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Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange
attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it
is described by a noninteger dimension. This contribution presents an overview of the main definitions
of dimension discussing their evaluation from time series employing the correlation and the generalized
dimension. The investigation is applied to the nonlinear pendulum where signals are generated by
numerical integration of the mathematical model, selecting a single variable of the system as a time
series. In order to simulate experimental data sets, a random noise is introduced in the time series.
State space reconstruction and the determination of attractor dimensions are carried out regarding
periodic and chaotic signals. Results obtained from time series analyses are compared with a reference
value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure
allows one to identify the best techniques to be applied in the analysis of experimental data.
Keywords: Chaos, state space reconstruction, attractor dimension, fractals, time series

Introduction

Fractals have been observed in nature in different situations varying from geometry to physical
sciences. Basically, it is possible to categorize fractals into two different groups: solid objects and
strange attractors. The first type includes physical objects that exist in ordinary physical space. On the
other hand, the second type considers conceptual objects that exist in the state space of chaotic
dynamical systems (Theiler, 1990). Mandelbrot (1982) establishes the existence of the geometry of
nature in contrast with the classical geometry, which provides just a first approximation to the
structures of physical objects. Therefore, fractal geometry may be considered as an extension of
classical geometry.

The attractor dimension counts the effective number of degrees of freedom in the dynamical system.
Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor.
The strangeness of the chaotic attractor is associated with its dimension in which instance it is described
by a noninteger dimension. Hausdorff (1919) gave a rigorous definition of dimension that is a basic
property of an attractor.

There are a variety of different forms to define or quantify the dimension of an attractor. Farmer et
al. (1983) presents an overview of these definitions, considering two general types: those that depend
only on metric properties and those that depend on the frequency with which a typical trajectory visits
different regions of the attractor. Furthermore, there is the Kaplan-Yorke conjecture that defines the
Lyapunov dimension calculated from Lyapunov exponents (Kaplan & Yorke, 1983; Wolf et al., 1985).

This contribution presents an overview of the main definitions of dimension, discussing their
evaluation from time series. Two different algorithms are employed with this aim: the correlation
dimension that is determined employing the algorithm proposed by Hegger et al. (1999), and the
generalized dimension which is evaluated employing the algorithm proposed by Sarraille & Myers
(1994). Furthermore, the Lyapunov dimension is estimated from the mathematical model employing the
Kaplan & Yorke conjecture, defining a reference value. Since noise contamination is unavoidable in
cases of data acquisition, the determination of attractor dimension needs to have no noise sensitivity.
Many studies are devoted to evaluate noise suppression and its effects in the analysis of chaos, however,
there are a small number of reports devoted to the effects of the system noise on chaos (Ogata et al.,
1997). The present investigation is applied to the nonlinear pendulum where signals are generated by
numerical integration of the mathematical model, selecting a single variable of the system as a time
series. In order to simulate experimental data sets, a random noise is introduced in the time series. State
space reconstruction and the determination attractor dimensions are carried out regarding periodic and
chaotic signals. The number of data points is chosen as the minimum required for a correct estimation
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of the desirable measure. Results obtained from time series analyses are compared with the reference
value estimating noise sensitivity. This procedure allows one to identify the best techniques to be
applied in the analysis of experimental data.

Attractor Dimension

A geometrically intuitive notion of dimension, D, is as an exponent that expresses the scaling of an
object’s bulk with its size: Bulk ∼  SizeD. Here, Bulk may correspond to a volume, a mass, or even a
measure of information content, while Size is a linear distance. Therefore, the definition of dimension is
usually cast as an equation of the form (Theiler, 1990),
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where the limit of small size is taken to ensure invariance over coordinate changes. This also implies
that dimension is a local quantity and that any global definition of dimension require some kind of
averaging.

Different definitions of these quantities imply different measures of dimensions. Hausdorff and
capacity dimensions are some examples of fractal dimensions while pointwise, information and
correlation dimensions are examples of dimension of the natural measure. Other definitions may be
found in Farmer et al. (1983), Mayer-Kress (1985), Paladin & Vulpiani (1987) and Theiler (1990).

