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A B S T R A C T

Autonomous robots have several applications on industry, military and safety fields. The replacement of the
conventional wheels by deformable ones improves the maneuverability, allowing it to trespass obstacles that
goes from small fissures to step elevations. Besides, path control can be made by directly actuation on the
wheel using a small number of actuators, reducing the structure weigh. This paper deals with a dynamical
analysis of an autonomous robot with origami wheels actuated by shape memory alloys (SMAs), forming a self-
foldable structure. The nonlinear characteristics of the SMAs together with the slender and bi-stable origami
aspects provide a complex nonlinear behavior that can be exploited for energetic and maneuverability purposes.
Mathematical modeling considers a reduced order model, based on symmetry hypotheses, to describe the
origami mechanics. In addition, a polynomial constitutive model is employed to describe the thermomechanical
behavior of the SMA actuators. The robot dynamics is described by considering a rigid body system connected
to the two origami wheels. Under these assumptions, the robot dynamical model is represented by a 4-
degree of freedom system. The yaw rotation, that promotes the route change, is promoted by the origami
radius variation. Numerical simulations related to operational conditions are carried out considering different
operational conditions represented by distinct thermal and mechanical loads. Results show situations where
different external stimulus can promote interesting nonlinear dynamical responses including chaos, transient
chaos and synchronization.

1. Introduction

Origami paper-folding art has been exploited on several areas of
human knowledge due to its compactness, adaptive capacity and mor-
phing ability. In brief, it produces a three-dimensional structure from
the folding of a two-dimensional source. Shapes emerging from cylin-
drical or spherical configurations, as the combination of morphing
capable elements, can be applied on architecture [1], robotic [2],
spatial systems [3] and biomedical devices [4].

The use of origami in mechanical systems has an increasing interest.
Textured tubes for subsea operations have the potential to reduce
the propagation buckling without increasing the wall thickness of the
pipeline. In this case, origami assumes a rigid configuration, and the
purpose is the stress accommodation [5–7]. A different application of
a texturized tube is the zipper-coupled tube configuration that exploits
the change on stiffness [8]. This combination can be made in a large
variety of cellular assemblages, promoting mobility and versatility to
the final system and enhancing its mechanical characteristics.

Biomedical devices are another type of origami application. The
origami stent is a deployable cylinder that has the advantage with
respect to the classical cardiovascular device since it avoids the resteno-
sis effect [9]. The biomedical origami robots are biocompatible and

∗ Corresponding author.
E-mail addresses: larissamaciel.lah@gmail.com (L.M. Fonseca), savi@mecanica.coppe.ufrj.br (M.A. Savi).

biodegradable self-folding devices that can be encapsulated on ice
for delivery through the esophagus, transporting drug layer that is
passively released to a wounded area [10]. These robots can be re-
motely controlled to perform underwater maneuvers, specifically using
magnetic fields. This robot allows the removal of swallowed battery
without the need of a surgery.

The idea of other types of robots is also an interesting subject related
to origamis. Autonomous robots with self-folding origami wheels are
a good alternative that provides alteration of torque–force transmis-
sion by changing the radius of the wheel [2,11]. Deformable wheels
are interesting to improve maneuverability, allowing one to trespass
obstacles that goes from small fissures to step elevations. Besides, the
path control can be made by directly actuation on the wheel using
a small number of actuators, significantly reducing the weight of the
structure. One of the advantages is the easy control using each wheel
independently [12].

Since origami systems are thin structures, they are usually close to
stability limits with important dynamical issues to be investigated. The
combination of geometric and constitutive nonlinearities is responsible
for a rich dynamic behavior and, therefore, external excitations and
perturbations can be critical to the system response and may be a
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problem in several applications. In this regard, dynamical analysis of
these structures becomes particularly important, being treated in few
references in the literature. Rodrigues et al. [13] investigated nonlinear
dynamics of an origami stent. On the other hand, Fonseca et al. [14]
investigated nonlinear dynamics of an origami wheel. Both references
consider origami built with waterbomb pattern, assuming symmetric
hypothesis related to the design and application in order to build a
reduced order model. Although this simplification reduces the number
of degrees of freedom, geometric and constitutive nonlinearities make
the origami dynamical response very rich, presenting periodic and
chaotic motions.

This paper deals with the dynamical analysis of an autonomous
origami wheel robot, which has deformable wheels that provide path
control. A rigid body motion analysis of the robot is carried out. The
model is based on the positioning of the robot chassis and each wheel
gravity centers. Deformable wheels are modeled by a reduced order
model built based on the origami symmetries. Under this assumption,
each origami wheel is analyzed from a one degree of freedom model,
as discussed in Fonseca et al. [14]. The robot equations of motion
are numerically solved in order to investigate the system dynamics.
Different operational conditions are carried out showing the high sensi-
tivity of the origami robot behavior. Complex responses are of concern
highlighting chaos and synchronization. In this regard, this origami
wheel robot analysis provides a new perspective into origami structure
applications, allowing the potential use of rich nonlinear dynamics
responses in order to furnish new desirable behaviors.

2. Origami wheel robot

Robots with deformable wheels have the potential to improve ma-
neuverability providing path control and the capacity to overcome
obstacles. The idea is to promote wheel size change by a direct ac-
tuation using shape memory alloy actuators. A two-wheeled robot is
modeled considering deformable origami-based wheels. The robot is
composed by a chassis with mass center G rigidly attached to weightless
axes that are connected to two independent deformable origami wheels
with mass centers 𝐺𝐴 and 𝐺𝐵 (Fig. 1-a). The chassis is built such that
the mass centers 𝐺𝐴, 𝐺𝐵 and G are always aligned and along the axis
connecting the wheels. Besides, each wheel is attached to the axis in
such a way that its mass center does not slide through the axis, i.e., the
mass centers of 𝐺𝐴 and 𝐺𝐵 are symmetrically positioned with respect
to G at constant distance d (Fig. 1-b).

Each origami wheel is constructed by employing a 3×8 magic-ball
or waterbomb pattern, which has been used in various applications.
Waterbomb pattern can be considered as a rigidly foldable or rigid
origami that consists of panels that can move continuously between
folded configurations by rotating around the crease lines without defor-
mation. The use of an origami wheel has the main objective to create
an expandable structure that can alter its configuration in response
to some external stimulus. In this regard, shape memory alloy (SMA)
springs are placed on the origami circumferential direction, which can
be thermal actuated to promote shape changing. Note that the unitary
cell opening characterizes the SMA length (Fig. 2). Besides these SMA
actuators, the system needs a passive bias elastic spring, placed in the
longitudinal direction, ensuring the shape change of all the structure
between two limit configurations (Fig. 2).

The origami wheel employs pre-trained SMA actuators, where the
pre-stress is able to produce a reorientation from twinned martensitic
crystallographic phase to detwinned martensite. Under this condition,
the SMA spring has a residual displacement that can be recovered by
heating the SMA, promoting a martensite–austenite phase transforma-
tion. This actuation process changes the shape of the wheel, reducing its
radius. A typical force–displacement–temperature curve for the shape
memory effect (SME) is shown in Fig. 3-a where, starting at a low
temperature (T < 𝑇M - a temperature where martensitic phase is stable),
the system is subjected to a mechanical loading cycle, resulting in

Fig. 1. Origami-wheel robot of two deformable wheels. (a) Isometric view with
indications of the mass centers for the wheels, 𝐺A and 𝐺B, and mass center of the
chassis, G; (b) Superior view, with cuttings on the wheels, for details of the attachment
of the wheels to the axes.

a residual displacement. The recovering process is achieved by the
heating of the SMA (T >𝑇A - a temperature where austenitic phase
is stable), inducing the transformation from martensite to austenite,
promoting the shape recovery. Fig. 3-b shows the shape memory effect
(SME) on a bias system, which means that the mechanical load applied
deforms the shape memory spring at the lower temperature. The SME
works against the force of the bias spring and, when the SMA spring
is cooled down, the bias actuator promotes the reorientation process
and therefore, the SMA spring changes between two configurations —
low and high temperatures, associated with open and closed origami
configurations.

