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a b s t r a c t 

Origami generates three-dimensional structures from two-dimensional sources and is inspiring engineers 

to design systems related to different applications as robotics, biomedical and aerospace engineering. 

The use of smart materials increases the range of applicability of origami systems exploiting adaptive 

behavior. In this regard, shape memory alloy (SMA) actuators are being used to promote geometrical 

changes in origami structures. This paper deals with the nonlinear dynamics of an origami wheel with 

SMA actuators. The origami wheel has strong geometric and constitutive nonlinearities presenting a com- 

plex dynamical response. Symmetry assumptions related to waterbomb folding pattern allow one to de- 

velop a single degree of freedom reduced-order model system that describes origami dynamics. Based 

on that, numerical simulations are carried out representing different operational conditions presenting 

a general comprehension of the origami dynamical response. Origami complex behavior is of concern 

showing chaotic motions and strong parameter sensitivity. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Origami is the art of paper folding being one of the oldest pop-

lar Japanese art. In brief, this is the art of creating sculpture rep-

esentation from a flat paper sheet. Therefore, it produces a 3D

tructure through some folding pattern of a 2D source. Mathemati-

ians provided the first formal origami non-artistic point of view,

ntroducing geometric proofs and analysis. The first description

f the origami geometric construction was given by Huzita [13] ,

hich introduced six axioms showing details about folding pat-

erns. It was discussed the existence and, in some cases, unique-

ess to create a single crease on a sheet of paper attending some

estrictions, such as the connection between specific points. 

Recently, origami is inspiring the construction of self-foldable,

ompact, adaptive systems and devices for various fields of science

nd technology [10,25] . Classical shapes as spheres and cylinders

r some combination of folded shapes can be exploited assuming

orms between different configurations, being useful for different

urposes. This general idea can be employed on architectural de-

ign [31] , robotics [11] , aerospace systems [23] and biomedical de-

ices [28] . 
∗ Corresponding author. 
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The use of smart materials provides actuation of origami sys-

ems, exploiting different physical field coupling. Basically, exter-

al fields as temperature, electric or magnetic field can induce

he origami shape alteration between desired configurations. Shape

emory alloys (SMAs) and magnetic materials are of special inter-

st due to their capacity to generate forces and displacements [29] .

Pesenti et al. [26] studied origami kinematic behavior, aiming

ts application in adaptive frontage with solar skin. Origami-folding

atterns are exploited and potential application of deployable solar

hading devices with SMA actuation is investigated evaluating the

nvironmental changing conditions. 

Miyashita et al. [22] fabricated a thermal activated self-folding

heet that is part of a miniature origami robot controlled by an

xternal magnetic field. This 3D untethered robot can accomplish

ome basic tasks like walking, swimming, digging, climbing a slop,

arrying blocks and can even be dissolved in a solvent, depend-

ng on the origami composition. Kuribayashi et al. [14] developed

 new type of stent graft made from foldable NiTi foil. This design

llows one to obtain closed-opened cylindrical configurations with

hermal actuation. 

Origami folding process can be analyzed from different ap-

roaches, depending on the desired description. Lang [15,16] made

n arithmetic description of origami using tree theory, and its cor-

esponding computer program, by converting the problem of find-

ng an efficient origami crease pattern into one of several types

https://doi.org/10.1016/j.chaos.2019.03.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2019.03.033&domain=pdf
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of nonlinear constrained optimization. Belcastro and Hull [3] dis-

cussed a mathematical description of some general folding pro-

cesses by affine transformations, modeling the folding of a flat pa-

per sheet by examining a map f : R 

2 → R 

3 . For some patterns that

can be assembled with repeated unit cells, such as the waterbomb

and Yoshimura patterns, closed-form equations can be derived to

describe the entire folding process. Nevertheless, purely geomet-

ric descriptions can only be used for rigid origami. Idealized rigid

origami presents an important advantage in terms of deformation,

meaning that the deformation is completely realized by the fold-

ing/unfolding at the creases and does not involve any deformation

at the rigid faces [19] . Liu and Paulino [18] developed an interest-

ing study on non-rigid origami, proposing a general nonlinear for-

mulation for structural analysis of origami elements. They made a

general bar-and-hinge model that also considers some banding on

the faces. 

The material employed for origami construction is another im-

portant subject related to general applications. Paper and polyester

are both easy to obtain and fold and are often used to prototype

origami folding patterns. Nevertheless, they can present some dis-

advantages. Paper can tear easily, has a low fatigue life and has

low shear strength. Polyester does not tear easily and has a fa-

tigue life of 10 6 cycles [6] . In this regard, the use of other mate-

rials is related to some techniques employed to generate foldable

structures. Smart Composite Manufacturing (SCM) is a process that

creates foldable laminates from laser micromachined layers of car-

bon fiber and polymers [21] . These techniques can increase the fa-

tigue life or just improve the material strength, allowing one to

carry more weight, support withstand greater forces or to resist to

greater shear stresses. 

Since origami systems are slender structures, they are usually

close to stability limits with important dynamical issues to be in-

vestigated. The combination of strong geometrical nonlinearities

associated with origami patterns, and constitutive nonlinearities

related to smart material actuators, is responsible for a rich dy-

namical behavior. Operational excitations can affect the system re-

sponse being critical to several applications. Therefore, dynamical

response of origami systems is of special importance during design

stage. Nevertheless, dynamical behavior of origami systems is only

treated in few references in literature [27] and this article has this

main goal. 

This paper deals with the dynamical analysis of an expand-

able origami wheel that exchange between different configura-

tions due to thermal actuation provided by SMA actuators ( Fig. 1 ).

