structure of orbits in state space. This contribution employs
the method of delay coordinates and, therefore, it is necessary to determine delay parameters,
τ and De. Results of the analysis for the determination of these parameters is presented in
Figure 5. Figure 5a shows the mutual information versus time delay, and the first minimum
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Figure 5. Delay parameters associated with periodic signal. (a) Average mutual information versus τ ; (b) percent-
age of false neighbors versus De.

of this curve defines the time delay, τ = 8 × 0.05 = 0.40 s. Figure 5b presents the curve
of the percentage of false neighbor points versus embedding dimension, indicating that the
embedding dimension needs to be between 3 and 4.

After the determination of delay parameters, state space can be reconstructed. Figures 6a
and 6b present the reconstructed phase space projected in dimension 2 and 3 while Figure 6c
presents the real phase space measured in the experiment. Both spaces are similar from a
topological point of view [7], presenting just a small coordinate change from one to another.
Noise does not have a significantly influence in the determination of delay parameters. Notice
that the reconstructed phase space presents a closed curve that is typical of periodic motions.
In order to construct a Poincaré map of the motion, two signals are considered: one associated
with the motion and the other associated with the forcing frequency. The Poincaré map defined
by this procedure is presented in Figure 7. Figure 7a presents the reconstructed Poincaré
section while Figure 7b the phase space, also pointing the Poincaré section. Notice that the
Poincaré section shows two clouds of points, representing a period-2 motion. This result can
be used to evaluate the noise level on data acquisition since only two points was expected.
Therefore, the length of the range around each point is associated with noise.

4.2. DYNAMICAL INVARIANTS

Even though the system response presents a periodic-like characteristic, it is important to
assure this conclusion with the determination of dynamical invariants. At first, Lyapunov
exponents are focused. Since the greater exponent is the most important to diagnose chaotic
motion, and taking into account the conclusions about noise sensitivity presented in [22–24],
algorithms proposed by Kantz [11] and by Rosenstein et al. [12] are conceived. The analysis
is done regarding the Poincaré map of the signal. The use of these algorithms implies the
determination of parameter ε before performing signal analysis. In order to ‘calibrate’ the
algorithm, a known signal is analyzed, for example a simple periodic motion, defining the
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Figure 6. State space associated with periodic signal. (a) Reconstructed, 2-Dim; (b) Reconstructed, 3-Dim;
(c) real.

correct value of this parameter. After this calibration, the parameter may be employed for all
signals, allowing their correct identification.

Figure 8a presents the curve S(δ) versus predicted by the algorithm due to Kantz using ε =
1.6 and De = 3, 6, 9, 12. This curve has a null slope, meaning that λmax = 0, and therefore,
the signal is related to a periodic motion. On the other hand, Figure 8b presents the curve S(δ)

versus δ predicted by the algorithm due to Rosenstein et al. for the same parameters. In this
case, the curve presents a non-null slope, which indicates a positive exponent.

The difference between both algorithms is, perhaps, associated with the use of only one
neighbor per time on the algorithm due to Rosenstein et al., and not all neighbors within a
certain neighborhood, which might induce larger statistical errors, especially in the presence
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Figure 7. Poincaré map associated with periodic signal: (a) reconstructed; (b) phase space.

Figure 8. Lyapunov exponents associated with periodic signal. (a) Kantz; (b) Rosenstein et al.

of noise. This problem was pointed by Kantz [11] and may explain different results obtained
by both methods.

At this point, the attractor dimension is in order. Hence, the continuous signal is regarded
to determine the correlation dimension employing the algorithm due to Hegger et al. [23]. The
correlation dimension for different values of embedding dimension is presented in Figure 9.
The slope of the linear range in Figure 9a is related to the position of the horizontal range
in Figure 9b and represents the measure of the correlation dimension. The value estimated
for the correlation dimension belongs to the range 1.05 to 1.18. Notice that the inferior limit
is close to 1, which is the expected value for this signal. Nevertheless, this range includes
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Figure 9. Correlation dimension associated with periodic signal. (a) logC(ε) versus log(ε); (b) logDc versus
log(ε).

noninteger numbers, which introduces difficulties in characterizing the motion. Another prob-
lem is related to the embedding dimension dependence, which also introduces difficulties to
the correct estimation of the attractor dimension. Therefore, the attractor dimension is not an
efficient criterion to identify a periodic signal.

5. Chaotic Signal

Chaos in the experimental nonlinear pendulum is analyzed considering a chaotic signal with
N = 30,589 points, generated with a motor voltage V = 4.2 V (�e = 0.82 Hz), a sample
frequency �s = 20 Hz and a damping parameter ς = 0.0125. The time history evolution of
part of the signal is shown in Figure 10.

Using the FFT, it is possible to see that the fundamental frequency �e = 0.8 Hz is im-
mersed in a continuous spectrum of frequencies (Figure 11). This behavior is typical of chaotic
motion, nevertheless it must be confirmed determining dynamical invariants. The following
section reports on the state space reconstruction.

5.1. STATE SPACE RECONSTRUCTION

The state space reconstruction from the experimental signal employing the method of delay
coordinates is now in focus. Results of the analysis employed to determine the delay pa-
rameters are presented in Figure 12. Figure 12a shows the mutual information versus time
delay, and the first minimum of the curve must be used as the time delay, furnishing τ =
6 × 0.05 = 0.30 s. Figure 12b presents the curve of the percentage of false neighbor points
versus embedding dimension, showing that the embedding dimension needs to be between 3
and 4. This result is in agreement with the one obtained for the periodic signal.