The origami configuration change promotes the yaw motion that
defines the moving direction of the origami robot. This can be evalu-
ated by the radius variation that establishes a difference between the
wheels, by heating/cooling the SMAs actuators. Based on that, in order
to turn left (counterclockwise turn from wheel B to wheel A), a heating
cycle is applied to the SMAs on the wheel A, reducing its radius and
inducing a rotation to the left. At this point, a straight path is recovered
by either heating up wheel B, which will lead both wheels to the closed
configuration, or cooling down wheel A, which will lead both wheels
to the opened configuration. Once both wheels have the same radius,
the car keeps following a straight line.

3. Origami wheel model

Origami wheel is built by considering a waterbomb pattern that can
be understood as a tessellation of a unitary cell defined by a 6-creased
folding pattern (Fig. 4). This pattern belongs to a group of origami
classified as rigidly foldable, once that all the folding process occurs
on the creases only and the panels remain flat, without deformation.
Fang et al. [15] developed a study of the origami wheel for different
designs (number of columns and number of cells per column), verifying
that even with the bending motion, the structure has a rigidly foldable
region. They also showed operational ranges that are contained into the
rigidly foldable region.

Besides rigid-foldability hypothesis, symmetry conditions can be
assumed considering either geometric or external force conditions.
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Fig. 2. Origami-wheel concept. The structure is actuated by 8 identical SMAs placed around its larger radius and the restitution is provided by an elastic spring attached to acrylic
plates placed on the end points of the wheel.

Fig. 3. Typical force–displacement–temperature curves for SMA springs: (a) shape memory effect (SME); (b) SME on a bias system.

Fig. 4. Representation of a waterbomb tessellation in an opened configuration, showing the color-defined folds (mountain in blue and valley in red) (a), waterbomb tessellation
in a closed configuration (b), and an unitary cell (c). The arrows represent the position of the highlighted unitary cell on each tessellation.. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Based on that, rotational symmetry is observed, being related to ax-
ial movement during expansion, meaning that both ends are pulled
equally, avoiding snaps on origami sides. Under these assumptions,
a single cell is representative of the general origami wheel behavior.
Fonseca et al. [14] established a description of the origami wheel
considering symmetrical actuation, where the original complex system
with multiple degrees of freedom can be reduced to a one-degree of
freedom system. Fig. 5 defines a geometrical view of the structure,
leading to geometric relations presented in Eqs. (1)–(5).

𝐿2 = 𝑏 sin 𝛼 + 2𝑏 cos 𝛽 − 𝑏
2
sin 𝛽 (1)

𝑅2 = 𝑟 + 2𝑏 sin 𝛽 + 𝑏
2
cos 𝛽 = 𝑅1 + 𝑏 cos 𝛼 (2)

𝐿1 = 2𝑎 sin 𝜃 (3)

𝑅1 = 𝑎

(

sin 𝜃
tan 𝜋

8

− cos 𝜃

)

(4)

𝑅 =
𝐿1

2 sin 𝜋
8

(5)
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Fig. 5. Plan views of the origami wheel for a geometrical study. (a) and (b) has the XZ plan view — radial symmetry; (c) and (d) has the YZ plan view — axial symmetry.

Fig. 6. Geometric description of the origami-wheel opening/closure process.

Besides, it is possible to establish a geometric relation presented in
the sequence,

cos (𝜃) cos (𝛼) tan (𝜆) + |sin (𝛼)| = 1 (6)

Geometric relations can be solved as a function of 𝐿1, the SMA
length, represented by the unit cell opening, resulting in an explicit
relation 𝐿2 = 𝑓

(

𝐿1
)

, where 𝐿2 is the half-length of the elastic passive
spring. Based on that, the origami wheel can be modeled as a 1-degree
of freedom system (1-DOF) and the displacements of the SMAs and the
elastic passive spring can be related to each other based on geometrical
properties of the origami-wheel (Fig. 6).

4. Origami wheel robot model

This section presents the origami wheel robot mathematical model,
considering an independent wheel radius variation and therefore, each
one can rotate at different angular speed. The robot movement is

described with respect to a fixed observer, F, by the positioning of
the G point (X, Y, Z) and the yaw angle (𝛷), Fig. 7. These variables
can be written as a function of 𝑅A and 𝑅B, the A and B wheels radii,
respectively. The reduction of the radius of one wheel promotes the
yaw motion of the car, allowing maneuverability. The yaw motion
is described by the reference frame C

(

𝑥1, 𝑦1, 𝑧1
)

attached to G point
(Fig. 7-a). The roll movement of the car is characterized by a rotation
𝜃 (Fig. 7-b), related to the wheel radius’ reduction, being described
by the reference frame P

(

𝑥2, 𝑦2, 𝑧2
)

. The kinematics description of
the origami-wheel robot considers a reference frame attached to each
wheel: reference frame A

(

𝑥𝐴3 , 𝑦
𝐴
3 , 𝑧

𝐴
3
)

, which describes the rotation of
the wheel A, and B

(

𝑥𝐵3 , 𝑦
𝐵
3 , 𝑧

𝐵
3
)

, which describes the rotation of the
wheel B (Fig. 7-c and d respectively). The reference frame A rotates
following the point 𝑁A. Similarly, the reference frame B rotates fol-
lowing the point 𝑁B. Under these assumptions, the system kinematics
can be described by eight variables: position of the chassis (G) on plane
(x, y), yaw angle (𝛷), roll angle (𝜃), wheel radius (𝑅A, 𝑅B) and wheel
rotation (𝜙𝐴, 𝜙𝐵).

4.1. Kinematics

Kinematics analysis of the robot is developed considering reference
frames defined in the previous section (Fig. 7). The transformation ma-
trices among these frames are presented in the sequence considering a
general notation 𝑆1𝑻 𝑆2 (𝜁 ) that maps the transformation from reference
frame S1 to S2, according to a rotation 𝜁 .

𝐹 𝑻 𝐶 =
⎡

⎢

⎢

⎣

cos (𝛷) − sin (𝛷) 0
sin (𝛷) cos (𝛷) 0

0 0 1

⎤

⎥

⎥

⎦

; 𝐶𝑻 𝑃 =
⎡

⎢

⎢

⎣

1 0 0
0 cos (𝜃) sin (𝜃)
0 − sin (𝜃) cos (𝜃)

⎤

⎥

⎥

⎦

;

𝑃 𝑻 𝐴 =
⎡

⎢

⎢

⎣

cos
(

𝜙𝐴
)

0 sin
(

𝜙𝐴
)

0 1 0
− sin

(

𝜙𝐴
)

0 cos
(

𝜙𝐴
)

⎤

⎥

⎥

⎦

;

𝑃 𝑻 𝐵 =
⎡

⎢

⎢

⎣

cos
(

𝜙𝐵
)

0 sin
(

𝜙𝐵
)

0 1 0
− sin

(

𝜙𝐵
)

0 cos
(

𝜙𝐵
)

⎤

⎥

⎥

⎦

(7)

Inertial reference frame is denoted by F and therefore quantities
described with respect to it are called absolute. Four other mobile
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Fig. 7. Representation of the reference frames to describe the origami-wheel trajectory. (a) indication of the yaw motion (𝛷); (b) indication of the roll movement (𝜃); (c) and (d)
indication of the reference frame attached to each wheel, for spinning (𝛷A , 𝛷𝐵 ).

reference frames are considered: C, P, A and B. The velocity and
position of each mass of the car (wheels and chassis) are described in
the reference frame that follows its entity, meaning that is preferable
to use the least amount of transformations. Based on that, the chassis
is represented in the reference frame P and each wheel is represented
at its own reference frame, A or B.