The origami wheel is built based on the waterbomb pattern and

its application has advantages for robotics applications. Trajec-

tory changes by wheel configuration changes, obstacle overcomes,

and roll movement stabilization are some examples. Origami ge-

ometric relations are established defining a single-degree of free-

dom reduced-order model, exploiting origami symmetry. Dynam-

ical modeling considers a polynomial constitutive theory [8] to

describe the SMA thermomechanical behavior. Numerical simu-
Fig. 1. Origami wheel showing two limit configurations. 
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ations are carried out showing different operational conditions.

omplex dynamical behavior is treated showing chaos and dynam-

cal jumps. 

. Origami wheel 

Origami wheel is constructed employing a 3 × 8 magic-ball or

aterbomb pattern, which has been used in various applications

20] . Waterbomb pattern can be considered as a rigidly foldable

r rigid origami that consists of panels that can move continu-

usly between folded configurations by rotating around the crease

ines without deformation. A planar version of the waterbomb pat-

ern, Fig. 2 , can be bent producing a cylindrical-type structure.

ig. 2 also presents two configurations of the unit cell of the

rigami pattern. 

The main point of the use of an origami wheel is to create an

xpandable structure that can alter its configuration from some ex-

ernal stimulus. Specifically, the idea is to use SMA springs placed

n the origami circumferential direction, which can be thermal ac-

uated to promote configuration exchanges. Besides these SMA ac-

uators, the system needs a passive bias elastic spring, placed in

he longitudinal direction, ensuring the shape change of all the

tructure between two limit configurations. Fig. 3 shows origami

heel with SMA springs and passive elastic spring connected to

crylic plates at the ends of the wheel. It should be pointed out

hat the SMA is attached to the origami middle layer, highlighted

t the planar version, referred as middle column . 

The concept of the origami wheel functioning is based on SMA

emarkable properties due to austenite-martensite solid phase

ransformation that can be induced either by stress or tempera-

ure changes. Typically, SMAs present two main thermomechanical

ehaviors: pseudoelasticity and shape memory effect. Pseudoelas-

icity is a typical high temperature behavior where stress induced

hase transformations cause large strains and hysteretic behavior

 Fig. 4 a). On the other hand, shape memory effect is the one

here a mechanical load induces phase transformations that

ause a residual strain that can be recovered by a thermal loading

rocess ( Fig. 4 b). The bias system composed by the SMA spring

n opposition with an elastic spring is characterized to promote a

wo-way system where the elastic spring produces the mechanical

oad necessary for the reverse movement, recovering the initial

isplacement of the SMA spring ( Fig. 4 c). 

The origami wheel actuation is a bias system with an SMA

pring against an elastic spring, exploiting the shape memory

ffect. It is designed in such a way that a previous training pro-

ess induces a residual strain being associated with detwinned

artensite. The actuator is then placed in the origami, with a

ias elastic spring. Under this condition, the heating of the SMA

ctuators induces a martensitic-austenitic phase transformation,

ncreasing its stiffness and recovering the residual deformation

reducing the length of the spring), and promoting the wheel

onfiguration change. On the other hand, when it is cooled, the

assive elastic spring acts by pulling the wheel in the longi-

udinal direction, recovering its initial radius and inducing the

everse phase transformation that decreases the stiffness. Fig. 5

hows a schematic picture presenting the correlation between the

acroscopic behavior of the actuation system due to temperature

hanges and the origami configuration changes. 

.1. Shape changing and symmetry hypothesis 

Waterbomb pattern assumes that all folding process occurs only

n the creases, and the panels remain flat. When a tessellation is

ade using this pattern, the whole structure folding process must

e previously analyzed to verify if the rigid characteristic remains



L.M. Fonseca, G.V. Rodrigues and M.A. Savi et al. / Chaos, Solitons and Fractals 122 (2019) 245–261 247 

Fig. 2. The waterbomb pattern (3 layers × 8 cells by layer) employed to create the origami wheel (left) and two unit cell configurations. Blue line means valley fold and red 

line means mountain fold. 

Fig. 3. Origami wheel with shape memory alloy actuators (superior panel, left) and a view with the bias elastic spring (superior panel, right). Planar view showing the 

middle column (inferior panel). 

Fig. 4. SMA typical force-displacement-temperature curves: (a) pseudoelastic effect; (b) shape memory effect; and (c) shape memory effect on a bias system composed by 

an SMA in opposition with an elastic spring. 
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uring the shape changing. Depending on the displacement im-

osed to the structure, some bending between layers or even in

he panels can occur (see Fig. 6 ). The region where this bend-

ng is small enough to be neglected is called rigid-foldability re-

ion (the range of values at which the panels remains as a rigid

ody). Based on origami rigid-foldability hypothesis, displacement

aths are related to uniform expansion/contraction with bending

etween layers [4] . Fang et al. [9] developed a kinematic study of a
 × 8 origami wheel structure folding process, identifying the rigid-

oldability region. 

Besides rigid-foldability hypothesis, symmetry conditions can 

e assumed for geometric and external forces. Based on that, rota-

ional symmetry is observed, being related to axial movement dur-

ng expansion, meaning that both ends are pulled equally, avoid-

ng snaps on origami sides. Under these assumptions, a single

ell is representative of the general origami wheel behavior. There
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Fig. 5. Temperature-displacement-force diagram for a heating/cooling cycle of the origami actuation using SMAs. (a) Diagram for the elastic spring, with opened and closed 

configurations highlighted. (b) Diagram for the SMAs, with opened and closed configurations highlighting a unit cell. 
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are situations where symmetry conditions are not respected, and

Fig. 6 shows an asymmetric origami behavior. In this case, side B

is collapsed, meaning that there is no axial symmetry and a unit

cell is no longer representative of the general origami behavior. 