Capacity Dimension
Kolmogorov originally defines the capacity of a set which may be considered as the most basic

definition of fractal dimension. It may be derived from the notion of counting the number of boxes β,
Nβ, of size ε, needed to cover the orbit in phase space. Basically, the number of boxes depends on the
subspace of the orbit: Nβ(ε) ≈ ε−D. Therefore, the following definition of the capacity dimension, DK,
may be done,
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The capacity dimension may be conceived as a simplification of the Hausdorff measure, DH, which
numerical implementation is very difficult. Farmer et al. (1983) shows that DK ≥ DH, but for most
fractal sets of interest, these dimensions are equal.

Moon (1992) presents two criticisms of the use of capacity dimension as a measure of attractor
dimension. The first one is theoretical, because it does not account for the frequency with which the
orbit might visit the covering box. The other criticism is computational, because the process of counting
the boxes is very time consuming. Furthermore, Liebovitch & Toth (1989) point that the procedure
requires too large data points.

Useful algorithms to implement the box-counting procedure are described by Grassberger (1983),
Hunt & Sullivan (1986), Giorgilli et al. (1986) and Theiler (1987). Further, Liebovitch & Toth (1989)
suggest a new algorithm, which is less dependent on data points.

Pointwise Dimension
The pointwise dimension, DP, is a local measure of the dimension of the fractal set at a point of the

attractor. Let a phase space trajectory where a box of side ε, β(ε), centered at the point xi, is considered.
This box contains some points of the trajectory, Nβ. Defining the pointwise mass function as the
probability of finding a point in this box divided by the total number of points in the orbit, N,
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this allows one to define the pointwise dimension as follows,
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This definition is a local measure, but it is possible to obtain an averaged pointwise definition
randomly choosing a set of points M < N and calculating the dimensions at each point. Hence, the
following dimension is defined (Moon, 1992).
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A useful algorithm to implement the average pointwise dimension is described by Mayer-Kess
(1987).

Information Dimension
The information dimension, DI, is a generalization of the capacity dimension measure, which takes

into account the frequency with which the trajectories visits each covering box. Since the dimension
may be understood as something that counts the degrees of freedom of the system, it is possible to
establish a definition where the evaluation of how many bits of information are necessary to specify a
point to a given accuracy is of interest. In general, I(ε) = −D log2(ε) bits of information are needed to
specify the position of a unity D-dimensional box to an accuracy ε. Shannon’s formula is employed in
order to evaluate the needed average information to define one box (Theiler, 1990):
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where Γi is the probability measure of the ith box. This relation leads to an expression for the
information dimension
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The information is a measure of unpredictability in a system. In order to establish a relation with the
capacity measure, one considers that the probability Γi are equal for all boxes, and hence

)(log)( εβε NI = , meaning that DI = DK. In general, it can be shown that I(ε) < logNβ(ε), and hence DI ≤

DK (Farmer et al., 1983; Moon, 1992). Hegger et al. (1999), Grassberger et al. (1989), Badii & Politi
(1985) and Theiler (1988) describe different approaches and algorithms for the information dimension.

Correlation Dimension
The correlation dimension, DC, is another probabilistic dimension, which represents one of the most

popular forms to measure the attractor dimension. This measure has been successfully used by many
experimentalists (Moon, 1992) and is defined as follows,
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where Γi is a correlation function of two points. Therefore, this dimension measures the probability to
find a pair of random points in an elementary box. Notice that this measure is different from the
information dimension, which considers the probability to find just one point in a given box. Hence, one
tries to count the number of pair distances.

Grassberger & Proccacia (1983) and Takens (1983) suggest the use of the correlation integral,
C(ε,N), to estimate ∑iΓi

2. This integral represents a direct arithmetic average of the pointwise mass
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function (Theiler, 1990). For a signal with N points, the correlation integral C(ε,N) has a dynamic range
of O(N2), which is twice the range which appears in the box-counting algorithms.

The popularity of the correlation algorithm is based on its straightforward implementation.
Grassberger & Procaccia (1983) and Hegger et al. (1999) describe useful algorithms to estimate this
dimension.