The absolute linear velocity of the chassis, 𝑃 𝒗𝐺, and the absolute
angular velocity of the chassis, 𝑃𝝎𝑃 , are given by

𝑃 𝒗𝐺 =
⎡

⎢

⎢

⎣

−�̇�𝑅 sin (𝜃) + �̇� cos (𝛷) + �̇� sin (𝛷)
�̇�𝑅 + cos (𝜃) (�̇� cos (𝛷) − �̇� sin (𝛷))
�̇� + sin (𝜃) (�̇� cos (𝛷) − �̇� sin (𝛷))

⎤

⎥

⎥

⎦

(8)

𝑃𝝎𝑃 =
⎡

⎢

⎢

⎣

−�̇�
−�̇� sin (𝜃)
�̇� cos (𝜃)

⎤

⎥

⎥

⎦

(9)

where 𝑅 = (𝑅𝐴+𝑅𝐵)
2 . Besides, the absolute linear velocity of the center

of mass of the wheel, 𝑃 𝒗𝑖, and the absolute angular velocity of the
wheel, 𝑖𝝎𝑖, are given by

𝑃 𝒗𝑖 =
⎡

⎢

⎢

⎣

−�̇� (𝑅 sin (𝜃) + 𝜌 cos (𝜃)) + �̇� cos (𝛷) + �̇� sin (𝛷)
�̇�𝑅 + cos (𝜃) (�̇� cos (𝛷) − �̇� sin (𝛷))

�̇� − 𝜌�̇� + sin (𝜃) (�̇� cos (𝛷) − �̇� sin (𝛷))

⎤

⎥

⎥

⎦

(10)

𝑖𝝎𝑖 =
⎡

⎢

⎢

⎣

−�̇� cos
(

𝜙𝑖
)

− �̇� cos (𝜃) sin
(

𝜙𝑖
)

�̇�𝑖 − �̇� sin (𝜃)
−�̇� sin

(

𝜙𝑖
)

+ �̇� cos (𝜃) cos
(

𝜙𝑖
)

⎤

⎥

⎥

⎦

(11)

where it is assumed for wheel A, 𝑖 = 𝐴, 𝜙𝑖 = 𝜙𝐴 and 𝜌 = 𝑑 and for
wheel B, 𝑖 = 𝐵, 𝜙𝑖 = 𝜙𝐵 and 𝜌 = −𝑑.

The robot performs a roll movement around the axis 𝑥1, defining
the yaw motion, being 𝐻 the contact point between the chassis and
the floor (Fig. 7-b). The absolute linear velocity 𝐶𝒗𝐻 is given by,

𝐶𝒗𝐻 =
⎡

⎢

⎢

⎣

�̇� cos (𝛷) + �̇� sin (𝛷)
�̇� cos (𝛷) − �̇� sin (𝛷)

0

⎤

⎥

⎥

⎦

(12)

The velocity of point 𝑁𝑖 𝑖 = (𝐴,𝐵) is described in the reference
frame that follows the wheel rotation. Hence, the velocity of 𝑁𝑖 of the
wheel 𝑖, 𝑖 = 𝐴,𝐵, is given by 𝑖𝒗𝑁𝑖

=
[

𝑣𝑥3 𝑣𝑦3 𝑣𝑧3
]𝑇 , where each

component is presented in the sequence

𝑣𝑥3 = [�̇� cos (𝛷) + �̇� sin (𝛷)] cos
(

𝜙𝑖
)

+ [�̇� sin (𝛷) − �̇� cos (𝛷)]

× sin (𝜃) sin
(

𝜙𝑖
)

+ �̇�𝑖 − (�̇� + �̇�𝜌) sin
(

𝜙𝑖
)

− �̇� [𝜌 cos (𝜃) + 𝑅 sin (𝜃)] cos
(

𝜙𝑖
)

(13a)

𝑣𝑦3 = cos (𝜃)
[

−�̇� sin (𝛷) + �̇� cos (𝛷) + �̇�𝑅𝑖 cos
(

𝜙𝑖
)]

+ �̇�
[

𝑅 − 𝑅𝑖 sin
(

𝜙𝑖
)]

(13b)

𝑣𝑧3 = [�̇� cos (𝛷) + �̇� sin (𝛷)] sin
(

𝜙𝑖
)

− [�̇� sin (𝛷) − �̇� cos (𝛷)]

× sin (𝜃) cos
(

𝜙𝑖
)

+ (�̇� − �̇�𝜌) cos
(

𝜙𝑖
)

− �̇�𝑖𝑅𝑖

− �̇�{[𝜌 cos (𝜃) + 𝑅 sin (𝜃)] sin
(

𝜙𝑖
)

− 𝑅𝑖 sin (𝜃)} (13c)

where 𝜌 = 𝑑 and 𝑖 = 𝐴, for wheel 𝐴, and 𝜌 = −𝑑 and 𝑖 = 𝐵, for wheel
𝐵.

4.2. Constraints

The robot movement needs to be associated with constraints in
order to be properly described. Five nonslip conditions are described
in this formulation: each wheel roll without slipping in the direction
of the motion; both wheels maintain contact with the floor during the
entire motion, without penetration or jumping; and there is no slide on
the contact between the chassis and the soil, represented by the contact
point 𝐻 . The description of these constraints consider that, 𝜙𝐴 = 𝜋

2
and 𝜙𝐵 = 𝜋

2 ; 𝒆𝑧3 is the unitary vector on the motion direction, 𝑧𝑖3
(𝑖 = 𝐴,𝐵), and 𝒆𝑧1 is the unitary vector on the direction perpendicular
to the motion, 𝑧𝐶1 .
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Fig. 8. Potential energy of the polynomial constitutive model.

Considering the first nonslip condition, the velocity of 𝑁𝑖 vanishes
at the point of contact of each wheel with the soil in the direction of
the motion, 𝑧𝑖3. Therefore, the first nonslip condition is given by 𝑣𝑖𝑧3 = 0
at 𝜙𝑖 =

𝜋
2 . Therefore, the constraints are expressed by,

𝑣𝐴𝑧3 = 𝐴𝒗𝑁𝐴

(

𝜙𝐴 = 𝜋
2

)

⋅ 𝒆𝑧3 = 0

𝑣𝐵𝑧3 = 𝐵𝒗𝑁𝐵

(

𝜙𝐵 = 𝜋
2

)

⋅ 𝒆𝑧3 = 0
(14)

Based on these equations, the following constraints are defined,

�̇� cos (𝛷) + �̇� sin (𝛷) − �̇� [𝑑 cos (𝜃) −𝐷 sin (𝜃)] = �̇�𝐴𝑅𝐴 (15)

�̇� cos (𝛷) + �̇� sin (𝛷) + �̇� [𝑑 cos (𝜃) −𝐷 sin (𝜃)] = �̇�𝐵𝑅𝐵 (16)

where 𝐷 = 𝑅𝐴−𝑅𝐵
2 .