2.2. Geometrical analysis 

The folding analysis can be modeled by considering an analo-

gous mechanism or a graph representation of a single origami unit

cell. Once the origami wheel is a rigid origami, and its range of op-

eration is inside the rigid-foldability region, it can be analyzed as a

mobile over-constrained metamorphic mechanism loop, which can

change its shape and presents no face deformations. A mechanism

is usually characterized by establishing a transformation between

an input, such as force or displacement, into an output. A meta-

morphic mechanism is the one with the ability to change its shape,

generating different topologies by reconfiguration. 
The analogous mechanism analysis allows one to define the

umber of inputs required to completely describe the origami,

reated as a linkage mechanism, defining the number of degrees of

reedom (DOF) also known as the mechanism mobility. The anal-

sis starts considering a linkage mechanism that is representative

f an origami unit cell [4,5] . Each origami face is represented by a

igid link and joints represent creases ( Fig. 7 ). 

The mechanism configuration, or the origami shape, can be

ompletely defined by a required number of inputs or predefined

ngles between the links. Chebyschev–Grübler–Kutzbach (C–G–K)

quation can be employed for this aim [12] . This approach as-

umes the mechanism construction (joints, links and movements

llowed), considering that one link is fixed to an inertial frame.

he mobility, M , represents the number of DOF and can be writ-

en as a function of the number of links ( N ), the number of joints

 J ) and the joint type (planar, spherical, cylindrical). The joint type

nfluences two variables: the generalized displacement of the i th

oint, f ( i = 1, … J ), and the constraint parameter related to the
i 
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Fig. 6. Origami wheel with an asymmetric shape. (a) Structure with symmetric shape on both sides A and B; (b) front view of side B; (c) structure with side B collapsed; 

(d) front view of side B; and (e) zoom of side B where it is possible to see a bending between layers (highlighted by the dashed rectangle). 

Fig. 7. Origami unit cell and mechanism representation considering a mechanism analogy. 
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echanism movement ( �). Based on that, it is possible to write

he following equation, 

 = �( N − J − 1 ) + 

J ∑ 

i =1 

f i (1) 

The definition of joint type considers three basic forms de-

cribed in the sequence. A planar mechanism has its motion re-

tricted to the plane, allowing two translational movements and a

otation { x, y, θ z } ( Fig. 8 a), which provides a constraint parameter

= 3. A spherical mechanism has rigid connections with move-

ents restricted to a sphere { θx , θy , θ z } ( Fig. 8 b), providing a con-

traint parameter � = 3. Finally, a spatial mechanism can trans-

ate and rotate in any direction, leading to a constraint parameter

= 6 ( Fig. 8 c). 

The waterbomb pattern unit cell is typically a spherical mecha-

ism ( � = 3) with 6 faces or links ( N = 6) and 6 creases or joints
 J = 6). Observing Fig. 7 , it is noticeable that all joints connect to

he same point (Point O ) and, since all links are rigid, joint move-

ents are restricted. Hence, each joint has only 1DOF ( f i = 1), the
otation θ Z . Therefore, C–G–C equation results M = 3, which means

hat each cell is completely described by 3DOF. 

Besides the origami symmetry, the unit cell itself can be con-

idered with symmetric behavior, assuming that diagonal opposite
ngles have the same value (Bricard line-symmetry) and angles on

he same plane have the same value (Bricard plane-symmetry) [2] .

n this regard, the following assumptions are adopted: A = C = D = F

nd B = E . Since this is a closed loop mechanism, these an-

les have a coupling relation, leading to a 1DOF mechanism.

herefore, the symmetric origami unit cell can be described by

DOF. 

Since the unit cell is a spherical mechanism, it is convenient

o employ spherical trigonometry to describe its geometric rela-

ions. Fig. 9 presents a unit cell and some different views circum-
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Fig. 8. Mechanism movement representation: (a) planar; (b) spherical; and (c) spa- 

tial. 
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scribed in a sphere. Fig. 9 a shows the top view of the unit cell

while Fig. 7 b presents the side view. Fig. 9 c shows a tridimen-

sional view while Fig. 9 d presents the unit cell assumed to be a

rectangle with sides 2 a and 2 b and internal acute angle λ, such

that a = b tan (λ) . By definition, each side of the spherical triangle

(spherical arc) is defined by its correspondent internal angle. Thus,

the arcs defined by the origami unit cell are known, assuming the

values ̂ AB = 

̂ BC = 

̂ DE = 

̂ EF = λ and 

̂ CD = 

̂ F A = π − 2 λ . 
Fig. 9. Spherical representation of the origami unit cell: (a) top view; (b) sid
Since a symmetric behavior is assumed, a quarter of the unit

ell is enough to describe the geometric relation. Therefore, two

ngles are enough to describe the unit cell behavior and it is cho-

en θ (angle between faces OAF and OCD) and α (angle between

he creases OB and OE). Trigonometric relations on the sphere can

efine these angles. Fig. 10 shows the triangles inside the sphere

mployed to obtain the unit cell geometric relations, where φ1 is

he spherical angle between arcs ̂ AB and 

̂ AC and φ2 is the spherical

ngle between arcs ̂ AF and 

̂ AB . Since only a quarter of the unit cell

s analyzed, the point G is defined such that ̂ AG = ̂

 AF and � BGA =
/ 2 . Under these assumptions, and using spherical trigonometry,

he following relations are obtained: 

1 = 2 θ (2)

os ( φ2 ) = 

cos ( θ ) cos ( α) 

sin ( λ) cos ( λ) 
− 1 (3)

in ( φ2 ) = 

sin ( θ ) cos ( α) 

sin ( λ) 
(4)

Relations (3) and (4) can be manipulated leading to the geo-

etric relation between θ and α for the symmetric behavior of

he unit cell: 

os ( θ ) cos ( α) tan ( λ) + | sin ( α) | = 1 (5)

The essential purpose of the origami geometrical analysis is to

stablish a relation between the unit cell behavior and the origami
e view; (c) tridimensional view; and (d) schematic view of a unit cell. 
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Fig. 10. Spherical triangles used to define geometric relations of the unit cell, computing angles α and θ . 