After the determination of delay parameters, it is possible to reconstruct state space. Fig-
ures 13a and 13b present the reconstructed phase space projected in dimension 2 and 3 while
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Figure 10. Chaotic signal.

Figure 11. FFT of the chaotic signal.

Figure 13c presents the real phase space measured in the experiment. Both spaces are similar
from a topological point of view [7], presenting just a small coordinate change from one to
another. Once again, noise does not have a significantly influence in the determination of delay
parameters. Here, phase space presents a chaotic-like characteristic because the orbit is not a
closed curve.

In order to construct the Poincaré map of the chaotic signal, the same procedure used
in the preceding section is employed. The Poincaré map defined by this procedure is pre-
sented in Figure 14. Figure 14a shows the reconstructed Poincaré section while Figure 14b
shows the real one. A strange attractor is clearly identified presenting a fractal-like structure.
Nevertheless, it is useful to confirm this with the calculation of dynamical invariants.
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Figure 12. Delay parameters associated with chaotic signal. (a) Average mutual information versus τ ; (b) percent-
age of false neighbors versus De.

5.2. DYNAMICAL INVARIANTS

Even though the system response presents a chaotic-like characteristic, it is important to assure
this conclusion with the determination of dynamical invariants. At first, Lyapunov exponents
are focused. Employing algorithms due to Kantz [11] and due to Rosenstein et al. [12] and
regarding the Poincaré map signal, it is possible to estimate the maximum Lyapunov exponent.
With this aim, the following parameters need to be conceived: ε = 1.6 and De = 6, 9, 12. It
should be emphasized that the value of ε is the same to the one employed in the analysis of
periodic signal, discussed in the preceding section. This value is defined from the ‘calibration’
of the algorithm and allows one to analyze different signals with the same parameters. Hence,
it is possible to distinguish different kinds of motion.

The curve S(δ) versus δ, predicted by both algorithms, are presented in Figure 15. These
curves present a linear range, which tends to reach a stabilized value. The slope of the curve in
this linear range estimates the maximum Lyapunov exponent and may be computed employing
a linear regression. Hence, the algorithm due to Kantz [11] furnishes λ = 0.177±0.024 while
the algorithm due to Rosenstein et al. [12] furnishes λ = 0.153 ± 0.010. As expected, the
system presents a positive exponent. Here, in contrast with the periodic signal analysis, both
algorithms are capable to identify chaotic behavior.

A further dynamical invariant may be useful to analyze the chaotic signal: attractor dimen-
sion. The continuous signal is regarded to determine the correlation dimension employing
the algorithm due to Hegger et al. [23]. The correlation dimension for different values of
embedding dimension is presented in Figure 16. The slope of the linear range in Figure 16a
is related to the position of the horizontal range in Figure 16b and represents the value ob-
tained for the correlation dimension. The first point arising to this result is that the linear
(horizontal) range is greater than the one presented for the periodic signal. After a linear
regression, the value estimated belongs to the range 2.20 to 2.77. This range does not include
integer numbers, allowing one to identify the chaotic motion. Notice, however, that the attrac-
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Figure 13. State space associated with chaotic signal. (a) Reconstructed, 2-Dim; (b) reconstructed, 3-Dim; (c) real.

tor dimension present difficulties to identify periodic motion and therefore, it is difficult to
distinguish periodic and chaotic signals.

6. Conclusions

This contribution reports on the analysis of time series obtained from an experimental nonlin-
ear pendulum. State space reconstruction is done employing the method of delay coordinates.
Delay parameters are estimated with the average mutual information method to determine
time delay and the false nearest neighbors method to estimate embedding dimension. Both
methods present no noise sensitivity. A procedure to construct the Poincaré map is developed
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Figure 14. Poincaré map of chaotic signal: (a) reconstructed; (b) real.

Figure 15. Lyapunov exponents associated with chaotic signal: S(δ) curves. (a) Kantz; (b) Rosenstein et al.

and presents good results. The FFT analysis allows one to identify chaos in this physical
system, however, it is necessary to evaluate dynamical invariants to assure this conclusion.
Lyapunov exponents and attractor dimension are used with this aim. Lyapunov exponents
are calculated employing the algorithms due to Kantz and due to Rosenstein et al. After
performing the proposed calibration procedure, the Kantz algorithm allows one to establish a
difference between periodic and chaotic motion. The algorithm due to Rosenstein et al., on the
other hand, does not present good results for periodic motion. Concerning the attractor dimen-
sion, the algorithm due to Hegger et al. is employed to estimate the correlation dimension. It
should be noted that this is not an efficient tool to identify periodic signals. The authors agree
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Figure 16. Lyapunov exponents associated with chaotic signal: S(δ) curves. (a) Kantz; (b) Rosenstein et al.

that this contribution show that it is possible to distinguish periodic and chaotic time series
obtained from an experimental set up without employing any kind of filters. Other dynamical
systems must be analyzed in order to validate the present conclusions, however one believes
that the procedures employed here can be applied to any system response.
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