Next step is to analyze the vertical component of each wheel veloc-
ity described on either 𝐶 or 𝑃 reference frame. In the contact point of
each wheel with the soil, the vertical component of the velocity

(

𝑣𝑧1
)

vanishes. Therefore,

𝑣𝐴𝑧1 = 𝐶𝒗𝑁𝐴

(

𝜙𝐴 = 𝜋
2

)

⋅ 𝒆𝑧1 = 0

𝑣𝐵𝑧1 = 𝐶𝒗𝑁𝐵

(

𝜙𝐵 = 𝜋
2

)

⋅ 𝒆𝑧1 = 0
(17)

Considering the components described by Eqs. (13a) to (13c) and
the transformation matrices (7), the vertical component of the velocity
in the contact point 𝜙𝑖 =

𝜋
2 (𝑖 = 𝐴,𝐵) is given by

𝑣𝑧1 = −�̇�
[(

𝑅 − 𝑅𝑖
)

sin (𝜃) + 𝜌 cos (𝜃)
]

+
(

�̇� − �̇�𝑖
)

cos (𝜃) (18)

where 𝜌 = 𝑑 and 𝑖 = 𝐴 for wheel 𝐴, and 𝜌 = −𝑑 and 𝑖 = 𝐵, for wheel 𝐵.
Since 𝑅 = 𝑅𝐴+𝑅𝐵

2 and 𝐷 = 𝑅𝐴−𝑅𝐵
2 , and imposing the nonslip condition

(

𝑣𝑧1 = 0
)

, the third constraint is reduced to a single equation as follows

−�̇� [−𝐷 sin (𝜃) + d cos (𝜃)] − �̇� cos (𝜃) = 0 (19)

Finally, the last condition considers the contact between the chassis
and the soil. Since there is not sliding motion in the direction perpen-
dicular to the motion, the constraint is obtained by imposing that the
lateral absolute velocity vanishes,

𝑣𝐻𝑦1 = 𝐶𝒗H.𝒆𝑧1 = 0 (20)

Therefore, based on the previous definitions, this is represented by
the following equation

�̇� sin (𝛷) − �̇� cos (𝛷) = 0 (21)

Therefore, kinematics is described with 8 variables (𝑥, 𝑦,𝛷, 𝜃, 𝑅𝐴,
𝑅𝐵 , 𝜙𝐴, 𝜙𝐵) and 4 constraints (Eq. (14), (15), (16), (17)), resulting in a
4-DOF model.

Fig. 9. Driven situations of the robot: (a) driven torques at each wheel; (b) robot linear
velocity.

4.3. Equations of motion

The dynamical model of the origami wheel robot is built by en-
ergetic approach, considering Lagrange multipliers to represent con-
straints. The Lagrangian is defined as the difference between the ki-
netic, 𝐸𝑘, and potential, 𝐸𝑝, energies (L = 𝐸𝑘 −𝐸𝑝), being described as
a function of generalized coordinates, 𝑞∗𝑖 =

[

𝑥, 𝑦,𝛷, 𝜃, 𝑅𝐴, 𝑅𝐵 , 𝜙𝐴, 𝜙𝐵
]𝑇 ,

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗𝑖

)

− 𝜕L
𝜕𝑞∗𝑖

= 𝑄𝑖 +
𝑁−𝑁0
∑

𝑗=1
𝜆𝑗𝑓𝑖𝑗 (𝑖 = 1,… , 𝑁) (22)

where 𝑄𝑖 are the generalized forces, N is the number of variables that
describe the system, 𝑁0 is the number of degrees of freedom, 𝜆𝑗 are the
Lagrange multipliers and 𝑓𝑖𝑗 are the multiplier factors for the constraint
equation.

Non-holonomic constraints defined in the previous section are ex-
pressed by the following equations. The multiplier factors for the
Lagrange equation are obtained by comparing Eq. (23) with each one
of the constraints (Eqs. (15), (16), (19) and (21)), expressed in Table 1.
𝑁
∑

𝑗=1
𝑓𝑖𝑗𝛿𝑞

∗
𝑖 = 0 (𝑖 = 1,… , 𝑁 −𝑁0) (23)

The kinetic energy can be divided into translational, 𝐸𝑇
𝑘 , and rota-

tional 𝐸𝑅
𝑘 energies, presented in the sequence,

𝐸𝑇
𝑘 =

𝑚𝑡
2

{

�̇�2 + �̇�2 + �̇�2 − 2�̇�𝑅 sin (𝜃) [�̇� cos (𝛷) + �̇� sin (𝛷)]

6
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Fig. 10. Representation of the external excitation represented by the force𝐹 (𝑡) = 𝐹1 (𝑡) + 𝐹2 (𝑡), where the contribution of each 𝐹𝑖 (𝑡) is highlighted on the right, being (a) for 𝐹1 (𝑡)
and (b) for 𝐹2 (𝑡) .

Fig. 11. Representation for an arbitrary desired path of the origami wheel robot. (a) Thermal load applied to each wheel individually, promoting a turn counterclockwise and
then clockwise; (b) desired arbitrary path, starting with a straight line and ending on a straight line, shifted vertically from the original one; (c) zoom on the region I pointed at
(b), where the car follows a straight line; (d) zoom on the region II, where the car turns left (counterclockwise turn from wheel B to wheel A).

Table 1
Multiplier factors for the constraint equations associated with each Lagrange multiplier.
𝑓𝑖𝑗 𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4

𝑖 = 1 cos (𝛷) cos (𝛷) 0 sin (𝛷)
𝑖 = 2 sin (𝛷) sin (𝛷) 0 −cos (𝛷)
𝑖 = 3 𝐷 sin (𝜃) − 𝑑 cos (𝜃) 𝑑 cos (𝜃) −𝐷 sin (𝜃) 0 0
𝑖 = 4 0 0 𝑑 cos (𝜃) −𝐷 sin (𝜃) 0
𝑖 = 5 0 0 cos(𝜃)∕2 0
𝑖 = 6 0 0 −cos(𝜃)∕2 0
𝑖 = 7 −𝑅𝐴 0 0 0
𝑖 = 8 0 −𝑅𝐵 0 0

+
[

�̇�2 sin2 (𝜃) + �̇�2
]

𝑅2

+ 2
[

�̇�𝑅 cos (𝜃) + �̇� sin (𝜃)
]

[�̇� cos (𝛷) − �̇� sin (𝛷)]
}

+
[

(𝑚𝑡 − 𝑚𝐺)𝑑2

2
+𝑀

(

𝑓 2
𝐴 + 𝑓 2

𝐵
)

]

[

�̇�2 cos2 (𝜃) + �̇�2
]

+𝑀
( ̇𝑓 2

𝐴 + ̇𝑓 2
𝐵
)

(24)

𝐸𝑅
𝑘 = �̇�2

2
(

𝐼𝐴1 + 𝐼𝐵1 + 𝐽1
)

− �̇� sin (𝜃)

(

�̇�𝐴𝐼𝐴2
2

+
�̇�𝐵𝐼𝐵2
2

)

+ �̇�2

2
[(

𝐼𝐴1 + 𝐼𝐵1 + 𝐽3
)

cos2 (𝜃) +
(

𝐼𝐴2 + 𝐼𝐵2 + 𝐽2
)

cos2 (𝜃)
]

(25)

where 𝑚𝐺 is the mass of the chassis, 𝑀 is the mass of each acrylic plate
and 𝑚𝑡 is the total mass of robot, including chassis and wheels; 𝐼 𝑖1, 𝐼

𝑖
2

and 𝐼 𝑖3 are the principal inertia moments of the origami wheel (𝑖 = 𝐴,𝐵)
related to the axis 𝑥𝑖3, 𝑦

𝑖
3 and 𝑧𝑖3, correspondingly; and 𝐽1, 𝐽2 and 𝐽3 are

7
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Fig. 12. Origami wheel robot movement for different driven conditions. (a) Path; (b) velocity driven motion: time evolution of the velocities of the chassis and wheels and time
evolution of the torques; (c) torque driven motion: time evolution of the linear velocities of the chassis and wheels and time evolution of the torques.

the principal inertia moments of the chassis related to the axis 𝑥2, 𝑦2
and 𝑧2, correspondingly.