Fig. 11. Origami wheel geometric characteristics. Perspective view of the origami 

wheel showing the inner and the outer radius (superior panel, left); front view of 

the origami wheel (superior panel, right); and a view of the structure showing the 

actuators length and its position in the origami wheel (inferior panel). (For inter- 

pretation of the references to color in the text, the reader is referred to the web 

version of this article.) 

Fig. 12. Plan views of the origami wheel. 
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Fig. 13. Trapezoidal pyramid defined to ch
adius that represents the wheel configuration, allowing the de-

cription of the opening and closure process. Origami radius can be

efined from two circumferences starting from the geometric cen-

er of the origami wheel. In this regard, it is possible to define an

nner radius (red circle at Fig. 11 ), named as the small radius; and

n outer radius (dashed blue circle at Fig. 11 ), named as the large

adius. They are both related to the middle column or the central

egion of the origami folding pattern, and can vary with configura-

ion exchanges. This analysis establishes an angle-distance relation

btained from the connection between half-unit cell of the mid-

le column and a half-unit cell on the tip, resulting in a system

escribed by actuators length L 1 (one SMA spring, related to the

heel radius) and L 2 (half-length of elastic passive spring, related

o the normal distance the between two acrylic plates), as shown

n Fig. 11 . 
aracterize origami wheel geometry. 
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Fig. 14. Relation between angles β and γ that define the geometric characteristics 

of the origami wheel. 
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Fig. 15. Plan views for the origami wheel and the equivalent mechanism: (a) plan XZ—ra

axial symmetry; and (d) equivalent mechanism for plan YZ. (For interpretation of the refe
.3. From unit cell to the whole structure 

Origami kinematics analysis can be performed by considering

wo view plans presented in Fig. 12: XZ plan, from which it is pos-

ible to observe radial or rotational symmetry; and YZ plan, which

hows the longitudinal or reflection symmetry. 

Besides angles α and θ that describe the opening/closure pro-

ess of the unit cell, the angles β and γ are associated with the

pening/closure process of the entire structure. These angles are

elated to each other, and this section begins with the study of this

elation. Fig. 13 shows the origami wheel and the position for the

rapezoidal pyramid used to obtain the angle relations. Note that

ngles β and γ are both related to the position of the cells on the

ips (near the acrylic plate), and it is a function of the number of

ells ( N ) that compound the origami wheel column. 

The acrylic plate length is given by l p = 2 r sin ( π/ N 

) , and the

ases of the trapezium of BB ′ B P 1 B ′ P 1 is a function of R 2 , the unit

ell size and the number of cells, given by BB ′ = R 2 sin ( π/ N 

) and

 P 1 
B P 1 

′ = ( R 2 − 2 b sin β) sin ( π/ N 

) . 

Besides that, since symmetrical behavior is established, it is

ossible to observe that BB ′ // B P1 B ′ P1 // B P2 B ′ P2 . 

Under these assumptions, the final relation between β and γ

s established as sin γ = 

cos β/ 
√ 

1 − sin 

2 βsi n 

2 ( π/ N 

) , and it is rep-

esented in Fig. 14 . Note that, by increasing N , the angles β and

tend to be complementary. By using N = 8, the maximum error

onsidering the complementary assumption is around 2.5%, ensur-

ng that β + γ ≈ π/ , a value assumed by Lee [17] . 
dial symmetry; (b) equivalent mechanism for plan XZ; (c) plan YZ–longitudinal or 

rences to color in the text, the reader is referred to the web version of this article.) 
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Fig. 16. Origami wheel geometric relations. (a) Length of the passive elastic spring as a function of the length of the SMA spring. (b) Small and large radii as a function of 

the length of the SMA spring. Detailed pictures of the different configurations of the origami wheel are also presented. 

Fig. 17. Origami wheel static equilibrium analyzed from the resultant of the in- 

volved forces. 
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Fig. 15 allows one to observe some important variables and pa-

ameters for origami modeling: SMA spring length ( L 1 ), the half-

ength of the elastic passive spring ( L 2 ), the acrylic plate dimension

2 r ) (circle diameter circumscribed in a regular octagon), small ra-

ius ( R 1 ) and large radius ( R 2 ). Note that the idea of small/large

adius is related to the Z coordinate of the vertices of the unit

ell, representing the inner/outer radius. Fig. 15 a and 15 c show the

rigami XZ and YZ plan views while Fig. 15 b and d show the equiv-

lent mechanism that represents the origami motion. 
By considering the complementary condition described and as-

uming that c = b /2, it is possible to obtain the relations for the

rigami as follows, projecting the lengths on axis X, Y and Z . 

 2 = b sin α + 2 b cos β − b 

2 

sin β (6) 

 2 = r + 2 b sin β + 

b 

2 

cos β = R 1 + b cos α (7)

 1 = 2 a sin θ (8) 

 1 = a 

(
sin θ/ tan 

π
8 

− cos θ
)

(9) 

 = 

L 1 / 2 sin 

π
8 

(10) 

Note that there are two expressions for R 2 , both presented in

q. (7) . These two forms can be obtained considering either the

ecomposition of the red edges of Fig. 15 , leading to the second

ight hand side expression, or the decomposition of the blue edges

f Fig. 15 , leading to the first right hand side expression. Both de-

ompositions are made on Z -axis. 