Generalized Dimension
The generalized dimension was introduced by Hentschel & Procaccia (1983) and independently by

Grassberger (1983). The notion of generalized dimension first arose out of a need to understand why
various algorithms gave different answers for dimension. A further motivation came from the need to
characterize more fully fractals with nonuniform measure. Therefore, the generalized dimension is
defined as follows,
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With this definition, the measure of dimension is related to the value assumed for G. When G = 0,
IG = I0, and DG corresponds to the capacity dimension. If G = 1, it is possible to consider G = 1 + γ, with
γ → 0, to define an expression related to the information dimension. When G = 2, the definition
represents the correlation dimension.

Lyapunov Dimension
The Lyapunov dimension, DL, associated with the Kaplan-Yorke conjecture (Kaplan & Yorke,

1983), is calculated from the Lyapunov exponents and takes into account the dynamical properties of
the attractor. In order to establish a definition of this measure, consider the spectrum of Lyapunov
exponents, in a decreasing order. Therefore, the following definition is regarded (Frederickson et al.,
1983)
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Moon (1992) shows that Lyapunov and information dimensions are equivalent, i.e., DI = DL.

State Space Reconstruction

Consider the motion of a nonlinear pendulum where θ defines its position, α is the linear viscous
damper parameter and ωn is associated with the natural frequency of the system. Moreover, a harmonic
forcing with amplitude ρ and frequency Ω are concerned. With these assumptions, the dynamical
system is governed by the well-known equation of motion
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This equation may be rewritten as a system, 3),,( Rutufu ∈=! , where θ== xu1 , θ!== yu2

and tu Ω=3
. Numerical simulations are carried out employing the fourth-order Runge-Kutta method

with time steps less than ∆t = 2π / 100Ω. For all simulations, parameters α = 0.2 and ωn = Ω  = 1.0 are
considered. In order to simulate experimental data sets, a signal η+= xs  is defined where η =

AR(−1,+1) depicts noise, with A being the amplitude, and R(−1,+1) represents random number within
the interval  (−1,+1). If η = 0, there is no noise and an ideal experimental data is simulated. In this
article, two other noise levels are contemplated: A = 0.314 and A = 0.628, representing, respectively, 5%
and 10% of the maximum signal amplitude. Basically, periodic and chaotic signals are considered. The
number of data points, N, is chosen as the minimum required for a correct estimation of the desirable
measure.

The first problem on signal analysis is to convert the time series into state vectors, which is done,
using state space reconstruction. The basic idea of this reconstruction is that a signal contains
information about unobserved state variables, which can be used to predict the present state. Therefore,
a scalar time series, s(t), may be used to construct a vector time series that is equivalent to the original
dynamics from a topological point of view. The state space reconstruction needs to form a coordinate
system to capture the structure of orbits in state space. The method of delay coordinates could be done
using lagged variables, s(t+τ), where τ is the time delay. Then, considering an experimental signal, s(t),
where t = t0 + (n−1)∆t with n = 1, 2, 3,…, N, it is possible to use a collection of time delays to create a
vector in a De-dimensional space, u(t), which represents the reconstructed dynamics of the system
(Ruelle, 1979; Packard et al., 1980; Takens, 1981).

T
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This contribution employs the average mutual information method to determine time delay (Fraser
& Swinney, 1986) and the method of false nearest neighbors to estimate embedding dimension (Rhodes
& Morari, 1997).
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Figure 1. Period-2 motion.

(a) Mutual information versus time delay;  (b) Percentage of false neighbors versus embedding dimension.
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In order to analyze the state space reconstruction of the nonlinear pendulum employing the method
of delay coordinates, a period-2 signal with N = 20,000 is considered. Figure 1 presents results of the
mutual information and the false neighbors analysis, for different noise levels. Concerning the time
delay determination, there is a difficulty to determine the first minimum of the information curve when
A = 0, ideal signal. Nevertheless, time delay may be estimated defining a region limited by the first
global maximum of the curve I versus τ (vertical line). Under this assumption, the time delay can be
chosen as the first global minimum of this region furnishing values that present good results. The
analysis for different noise levels furnishes the following values: τ = 1.319s when A = 0; τ = 1.256s
when A = 0.314; τ = 1.256s when A = 0.628. On the other hand, embedding dimension analysis points
to De = 3, which is in agreement with the mathematical model. It should be noted that noise does not
have any influence in results.