The potential energy of the system is a function of the poten-
tial energy of actuators (SMAs and elastic passive spring) and the
gravitational energy, being expressed as,

𝐸𝑝 = 𝐸𝑆𝑀𝐴𝐴
+ 𝐸𝑆𝑀𝐴𝐵

+ 𝐸𝐸𝐴
+ 𝐸𝐸𝐵

+ 𝑚𝑡𝑔𝑅 cos (𝜃) (26)

The expressions for 𝐸𝑆𝑀𝐴 and 𝐸𝐸 depend on the constitutive mod-
els. It is adopted that the elastic spring presents linear elastic behavior
and the SMA is described by the polynomial constitutive model pro-
posed by Falk [16]. This one-dimensional model assumes a temperature
dependent sixth order polynomial free energy 𝐸𝑆𝑀𝐴 (𝜀, 𝑇 ) where 𝜀 is
the strain and T is the SMA temperature. Based on this potential energy
for an SMA sample, it is possible to define an analogous expression
for an SMA spring, employed as actuator. Aguiar et al. [17] showed
that similar expression 𝐸𝑆𝑀𝐴 (𝑢, 𝑇 ), where 𝑢 is the displacement, can
be obtained assuming a homogeneous phase transformation on the SMA
wire. Therefore, constitutive coefficients are replaced for new param-
eters that depend on the SMA the spring diameter, 𝐷𝑆 , the number
of spirals, 𝑁𝑆 , and the diameter of the SMA wire, 𝑑𝑆 . Based on that,
three macroscopic phases are treated: austenite, A, stable at elevated
temperatures, and two variants of the martensite, 𝑀+ and 𝑀−, induced
by tension and compression, respectively. The sixth-order polynomial
free energy is such that at high temperatures, the free energy has only
one minimum at vanishing strain; and at low temperatures, it has two
minima at non-vanishing strains and a maximum at the vanishing strain
(Fig. 8).

𝐸𝑆𝑀𝐴 = 𝐸𝑆𝑀𝐴 (𝑢, 𝑡) =
𝑐1

(

𝑇 − 𝑇𝑀
)

𝑢2

2
−

𝑐2𝑢4

4
+

𝑐3𝑢6

6
(27)

where 𝑇𝑀 is the temperature below which martensite is stable and 𝑐𝑖

are defined as follows: 𝑐1 = 𝑐1

(

𝑑𝑆
𝜋𝐷2

𝑆𝑁𝑆

)2
, 𝑐2 = 𝑐2

(

𝑑𝑆
𝜋𝐷2

𝑆𝑁𝑆

)4
and 𝑐3 =

𝑐3

(

𝑑𝑆
𝜋𝐷2

𝑆𝑁𝑆

)6
, where 𝑐𝑖 (𝑖 = 1, 2, 3) are constitutive model parameters.

Another important parameter is the temperature 𝑇𝐴 that defines the
region where the energy curve has only one minimum, representing the
temperature above which only austenitic phase is stable on a stress-free
state.

The passive bias actuator is considered to be a linear elastic with a
quadratic energy, expressed by the following equation

𝐸𝐸 = 𝑘𝑢2

2
(28)

where 𝑘 = 𝐺𝐸𝑑𝐸
𝜋𝐷2

𝐸𝑁𝐸
is the stiffness defined by the spring diameter, 𝐷𝐸 ,

the wire diameter, 𝑑𝐸 , the number of spirals, 𝑁𝐸 , and the tangent
coefficient of the material component of the spring, 𝐺𝐸 .

By employing the Lagrange equation (22), considering the con-
straints expressed in Table 1, and the non-conservative forces acting
on the system, it is possible to obtain the following equations. Note
that external forces applied to the wheels are represented by 𝐹𝐴 (𝑡) and
𝐹𝐵 (𝑡), 𝜉 is the viscous damping coefficient that represents the general
dissipation of the system that includes the SMA and other kinds of
dissipation associated to the folding process of the origami-wheel. The
dissipation related to the wheel rolling motion is represented by the
viscous damping coefficient, 𝜉𝑤, associated with any dissipation of the
wheel, being related to the angular velocity of the wheels; 𝜏𝐴 and 𝜏𝐵
are the torques acting on each wheel.

8
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Fig. 13. Thermal cycles (a – d) and path (e) described by the projection of G point on the fixed frame (X,Y,Z).

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗1

)

− 𝜕L
𝜕𝑞∗1

= 𝜆1 cos (𝛷) + 𝜆2 cos (𝛷) + 𝜆4 sin (𝛷)

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗2

)

− 𝜕L
𝜕𝑞∗2

= 𝜆1 sin (𝛷) + 𝜆2 sin (𝛷) − 𝜆4 cos (𝛷)

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗3

)

− 𝜕L
𝜕𝑞∗3

=
(

𝜆1 − 𝜆2
)

[𝐷 sin (𝜃) − 𝑑 cos (𝜃)]

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗4

)

− 𝜕L
𝜕𝑞∗4

= −𝜆3 [𝐷 sin (𝜃) − 𝑑 cos (𝜃)]

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗5

)

− 𝜕L
𝜕𝑞∗5

= 𝐹𝐴 (𝑡) − 𝜉�̇�𝐴 + 𝜆3
cos (𝜃)

2

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗6

)

− 𝜕L
𝜕𝑞∗6

= 𝐹𝐵 (𝑡) − 𝜉�̇�𝐵 − 𝜆3
cos(𝜃)

2

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗7

)

− 𝜕L
𝜕𝑞∗7

= 𝜏𝐴 − 𝜉𝑤�̇�𝐴 − 𝑅𝐴𝜆1

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗8

)

− 𝜕L
𝜕𝑞∗8

= 𝜏𝐵 − 𝜉𝑤�̇�𝐵 − 𝑅𝐵𝜆2

(29)

Eliminating the Lagrange multipliers of the set of Eqs. (29), four

equations of motion describe the origami robot movement

(

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗1

)

− 𝜕L
𝜕𝑞∗1

)

cos (𝛷) +

(

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗2

)

− 𝜕L
𝜕𝑞∗2

)

sin (𝛷)

=
𝜏𝐴 − 𝜉𝑤�̇�𝐴 −

(

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗7

)

− 𝜕L
𝜕𝑞∗7

)

𝑅𝐴
+

𝜏𝐵 − 𝜉𝑤�̇�𝐵 −
(

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗8

)

− 𝜕L
𝜕𝑞∗8

)

𝑅𝐵

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗3

)

− 𝜕L
𝜕𝑞∗3

=

⎛

⎜

⎜

⎜

⎜

⎝

𝜏𝐴 − 𝜉𝑤�̇�𝐴 −
(

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗7

)

− 𝜕L
𝜕𝑞∗7

)

𝑅𝐴
−

𝜏𝐵 − 𝜉𝑤�̇�𝐵 −
(

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗8

)

− 𝜕L
𝜕𝑞∗8

)

𝑅𝐵

⎞

⎟

⎟

⎟

⎟

⎠

× [𝐷 sin (𝜃) − 𝑑 cos (𝜃)]

9
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Fig. 14. Path followed by the origami-wheel robot when passing through different
soils, represented by hatched regions and described by an external stimulus. A zoom
from the first dashed regions is also presented.

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗5

)

− 𝜕L
𝜕𝑞∗5

= 𝐹𝐴 (𝑡) − 𝜉�̇�𝐴 −

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗4

)

− 𝜕L
𝜕𝑞∗4

𝐷 sin (𝜃) − 𝑑 cos (𝜃)
cos (𝜃)

2

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗6

)

− 𝜕L
𝜕𝑞∗6

= 𝐹𝐵 (𝑡) − 𝜉�̇�𝐵 +

𝑑
𝑑𝑡

(

𝜕L
𝜕�̇�∗4

)

− 𝜕L
𝜕𝑞∗4

𝐷 sin (𝜃) − 𝑑 cos (𝜃)
cos (𝜃)

2

(30)

Equations of motion can be rewritten in matrix form as follows,

𝑴 (𝒒) �̈� + 𝑪 (�̇�, 𝒒) �̇� +𝑫 (𝒒) �̇� + 𝒈 (𝒒) = 𝒇 𝑒𝑥𝑡 (31)

where 𝒒 =
[

𝑥,𝛷,𝑅𝐴, 𝑅𝐵
]𝑇 is the independent generalized coordinate

vector, 𝑴 (𝒒) is the inertia matrix, 𝑪 (�̇�, 𝒒) is the matrix containing
the higher-order terms on �̇�, 𝑫 (𝒒) is the damping matrix, 𝒈 (𝒒) is the
stiffness and gravitational vector and 𝒇 𝑒𝑥𝑡 is the vector with the external
forces. The inertia matrix is composed by terms that evolve on time
with the form

𝑴 (𝒒) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑚11
𝑚21
0
0

𝑚12
𝑚22
0
0

0
0

𝑚33
𝑚34

0
0

𝑚34
𝑚44

⎤

⎥

⎥

⎥

⎥

⎦

(32)

with determinant det (𝑴 (𝒒)) =
(

𝑚11𝑚22 − 𝑚12𝑚21
) (

𝑚33𝑚44 − 𝑚2
34
)

.
Since its determinant is always non-zero, it is possible to invert the

inertia matrix, resulting in the following equation.