Based on geometric relations, an explicit relation between L 2 
nd L 1 is established by solving the system of Eq. (5) –(10) , lead-

ng to a function L 2 = g ( L 1 ). It is also possible to explicit R 1 and

 2 as functions of L 1 . Fig. 16 shows graphical representations of

hese relations considering r = 0.04 m, b = 0.065 m and λ = π /4 (a

quare unit cell). For these values, the range of feasible for con-

tructive reasons is L 1 ∈ [0.0555, 0.1225] m. Fig. 16 a shows the

urve L 2 = g ( L 1 ) and Fig. 16 b shows the curves of the large radius,

 , and small radius, R , as a function of L . 
2 1 1 
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Fig. 18. Origami wheel quasi-static behavior due to temperature changes. (a) Thermal load; (b) large and small radii evolution during heating/cooling process; (c) displace- 

ment of the elastic spring and of each SMA actuator; and (d) actuator lengths. 

Fig. 19. Representation of the perturbed mechanical load acting on origami wheel. 

(For interpretation of the references to color in the text, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Configurations of the origami wheel for b = 0.04 m and a = 0.065 m. 

P ( °) (m) 

α β θ L 1 L 2 R 2 R 1 

1 52.98 55.14 70.44 0.1225 0.0995 0.1652 0.1261 

2 5.75 0.17 25.27 0.0555 0.1364 0.0729 0.0082 

3 32.82 41.72 56.98 0.1090 0.1106 0.1508 0.0962 

Maximum 

variation 

0.0670 0.0369 0.0923 0.1179 

61.5% 33.4% 61.2% 122.6% 

i  

s  

l  

m  

s  

a  

t  

s  

t

3

 

t  

d  
It should be pointed out the different configurations of the

origami wheel: P 0 represents the reference construction configu-

ration, where the origami wheel is not completely opened, and the

actuators are mounted; P 1 represents the minimum radius configu-

ration, where the origami wheel is completely closed; P 2 represents

the maximum radius configuration, where the origami wheel is

completely open. Table 1 presents origami wheel configuration

characteristics. The percentage variation is related to the difference

between the limit configurations, P 1 and P 2 , using configuration

P 0 as a reference. Note that the origami reduces dramatically its

shape, reducing by almost half the large radius ( R 2 ). 

Another interesting definition for geometrical modeling is the

use of spring displacement instead of its length. Hence, assum-
ng that the reference configuration is that at which the SMA

pring is free of both stress and strain, L 0 
1 

= 0 . 089m , the SMA

ength can be written as L 1 = L 0 
1 

+ u , where u is the SMA displace-

ent. The same assumption can be made for the elastic passive

pring: L 2 = L 0 
2 

+ u E , where u E is the elastic spring displacement

nd L 0 
2 

= g( L 0 
1 

+ u 0 ) , where u 0 is the initial displacement applied

o the SMA. Note that the reference configuration for the elastic

pring, free stress and strain condition, is the reference configura-

ion P 0 , which means that u 0 = 0 . 02m . 

. Equations of motion 

Origami wheel dynamical model is established by developing

he equations of motion based on the kinematics analysis that,

ue to symmetry assumptions, defines a one-degree of freedom
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Fig. 20. Origami wheel basins of attraction. (a) Configuration for the three stable positions and its color representation; (b) basin of attraction for T < T M ; (c) basin of 

attraction for T M < T < T A ; and (d) basin of attraction for T > T A . 
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ystem. Therefore, a reduced-order 1DOF model is able to describe

rigami dynamics. 

Initially, it is necessary to describe the thermomechanical be-

avior of SMA by considering a constitutive model. This paper con-

iders a polynomial constitutive model to establish a stress-strain-

emperature relation [8,24] . This one-dimensional model assumes

 sixth-order polynomial free energy. Based on that, three macro-

copic phases are treated: austenite, A , stable at elevated tempera-

ures, and two variants of the martensite, M 

+ and M 

−, induced by

ension and compression, respectively. The form of the polynomial

s such that at high temperatures, the free energy has only one

inimum at vanishing strain; and at low temperatures, it has two

inima at non-vanishing strains and a maximum at the vanishing

train, being mathematically expressed by 
SMA , the SMA potential

nergy: 

SMA = 

c 1 ( T − T M 

) ε 2 

2 

− c 2 ε 
4 

4 

+ 

c 3 ε 
6 

6 

(11) 

here c 1 , c 2 and c 3 are model parameters and T M 

represents the

emperature bellow which the martensitic phase is stable. 

The description of force-displacement-temperature relation of

MA helical springs may be related to different hypothesis for the

hase transformation through the spring cross section. Essentially,

hree regions on the wire cross-section need to be considered: a
inear-elastic region where a single phase is observed; a region

here phase transformation occurs; and a transition region be-

ween the first and the second regions. The phase transformation

egion is not homogeneous itself since it is a stress induced trans-

ormation and therefore, follows the stress distribution through the

ire. 

Aguiar et al. [1] showed that it is possible to neglect these

hree regions assuming the homogeneous hypothesis. Based on

his, there is only one region, meaning that phase transformation is

omogeneous through the cross section. This assumption produces

esults that are in close agreement with experimental data. Ene-

ark et al. [7] presented deeper explanations about spring descrip-

ion considering the torsion-bending behavior of the wire. Under

his assumption, different theories are proposed to deal with the

pring modeling. The main conclusion is that a single point model

s usually enough to represent the global behavior of the SMA

pring. In brief, more complex descriptions are necessary when ge-

metrical nonlinearities are preponderant [30] . 