Following the determination of delay parameters, the method of delay coordinates can be applied in
order to reconstruct the state space. The numerical state space of the motion is presented in Figure 2
together with the reconstructed spaces for different noise levels. The comparison among the
reconstructed state spaces with the numerical allows one to observe just a small coordinate change from
one to another.

(a) (b)

(c) (d)

Figure 2. Phase space for period-2 motion.
(a) Numerical;  (b) Reconstructed, A = 0;  (c) Reconstructed, A = 0.314;  (d) Reconstructed, A = 0.628.
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The forthcoming analysis regards to a chaotic signal with N = 20,000. Figure 3 considers results of
the mutual information and the false neighbors analysis, for different noise levels. The same procedure
applied in the determination of time delay of periodic signal can be employed here, resulting on the
following values: τ = 2.262s when A = 0; τ = 1.885s when A = 0.314; τ = 1.822s when A = 0.628. Once
again, the analysis of the embedding dimension points to De = 3 and the noise does not have
significantly influence in results.

Figure 4 presents the Poincaré map obtained either by numerical simulation or by reconstruction
using the method of delay coordinates for three noise levels: A = 0, A = 0.314 and A = 0.628. A strange
attractor is clearly identified where there is a fractal-like structure. Once again, the comparison among
reconstructed state spaces with the numerical allows one to observe just a small coordinate change from
one to another.

(a) (b)
Figure 3. Chaotic motion.

(a)Mutual information versus time delay; (b) Percentage of false Neighbors versus embedding dimension )(
.

tθ .

Nonlinear Pendulum Attractor Dimension

In this section, the estimation of the nonlinear pendulum attractor dimension is considered employing
two different algorithms. The correlation dimension is determined employing the algorithm proposed by
Hegger et al. (1999) while the generalized dimension is evaluated employing the algorithm proposed by
Sarraille & Myers (1994). Furthermore, the Lyapunov dimension is estimated from the mathematical
model employing the Kaplan & Yorke conjecture, defining a reference value.

At first, correlation dimension of a period-2 signal is conceived. Figure 6 shows the correlation
dimension for an ideal signal (A = 0) with N = 1,000, and different values of embedding dimension. The
slope of the linear range in Figure 6a is related to the position of the horizontal range in Figure 6b and
represents the value obtained for the correlation dimension. In this signal, the value associated with the
linear (or horizontal) range is not easy to be obtained which introduces difficulties to evaluate the
correlation dimension. When noisy periodic data sets are analyzed, the measure is easier to be evaluated
when compared with the previous case. Figure 7-8 show results for noise signals with N = 8,000 and
two different noise levels, A = 0.314 and A = 0.628, respectively. Employing linear regression, results
show that the correlation dimension is between 0.86 and 1.32, while the reference value obtained from
numerical simulation is 1.00. Notice that this range not only includes non-integer values but also is
sensitive to the embedding dimension. Therefore, it is not possible to identify a periodic motion since it
is difficulty to predict the attractor dimension.
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(a) (b)

(c) (d)
Figure 4. Strange attractors.

(a) Numerical; (b) Reconstructed, A = 0; (c) Reconstructed, A = 0.314,  (d) Reconstructed, A = 0.628.

(a) (b)
Figure 5. Correlation dimension of a periodic signal (A = 0).

(a) log C(εεεε) versus log(εεεε); (b)DC versus log(εεεε).
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(a) (b)
Figure 6. Correlation dimension of a periodic signal (A = 0.314).

(a) log C(εεεε) versus log(εεεε),  (b)DC versus log(εεεε)

(a) (b)
Figure 7. Correlation dimension of a periodic signal (A = 0.618).