�̈� = 𝑴−1 (𝒒)
[

𝒇 𝑒𝑥𝑡 − 𝑪 (�̇�, 𝒒) �̇� −𝑫 (𝒒) �̇� − 𝒈 (𝒒)
]

(33)

This equation of motion is solved using a fourth order Runge–Kutta
method with fixed steps using the equation in its canonical form.

Fig. 15. Binary representation of the wheels related to the dashed region in Fig. 14.. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 16. Time evolution of the wheels’ radius for the cases (a) 𝛿2 = 0𝑁 ; (b) 𝛿2 = 0.5𝑁 ; (c) 𝛿2 = 1𝑁 and (d) 𝛿2 = 1.5𝑁 .

4.4. Different driven cases

The movement of the robot is driven by the motors attached to each
one of the wheels, described by a torque 𝜏𝑖 (𝑖 = 𝐴,𝐵). Alternatively, the
motion can be driven by the robot linear velocity, instead of prescribing
the torques. The two driving possibilities are represented in Fig. 9.

Based on that, consider a situation where the torques are prescribed.
The resistance to rotation is assumed to be the same for both wheels,
being represented by 𝜉𝑤�̇�𝑖. In this regard, the torque driven motion of
the robot has the following velocity,

𝑣𝐺 =
𝑣𝐴 + 𝑣𝐵

2
=

𝜏𝐴𝑅𝐴
2𝜉𝑤

+
𝜏𝐵𝑅𝐵
2𝜉𝑤

(34)

Alternatively, by considering a motion driven by the robot linear
velocity, since the wheels radius change, the linear velocity is a function
of the angular velocity of the wheel and the radius rate variation, given
by

𝑣𝑖 = �̇�𝑖𝑅𝑖 + 𝜙𝑖�̇�𝑖 (𝑖 = 𝐴 or 𝐵) (35)

By considering the dynamic equilibrium of a single wheel under rota-
tion, the torques 𝜏𝐴 and 𝜏𝐵 are obtained as follows: 𝜏𝑖 − 𝜉𝑤�̇�𝑖 = 𝐼𝑖�̈�𝑖
(𝑖 = 𝐴 or 𝐵). By calculating �̇�𝑖 and �̈�𝑖 from kinematics argues, the
following equation is obtained,

𝜏𝑖 = −
𝐼𝑖
𝑅𝑖

𝜙𝑖�̈�𝑖 − 2
𝐼𝑖
𝑅𝑖

�̇�𝑖�̇�𝑖 −
𝜙𝑖𝜉𝑤
𝑅𝑖

�̇�𝑖 + 𝜉𝑤
𝑣𝐺
𝑅𝑖

(𝑖 = 𝐴 or 𝐵) (36)

4.5. External forcing

The origami–soil interaction is a difficult problem to be described.
The essence of the interaction is the nonlinearity in contact mechanics,

where the contact reaction and contact surface can only be specified
after contact [3]. Usually, the wheel–soil interaction takes into account
the contact area between the wheel and the soil, the wheel flexibility,
soil malleability and wheel sinkage [18]. Flexible wheels, however,
require a modified study of the pressure-sinkage models, once that the
wheel flexibility might lead to larger sinkage areas when comparing
a rigid and a flexible wheel with same radius [19–21]. A simplified
description of origami wheel–soil interaction can be represented by
an external mechanical stimulus represented by an external force. In
this regard, soil interaction can be described by different harmonic
excitations, representing the main excitation and the soil roughness,
for instance. Dissipative aspects are represented by the general term
presented in the previous subsection. This approach allows one to
exploit deviations of the robot desired path. Hence, for the sake of
simplicity, it is adopted an external stimulus represented by two terms:
𝐹 (𝑡) = 𝐹1 (𝑡) + 𝐹2 (𝑡), where 𝐹1 (𝑡) = 𝛿1 sin

(

𝜔1𝑡
)

and 𝐹2 (𝑡) = 𝛿2 sin(𝜔2𝑡).
The term 𝛿1 sin

(

𝜔1𝑡
)

represents different forms of the soil (sinu-
soid, for instance - Fig. 10 a). On the other hand, the second term,
𝛿2 sin

(

𝜔2𝑡
)

, represents a perturbation over the original soil (Fig. 10 b).

5. Numerical simulations

Numerical simulations of the origami wheel robot are carried out
considering system parameters presented in Table 2 that presents con-
stitutive and actuator parameters together with the robot construction
characteristics.

Initially, consider a situation where the motion is driven by a
constant linear velocity |

|

𝒗𝐺|| = 2 m∕s, associated with torque values
𝜏𝐴 = 𝜏𝐵 = 0.0141 Nm and 𝜉𝑤 = 0.001 Nms∕rad. The path changes are
defined from wheel radius variations. During the first part of the path,
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Fig. 17. Phase portrait and Poincaré section of wheel A for 𝑚𝐺 = 0.1 kg subjected to F(t) for the cases (a) 𝛿2 = 0𝑁 ; (b) 𝛿2 = 0.5𝑁 ; (c) 𝛿2 = 1𝑁 and (d) 𝛿2 = 1.5𝑁 .

Fig. 18. Phase portrait and Poincare section of wheel B for 𝑚𝐺 = 0.1 kg subjected to F(t) for the cases (a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N.

the robot is moving forward. A heating/cooling cycle is then applied to
the wheel A. During the heating process, the SMA recovers its residual
displacement, reducing the wheel radius, promoting a path change of
the robot to the left (counterclockwise rotation — excerpt II). When it
is cooled, the elastic spring induces a displacement similar to the initial

one, recovering the original origami shape. Since both radii are the
same, the car returns to a straight path (excerpt III). The same process
is then applied to the wheel B, turning the origami car to the right
(clockwise rotation — excerpt IV), and putting it back to a straight path
(excerpt V) on a subsequent cooling process. Fig. 11 shows the robot
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Fig. 19. Path followed by the origami-wheel robot when passing through different soils
considering 𝑚𝐺 = 0.2 kg.

behavior. Fig. 11-a presents the thermal cycles applied to the wheels;
Fig. 11-b shows the path followed by the origami robot and Fig. 11-c
and Fig. 11-d show zooms at the excerpt I and II, respectively. Note
that both heating/cooling cycles have the same rate, and the phase
transformation martensite–austenite is completed during the heating
process and the reverse austenite–martensite is completed during the

Table 2
Constitutive, mechanical and geometric parameters.

Inertial terms 𝑚𝐺 (kg) 𝑚𝑡 (kg) M (kg)
0.1 0.164 0.012

Polynomial model 𝑐1 (MPa/K) 𝑐2 (MPa) 𝑐3 (MPa)
5 7.0 × 104 7.0 × 106

Elastic spring 𝑑𝐸 (m) 𝑁𝐸 𝐺𝐸 (GPa) 𝐷𝐸 (m)
2.0 × 10−3 40 30.0 30.0 × 10−3

SMA spring 𝑑𝑠 (m) 𝑁𝑠 𝐷𝑠 (m) 𝑇𝑀 (K) 𝑇𝐴 (K)
1.0 × 10−3 10 2.5 × 10−3 291.4 326.4

cooling process, which makes the final excerpt (V) and the first one (I)
parallel to each other.