Therefore, homogeneous hypothesis is related to a single point

escription, making spring force-displacement-temperature rela- 

ion similar to one-dimensional stress-strain-temperature relations.

nder these assumptions, spring description considers a helical

pring with N coils with diameter D and wire diameter d . The
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Fig. 21. Origami bifurcation diagrams varying perturbation forcing amplitudes: (a) T = 288 K ( T < T M ); (b) T = 315 K ( T M < T < T A ); (c) T = 327 K ( T > T A ). 
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SMA spring restitution force, F SMA = 

∂ 
SMA 
∂u 

, is then given by: 

F SMA = 

∂ r SMA 

∂u 

(
πd 3 

6 D 

)
SMA 

[ 

c 1 ( T − T M 

) r SMA − c 2 

(
d 

πD 

2 N S 

)3 

SMA 

r 3 SMA 

+ c 3 

(
d 

πD 

2 N S 

)5 

SMA 

r 5 SMA 

] 

(12)

where r SMA is the radius variation r SMA = R − R 0 , being related to

the radial displacement of the mass associated with the SMA ac-

tuator. By using Eq. (10) and the displacement definition, u , it is

possible to write, 

r SMA = R − R 

0 = 

L 1 
2 sin 

π
8 

− L 0 1 

2 sin 

π
8 

= 

u 

2 sin 

π
8 

(13)

Concerning the passive elastic spring, a linear relation describes

the restitution force F E , 

F E = 

∂ 
E 

∂u 

= 

∂ 
E 

∂ u E 

∂ u E 

∂u 

= k E u E 
∂ u E 

∂u 

(14)

where 
E is the elastic potential energy; k E = ( G d 4 

6 D 3 N 
) E and G is the

shear modulus. 

Dynamical model assumes that the origami has a total mass

8 m , such that each SMA actuator is related to a mass m . Besides,

each acrylic plate associated with the passive elastic spring half-

length has a mass M . Based on that, it is possible to write the sys-
em energy, where 
K is the kinetic energy and 
P is the potential

nergy, defined as follows: 

K = 

8 m ̇

 r 2 SMA 

2 

+ 

2 M ̇

 u 

2 
E 

2 


P = 8 
SMA + 2 
E (15)

Note that the expression of u E can be obtained by rewritten

 2 = g( L 1 ) as a function of the initial configuration and the SMA

pring displacement. Since u E = L 2 − L 0 
2 

and u = L 1 − L 0 
1 
, it is possi-

le to write u E = g( L 1 ) − L 0 
2 

= g( L 0 
1 

+ u ) − L 0 
2 

= f (u ) . 

Using the chain rule on f ( u ) derivation, it is written: 

¨
 E = 

d 

dt 

(
∂ f 

∂u 

∂u 

∂t 

)
= f ′ ü + f ′′ ˙ u 

2 (16)

By assuming an additional linear viscous dissipation with co-

fficient ξ and an external stimulus, F ( t ), that is assumed to be

ymmetrically applied through the middle column of the origami

heel, respecting the rotational symmetry, equations of motion are

ritten as follows: 

 

˙ u = v 

˙ v = 

(
m 

sin 2 π8 
+ M f ′ 2 

)−1 [
F ( t ) − 4 F SMA − M f ′ f ′′ v 2 − η f f ′ − ξv 

]
(17)

Table 2 shows mechanical and geometric properties of

he origami wheel employed on the numerical simulations.
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Fig. 22. Origami response subjected to mechanical forcing ( δ1 = 10 N, ω 1 = 200 rad/s) at T = 288 K. (a) Mechanical load; (b) phase space and Poincaré section. 

Table 2 

Material and system parameters. 

m (kg) M (kg) T M (K) T A (K) 

0.008 0.012 291.4 326.4 

G E (GPa) d E (m) D E (m) N E 
30.0 2.0 × 10 −3 30.0 × 10 −3 40 

c 1 (MPa/K) c 2 (MPa) c 3 (MPa) d SMA (m) 

5 7.0 × 10 4 7.0 × 10 6 1.0 × 10 −3 

N SMA D SMA (m) 

10 2.5 × 10 −3 

A  

i

3

 

o  

i  

t  

t  

s  

P  

b  

L

 

t  

f  

(  

o  

s  

v  

n  

c  

f  

a  

t  

m  

c  

(  

r  

m  

a  

P

 

o  

n  

c  

t  

i  

t

 

t  

o  

i  

a  

o  

T  

s  

d  

m  

c  

w  

s  

e  

t  

t  

p

 

w

4

 

e  

I  

c  

c  

r  

g  

s  

ω

F

 

a  

v  

a  
ll simulations consider a dissipative system with a viscous damp-

ng constant ξ = 1 N s/m. 

.1. Quasi-static analysis 

In order to evaluate the model capability to describe the

rigami behavior, a quasi-static analysis is performed neglecting

nertia and dissipation terms. Origami construction is assumed

o be performed in such a way that elastic springs are free of

ension when the SMA actuator is pre-deformed at the marten-

itic phase and the origami wheel is in the opened configuration

 0 . This means that SMA actuator has a residual strain that can

e recovered by heating, and the relaxed spring size is given by

 1 = 0.089 m. 