(a) log C(εεεε) versus log(εεεε);  (b) DC versus log(εεεε).

A chaotic signal with N = 8,000 is now focused. The correlation dimension for ideal chaotic signal
(A = 0) and different values of embedding dimension is presented in Figure 9. Employing linear
regression, results show that the dimension value is between 1.00 and 1.50, while the reference value
obtained from numerical simulation is 1.38. Once again, notice that the alteration of embedding
dimension has a great influence on results.

At this point, noise chaotic data sets with N = 8,000 are considered. Figure 10 shows the correlation
dimension for A = 0.314 while Figure 11 conceives A = 0.628. Notice that even though the measure of
the dimension is similar to the one obtained for the ideal signal, the noise reduces the range where the
curve is linear or horizontal.
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(a) (b)
Figure 8. Correlation dimension of a chaotic signal (A = 0).

(a) log C(εεεε) versus log(εεεε);  (b)DC versus log(εεεε).

(a) (b)
Figure 9. Correlation dimension of a chaotic signal (A = 0.314).

(a) log C(εεεε) versus log(εεεε)     (b)DC versus log(εεεε)

(a) (b)
Figure 10. Correlation dimension of a chaotic signal (A = 0.628).

(a)  log C(εεεε) versus log(εεεε);  (b)DC versus log(εεεε).
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The forthcoming analysis focuses on the generalized dimension. In order to start the analysis, a
period-2 signal is considered. The number of data points is important to obtain a good approximation of
this measure and the noise does not affect results significantly (Figure 12a). By considering great values
of embedding dimension (Figure 12b), the dimension measure converges to values which are near to the
reference value (1.0). Nevertheless, it should be emphasized that this procedure needs large data points,
which is unfeasible to be applied to experimental data.

 (a) (b)
Figure 11. Generalized dimension of a periodic signal.

(a) N = 66000;  (b) N = 500000.

The generalized dimension of a chaotic signal is now in order. The noise does not influence results
in a significantly form while the embedding dimension is critical (Figure 13a). This implies that it is
necessary a signal with large data points to obtain a correct estimation of the generalized measure.
Regarding great values of embedding dimension (Figure 13b), the dimension measure converges to
values which are near to the reference value (1.38) but, once again, this procedure is unfeasible to be
applied to experimental data.

(a)  (b)
Figure 12. Generalized dimension of a chaotic signal.

(a) N = 66000;  (b) N = 500000.
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Conclusions

This contribution presents an overview of the main techniques employed on the estimation of attractor
dimension from time series. The main purpose is to evaluate noise sensitivity, identifying the best
techniques that can be applied in experimental analysis. Signals are generated by numerical integration
of the nonlinear pendulum mathematical model, selecting a single variable of the system as a time
series. In order to simulate experimental data sets, a random noise is introduced in the time series. State
space reconstruction is done employing the method of delay coordinates. The determination of delay
parameters, time delay and embedding dimension, are made employing, respectively, the method of
average mutual information and the false nearest neighbors. Both methods present good results and are
not noise sensitive. Concerning the attractor dimension, one employs the correlation dimension
discussed by Hegger et al. (1999), based on the Theiler’s algorithm, and also the generalized dimension
developed by Sarraille & Myers (1994). The values are compared with a reference value that is
achieved employing the Lyapunov dimension estimated by numerical simulation. Results show that the
dimension of the attractor is not an efficient tool to diagnose chaos. The value calculated with the
algorithm due to Hegger et al. (1999) is sensitive to the embedding dimension and, even though the
noise does not have a significantly influence, it is difficult to obtain conclusive results. The algorithm
due to Sarraille & Myers (1994), on the other hand, estimates values which are closer than the reference
and also is not significantly influenced by the noise. Nevertheless, its use needs large data points
because the convergence occurs for high values of embedding dimension. Hence, it is unfeasible to
apply this procedure on the analysis of experimental data. The authors agree that this contribution is
useful to identify the best techniques that may be applied in experimental analysis, however, the
investigation of other physical systems and different kinds of noise are necessary to assure these
conclusions.
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