Fig. 12 presents a comparison between the velocity driven and
torque driven cases, considering the same temperature changes pre-
sented in Fig. 11. Fig. 12-a presents both paths followed by the origami
robot, showing dramatic differences. During the heating/cooling pro-
cess, each wheel individually reduces/increases its radius, promoting
a change on the origami robot velocity. Note that the velocity driven
case is associated with torques that change their values during the
heating/cooling process. The torque of the wheel under the temper-
ature variation increases its value to compensate the radius reduction,
keeping the velocity constant at 2 m/s. Once the SMA is cooled down
and the initial shape is restored, the torque goes back to the initial
value of 0.0141 Nm, as can be seen at Fig. 12-b. On the other hand,
for the torque driven case, a reduction on the wheel radius results on
a reduction of the wheel velocity to compensate it and keep the torque
constant (Fig. 12-c).

From now on, all simulations are performed considering the velocity
driven case with |

|

𝒗𝐺|| = 2 m∕s. Different thermal loads are investigated,

Fig. 20. Time evolution of the wheels’ radius considering 𝑚𝐺 = 0.2 kg for the cases: (a) 𝛿2 = 0𝑁 ; (b) 𝛿2 = 0.5𝑁 ; (c) 𝛿2 = 1𝑁 and (d) 𝛿2 = 1.5𝑁 .
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Fig. 21. Phase portrait and Poincare section of wheel A considering 𝑚𝐺 = 0.2 kg for the cases: (a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N.

Fig. 22. Phase portrait and Poincare section of wheel B considering 𝑚𝐺 = 0.2 kg for the cases: (a) 𝛿2 = 0 N; (b) 𝛿2 = 0.5 N; (c) 𝛿2 = 1 N and (d) 𝛿2 = 1.5 N.

considering that the origami wheel robot path is described by the
projection of the G point (path followed by the mass center of the
robot). Basically, four cases are treated: a desired reference path, Case I
(Fig. 13-a); both wheels are heated in the same way inducing a partial
phase transformation, Case II (Fig. 13-b); heating induce incomplete
phase transformation on wheel A and complete on wheel B, Case

III (Fig. 13-c); heating induce the opposite case of the previous one,
complete phase transformation on wheel A and incomplete on wheel
B, Case IV (Fig. 13-d).

It should be pointed out that, when the thermal cycle is applied sym-
metrically, with the same rate and limits on both wheels, the origami
robot is able to follow a similar path (final straight line is parallel to the
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Fig. 23. Dynamic response of the system when subjected to the force F (t). (a) Force on time with a selection of one period (T) with the phase going from 0 to 2𝜋; (b) Spectrum
diagram for 𝑅A evaluated on 𝜌.

excerpt V in Fig. 11-b), despite of the path curvature, returning to the
initial orientation (X axis). The partial phase transformation promotes
a smaller radius curvature that makes the origami robot to follow a
straight path either towards south-east (Case III) or towards north-
east (Case IV) with the same inclination related to X axis. After the
heating cycle is finished, a plateau of constant temperature is reached
where T>𝑇A. Under this condition, it is possible to find a linear relation
between the length of the plateau (time that the high temperature is
kept constant) and the path curvature described by origami robot.

Nonlinear characteristics of the origami wheel robot can provide
complex dynamical behavior and small perturbations can either lead
the system to a chaotic behavior or dramatically change its response. In
order to explore the influence of these perturbations, a soil interaction

is considered and represented by an external mechanical stimulus
(external force). Simulations are performed considering 𝛿1 = 10 N,
𝜔1 = 200 rad/s and 𝜔2 = 300 rad/s. The value of the parameter 𝛿2 is
chosen in order to represent different perturbations, changed on each
simulation.

Fig. 14 presents an analysis of the influence of the perturbation
on the origami wheel robot path in four cases, evaluating deviations
from the desired path, evaluated with a constant velocity and 𝐹 (𝑡) =
0, with the thermal cycle presented in Fig. 11. The hatched regions
on the domain represent perturbation zones related to different soils
that excite the wheel with a force 𝐹 (𝑡). Four situations are treated
considering different levels of perturbation: 𝛿2 = 0(force is a pure
sine, without perturbation), 𝛿2 = 0.5, 𝛿2 = 1 and 𝛿2 = 1.5. For

15



L.M. Fonseca and M.A. Savi International Journal of Non-Linear Mechanics 125 (2020) 103533

Fig. 24. Path described by the G point for the chaotic and the periodic responses.

all cases, the origami-wheel robot passes through the dashed region
at least once, promoting a deviation of the original path. Depending
on the angle that the robot entries the dashed region, it can have
either one or both wheels over the perturbed soil. Fig. 14 also shows
a zoom that illustrates an example situation for the case 𝛿2 = 1. Note
that initially, only the wheel A is subjected to the external force and
afterwards, both wheels are over the dashed region, being subjected
to the same perturbation. When 𝛿2 = 0𝑁 , after the cooling process of
wheel A, the wheel A stabilizes at an opened configuration, while wheel
B stabilizes at a closed configuration (see Fig. 6), which promotes a
curved path. A similar behavior occurs for the case 𝛿2 = 1.5N, although
the origami robot passes through a second dashed region, changing its
initial deviation.

Fig. 15 presents a better idea of the external stimulus considering
a binary representation of the wheel with respect to the region. This
binary representation evaluates only if the wheel is contained within
a dashed region or not. For all four cases from Fig. 14, represented
respectively on Fig. 15, the wheel A is represented by a blue line, while
wheel B is represented by a red line. If the wheel is outside of the
region, it is given a value 1. Otherwise, if the wheel touches the dashed
region such that an external force acts on it, it is given a value 0. Note
that for all four cases, both wheels reach the dashed region. For the
cases 𝛿2 = 0, shown in Fig. 15-a, and 𝛿2 = 0.5, shown in Fig. 15-b, wheel
A is the first to reach the dashed region and also the first to leave it.
Besides, for these two cases, only one dashed region is reached. For the
case 𝛿2 = 1, shown in Fig. 15-c, two dashed regions are reached by the
wheels. On the first region, wheel A is the first to enter and also the
first to leave. On the second region, however, wheel A is subjected to
an external force longer than wheel B, once that wheel A is the first to
enter and the last to leave that region. This second region is highlighted.
Finally, for the case 𝛿2 = 1.5, shown in Fig. 15-d, two regions interfere
with the car motion. The first one acts similarly to the other three
cases, where wheel A is the first to enter and also the first to leave the
dashed region. However, on the second region, wheel B is subjected to
an external force longer than wheel A, once that it stays longer on that
dashed region.

The external stimulus acting on the wheels due to the soil inter-
actions promotes oscillations on the wheels, as can be observed in
Fig. 16 that shows time evolution of radius 𝑅A and 𝑅B. The dashed lines
indicate regions where the wheel is passing through the perturbation
region (hatched regions in Fig. 14). Note that the largest deviation
related to the desired path occurred on cases where the wheels stabilize
at different radius after the first cooling process, indicating that a

correction on the path can be made by controlling the reverse phase
transformation, austenite–martensite.

The dynamical behavior of origami wheel A for each of the cases is
presented in Fig. 17 where the phase portraits and Poincaré sections are
taken considering the first region marked on Fig. 16 (between 12 and
18 s). Similarly, the dynamical behavior for the wheel B is presented
in Fig. 18. Note that both wheels have the same qualitative behavior
for each case. For 𝛿2 = 0.5𝑁 , the system has a period-2 response, while
the other three cases have a chaotic response. These oscillations can
be critical for the origami structure since the creased regions are being
continuously bended/released [22].