Initially, force analysis is performed considering the combina-

ion of SMA and elastic forces. Fig. 17 shows the origami resultant

orce for four different temperatures: T = 288 K ( T < T M 

); T = 320 K

 T M 

< T < T A ); T = 326.4 K ( T = T A ) and T = 353 K ( T > T A ). SMA-

rigami system is temperature dependent meaning that it is pos-

ible to change the origami wheel configuration with temperature

ariations. Different equilibrium configurations can be observed at

ull force conditions ( �F = 0) depending on temperature and they

an be related with the origami configuration: three configurations

or low temperature ( T ≤ T M 

); five configurations for intermedi-

te temperatures ( T M 

< T < T A ); and one configuration for higher

emperatures ( T ≥ T A ). Note that a reduction on displacement u

eans a reduction on the origami radius, being associated with the

losure of the structure. The increase of SMA temperature by 7 K

from 320 K to 327 K) induces the reduction of the large origami

adius ( R 2 ) from 0.147 m to 0.122 m ( A → B indicated in Fig. 17 ). The

aximum radius reduction observed ( C → D indicated in Fig. 17 ) is

round 0.058 m. The total reduction of limit configurations (points

 → P in Fig. 16 ) implies a reduction of about 56%. 
2 1 
Experimental results of Fang et al. [9] considered the radial

pening/closure of 3 × 8 origami wheels built with different thick-

ess. The origami wheel has a large radius of 44 mm at the opened

onfiguration and, when radially compressed, its radius decreases

o 19 mm, which means a reduction of 57%. This allows one to ver-

fy the mathematical model developed in the present work, since

his is almost the same value calculated. 

Fig. 18 shows configuration changes due to temperature varia-

ions. Basically, it is presented temperature time history and the

rigami response representing origami structure path C → B → C,

ndicated in Fig. 17 . At initial configuration, T 0 = 288 K, SMA

ctuators has an initial displacement u 0 = 0 . 02m , meaning that

rigami wheel is opened, but not completely. A thermal load from

 = 288 K to T = 373 K on SMA ( Fig. 18 a) recovers SMA residual

train promoting origami closure, as can be noticed by radius re-

uction ( Fig. 18 b). Fig. 18 c shows SMA and elastic spring displace-

ents during the application of the thermal load. The first verti-

al dashed line shows the limit temperature at heating process at

hich opened configuration is stable. At this point ( T = T M 

), SMA

tarts phase transformation from martensite to austenite, recov-

ring residual strain and closing the origami wheel. This process

akes around 4 s. The second and third vertical dashed lines define

he start and finish of the origami reopening during the cooling

rocess. This process takes around 15 s. 

The next section considers dynamical analysis of the origami

heel. 

. Dynamical analysis 

Dynamical analysis of the origami wheel is now in focus consid-

ring perturbations represented by mechanical and thermal loads.

t is assumed that origami wheel is subjected to a harmonic me-

hanical load (green line in Fig. 19 ), with small perturbations that

ould be related to floor irregularities. These perturbations can be

epresented by harmonic functions as a Fourier series. In this re-

ard, mechanical loading process is represented as a sum of two

ine functions of amplitudes δ1 and δ2 , and frequencies ω 1 and

 2 . 

 ( t ) = δ1 sin ( ω 1 t ) + δ2 sin ( ω 2 t ) (18) 

Thermal load perturbation is related to environmental temper-

ture oscillation, and its influence on the structure response is in-

estigated. This perturbation is represented by a sine fluctuation of

mplitude δ , and frequency ω , around the nominal temperature,
T T 
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Fig. 23. Origami response to a perturbed mechanical load at T = 288 K. (a) Mechanical loading process (without and with perturbation); (b) phase space and strange attractor; 

and (c) origami configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

δ  

t  

s  

D  

T  

b  

t  

t  

t  

(  

t  

i  

d  

t  

r  

s  

b  

(  

t  

c

 

n  

s  

a  
T N , defined by the following equation, 

T ( t ) = T N + δT sin ( ω T t ) (19)

Numerical simulations are carried out to investigate the

origami nonlinear dynamics employing the fourth-order Runge–

Kutta method. The structure of equilibrium points is analyzed from

basins of attraction presented in Fig. 20 , built from free vibration

analysis of the dissipative system with different initial conditions.

Each equilibrium point structure is associated with forces acting

on the origami, presented in Fig. 17 , representing distinct origami

wheel configurations, showed in Fig. 20 a. Fig. 20 b shows a situa-

tion where T < T M 

, with three equilibrium points (two stable and

one unstable) that can be reached changing initial conditions. By

increasing the temperature for intermediate values ( T M 

< T < T A ),

the system changes from three to five equilibrium points (three

stable and two unstable), as can be seen at Fig. 20 c. By increas-

ing the temperature above T A , stable points get closer until they

coalesce to each other. This causes a change from five equilibrium

points to one stable equilibrium point ( Fig. 20 d). Depending on

initial conditions, it is possible to reach a different configuration,

changing the origami wheel radius. 

Origami slender characteristic is associated with a rich dynamic

with strong sensitivity to either parameter changes or initial condi-

tions. In this regard, it is important to have a deep comprehension

of the origami wheel nonlinear dynamics, evaluating high periodic,

quasi-periodic and chaotic behaviors. 
In order to perform a global analysis of the origami response,

ifurcation diagrams are built varying forcing amplitude per-

urbation δ2 , keeping a constant frequency ω 2 = 300 rad/s, for

1 = 10 N and ω 1 = 200 rad/s. The objective of this analysis is

o evaluate system response under perturbations that can repre-

ent soil roughness, with a constant frequency ( ω 2 = 300 rad/s).

ifferent tem perature ranges are analyzed: T = 288 K ( T < T M 

),

 = 315 K ( T M 

< T < T A ), and T = 327 K ( T > T A ). Fig. 21 shows

ifurcation diagrams varying amplitude from zero ( δ2 = 0, unper-

urbed excitation forcing) to 1.2 N. Note that for the intermediate

emperatures ( T = 315 K) the chaotic response disappears when

he perturbation increases, changing to a period-2 response

 Fig. 21 b). By considering low temperature behavior ( T = 288 K),

he perturbation growth tends to increase the response complex-

ty, becoming chaotic ( Fig. 21 a). Under this condition, bifurcation

iagram shows bifurcations and crisis. For δ2 smaller than 1.1 N,

he system presents a period doubling, from period-1 to period-4

esponse. For δ2 > 1.1 N, a crisis phenomenon is observed, pre-

enting sudden changes from a periodic response to a chaotic-like

ehavior. For high temperature ( Fig. 21 c), when austenite is stable

 T = 320 K > T A ), the system has a period-2 behavior for the per-

urbed case ( δ2 	 = 0) and a period-1 response for the unperturbed

ase ( δ2 = 0). 