It is clear that the origami-wheel robot has a strong sensitivity
to parameter change. Based on that, its design needs to be properly
developed in order to avoid undesirable behaviors. In this regard,
previous simulations on Fig. 14 are revisited considering a different
inertia, 𝑚𝐺 = 0.2 kg. Under this new condition, the small perturbation
condition (𝛿2 = 0.5) presents deviation on path that is less aggres-
sive than the one presented by the previous case since the change
altered the robot stabilization capacity, stabilizing the wheels after
the heating/cooling process (Fig. 19). Besides, the increase on the
inertia reduces the sensitivity of the system to external stimulus. For
all cases, both wheels stabilize at the same configuration after the
first heating/cooling cycle (Fig. 20-a to d), allowing the robot to keep
following a straight path. The higher perturbation cases (𝛿2 = 1𝑁
and 𝛿2 = 1.5𝑁) promote a deviation to the right (clockwise rotation)
during the second heating/cooling process, once that wheel B stays
in an intermediate configuration before stabilizes at an opened one,
resulting in a yaw motion clockwise. By changing the inertia, the
dynamic response changes from chaotic to period-1 response for the
case 𝛿2 = 0𝑁 and to a period-2 for the other cases. Phase portraits and
Poincaré sections for each one of these cases are represented by Fig. 21
for wheel A and Fig. 22 for wheel B.

From now on, all simulations are carried out considering that 𝑚𝐺 =
0.1 kg. Chaotic systems present a high sensitivity to initial conditions
and, as a result, responses starting at two close initial conditions,
develop divergent trajectories. By considering the origami wheel robot,
this sensitivity can be represented by small changes at position where
the soil interaction starts, leading to drastic changes on system behav-
ior, influencing the path described by the origami robot. Previously,
the soil perturbations are evaluated through the robot path that crosses
different soils and therefore, changes the external stimulus that causes
the dynamic behavior of the system. Now, a different situation is of
concern considering that the perturbation is kept constant, a case where
the system has a periodic response (𝛿2 = 0.5𝑁), and the phase of
the external excitation changes. Under this assumption, consider a
situation where both wheels are excited by the same external force:
𝐹 (𝑡) = 10 sin (200𝑡 + 𝜌) + 0.5 sin (300𝑡 + 𝜌), where 𝜌 represents a phase.
In order to evaluate the influence of this phase 𝜌, a spectrum diagram
is generated monitoring a cut along one period of the external force
(Fig. 23-a), starting from the case 𝜌 = 0 and increasing the phase
until 𝜌 = 2𝜋. Note that when 𝜌 = 0 the system presents a period-2
response (Fig. 17-b). It should be noted that the increase of the phase
causes a change on the system response to a chaotic behavior (Fig. 23-
b). In both conditions no thermal cycle is applied, meaning that the
origami robot must follow a straight line. Fig. 24 shows robot paths
by considering two different phases: 𝜌 ≅ 0.765rad, associated with a
periodic behavior of the wheel; and 𝜌 ≅ 0.558rad, associated with a
chaotic behavior. For the periodic response, the robot follows a linear
path, while it presents a large deviation on the path for the chaotic
case. The upper diagrams in Fig. 23-a are representations of the instant
that the wheel enters the perturbed soil, which impacts on the first
interaction between the wheels and the soil. On the upper-left diagram,
a representation for the chaotic motion, the wheel enters the soil on
an instant such that the interaction is similar to an excitation on the
wheel starting near the maximum achievable value for the 𝐹 (𝑡). On
the upper-right diagram, a representation for the periodic motion, the
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Fig. 25. Synchronization between wheels A and B. (a) Time evolution of wheels’ radius with a zoom at the permanent regime; (b) phase portrait of wheels A and B at the
synchronized configuration; (c) path described by the origami robot; (d) radius manifold showing the synchronization.. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

wheel enters the soil on an instant such that the interaction between
the rough soil and the wheel is similar to an excitation on the wheel
starting at the maximum achievable value for 𝐹 (𝑡), i.e., the peak. This
first interaction is important to define the general behavior of the car
while rolling over the rough soil.

Origami wheel robot has its paths defined by the dynamical be-
havior of the wheels. Therefore, it is essential to understand their
global dynamical behavior. An interesting phenomenon related to the
origami dynamics is the synchronization of the wheel behaviors. This
means that there is a trend that both wheels have the same qualitative
response in steady state. According to the previous simulations, it is
concluded that a perturbation of 𝛿2 = 0.5 is associated with a periodic
behavior of the wheel while a perturbation of 𝛿2 = 1.5 is related to

a chaotic behavior (see Fig. 17). Now, a situation where each wheel is
subjected to a different perturbation is of concern. Under this condition,
it is expected that one wheel presents a periodic response while the
other presents a chaotic response. The coupling between the wheels
promotes a synchronization of their dynamical behavior, leading to
similar responses of both wheels.

Therefore, consider a situation where 𝐹𝐴 (𝑡) = 10 sin (200𝑡) + 0.5 sin
(300𝑡) and 𝐹𝐵 (𝑡) = 10 sin (200𝑡) + 1.5 sin (300𝑡). Thermal effects are not
considered which means that a constant temperature is applied to both
wheels (𝑇 = 288 K). Fig. 25 presents results of this simulation showing
that the system presents a transient chaos during approximately 22 s
and, afterwards, the wheels synchronize, presenting a period-2 response
(Fig. 25-a). Through the zoom of the steady state, it is noticeable that
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Fig. 26. Chaotic behavior of wheels A and B. (a) Time evolution of wheels’ radius with a zoom at the permanent regime; (b) phase portrait of wheels A and B at the synchronized
configuration; (c) path described by the origami robot; (d) radius manifold.

the system presents a phase synchronization, which corresponds to a
locking of phases of chaotic oscillators [23]. Fig. 25-b presents phase
space of each wheel confirming the differences of both orbits. The
path followed by the origami robot is shown at Fig. 25-c, where the
final configuration is highlighted at the dotted line, and, since both
wheels stabilize at the same configuration (both closed), the origami
robot follows a straight line after the synchronization. Fig. 25-d shows
the radius space illustrating the transient response (in black) and the
synchronization manifold 𝑅𝐴 = 𝑅𝐵 (in red).

By considering a condition where 𝐹𝐴 (𝑡) = 10 sin (200𝑡) + 1.0 sin (300𝑡)
and 𝐹𝐵 (𝑡) = 10 sin (200𝑡) + 1.5 sin (300𝑡) with constant temperature to
both wheels (𝑇 = 288 K), the system presents a chaotic steady state re-
sponse (Fig. 26). Fig. 26-a shows the radii evolution; Fig. 26-b presents
phase space of each wheel confirming the chaotic-like response. The
path followed by the origami robot is shown at Fig. 26-c, illustrating
the difference between this path with the previous one. Fig. 26-d shows
the radius space illustrating the chaotic behavior that tends to occupy
all the space.

6. Conclusions

This paper deals with the dynamical analysis of an origami wheel
robot actuated by shape memory alloys. A mathematical model is
proposed considering robot rigid body motion and deformable origami
wheels that can promote path control. Each origami wheel is described

by a reduced-order model developed on symmetry hypothesis. Under
this assumption, the origami wheel is represented by a one-degree of
freedom system. Polynomial constitutive model is employed to describe
the thermomechanical behavior of shape memory alloy actuators. Com-
bining the rigid body model with origami wheel description, a four
degrees of freedom system is achieved to describe the robot motion. A
mechanical external stimulus is employed to represent different kinds
of wheel–soil interaction. Numerical simulations are carried out for
different conditions showing that the system has a rich dynamics. A per-
turbation analysis is performed considering different external stimuli.
Essentially, these perturbations alter the robot path, promoting dra-
matic deviations due to differences between the wheels’ radii. Besides
that, complex responses are investigated, including chaos, transient
chaos and synchronization. In general, it is possible to conclude that
origami wheel robot has several interesting properties to be exploited
for different purposes, but its paths are defined by the dynamical
behavior of the wheels, which have strong nonlinearities and therefore,
needs to be deeply investigated for application purposes. A temperature
control applied to the system can be useful to adjust the path and avoid
undesirable situations.
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