The influence of the external force perturbation (or soil rough-

ess) can be better understood in the sequence. Initially, it is con-

idered a forcing amplitude δ1 = 10 N and ω 1 = 200 rad/s with

 constant low temperature T = 288 K ( Fig. 22 a), without perturba-
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Fig. 24. Origami response subjected to thermal fluctuation presenting a transient response, represented by a red line, while steady-state response is represented by a blue 

line. (a) SMA displacement time history; (b) phase space; (c) Poincaré section associated with transient chaos (chaotic saddle); and (d) periodic steady-state phase space. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

t  

o  

a  

g

 

δ  

p  

a  

w  

P  

i  

e  

t  

s  

p  

o  

v  

b  

e  

r

 

fl  

i  

n  

i  

s  

t  

t  

t  

o  

r  

r  

t  

c  

i  

i  

s  

c  

f  

s

ion. Under this condition, origami presents a period-1 behavior,

scillating around the closed configuration with small oscillation

mplitude, as shown in Fig. 22 b, which presents phase space to-

ether with Poincaré section. 

A perturbation is now introduced into the system, considering

2 = 1.5 N and ω 2 = 300 rad/s. Fig. 23 a shows the original and the

erturbed excitations. Under this new condition, origami presents

 chaotic motion, which is dramatically different when compared

ith the previous one. Fig. 23 b presents phase space together with

oincaré section that shows a strange attractor. Chaotic behav-

or is confirmed by the Lyapunov exponents estimated using Wolf

t al. [32] algorithm: {60, −80}. The use of Kaplan–Yorke conjec-

ure points to a fractal dimension of 1.737. Fig. 23 c shows a phase

pace identifying some regions associated with stable equilibrium

oint configurations (similar to Fig. 20 ). Note that origami presents

scillations around several configurations, resulting in large radius

ariations. This kind of behavior represents an important issue to

e evaluated during the design stage since it can be related to un-

xpected oscillations or related to the structure integrity once high

ate of folding process can induce damage on the creases. 
Besides mechanical fluctuations, thermal fluctuations also in-

uence origami response. In order to show this kind of behav-

or, consider a case where the origami is subjected to an exter-

al force ( δ1 = 10 N, ω 1 = 200 rad/s) at T = 288 K, case discussed

n Fig. 22 . Thermal perturbations are now introduced, being repre-

ented by thermal oscillation: δT = 2 K and ω T = 100 rad/s. Under

his new condition, thermal oscillation induces a transient chaos

hat stabilizes in a periodic steady state ( Fig. 24 ). Fig. 24 a shows

he time response evolution of the SMA displacement where the

rigami starts with a transient chaos and stabilizes in a period-2

esponse approximately after 22 s (blue line). During the chaotic

esponse, the structure presents large oscillations, changing be-

ween all possible shapes (from completely opened to completely

losed). Fig. 24 b presents phase spaces for the whole period, show-

ng the same behavior. Fig. 24 c presents the chaotic saddle dur-

ng transient period, while Fig. 24 d shows the periodic steady-

tate stabilized response where the origami oscillates around the

losed configuration. Note that this period-2 response is different

rom the one obtained for the unperturbed case, period-1 response

howed in Fig. 22 . 
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Fig. 25. Origami response subjected to a mechanical load for two different geometric characteristics: (a) chaotic response of a square unit cell ( λ = 

π/ 4 ); (b) periodic response 

of a rectangle unit cell ( λ = 

π/ 3 ). 
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Geometric origami alterations is now of concern in order to

evaluate its influence on system dynamics. The preceding anal-

ysis treats a squared unit cell, which means that λ = 

π/ 4 . Now,

the unit cell is changed for a rectangle pattern, λ= 

π/ 3 . The new

origami is subjected to the same mechanical loads presented in

Fig. 23 ( δ1 = 10 N and ω 1 = 200 rad/s, with a perturbation

δ2 = 1.5 N and ω 2 = 300 rad/s), which presents a chaotic behavior

for the square unit cell. The rectangle unit cell changes the chaotic

motion to a period-2 response. Fig. 25 presents both cases, show-

ing that the same waterbomb pattern can have a completely dif-

ferent response, characterizing a strong parameter dependence on

system dynamics. 

5. Conclusions 

This paper deals with the dynamical analysis of an origami

wheel actuated by shape memory alloy actuators. Based on sym-

metry hypothesis, a reduced-order one-degree of freedom model

is proposed to represent the system dynamics. A polynomial

constitutive model is employed to describe the thermomechanical

behavior of the SMAs and homogeneous phase transformation

hypothesis is adopted to describe spring behavior. Equations of

motion have a strong nonlinear system related to both geometrical

and constitutive nonlinearities. The reduced-order model is able

to capture the general origami wheel behavior, being capable of

reproduce configuration change, representing the opening/closure

process. Besides, it captures the richness of the dynamical behav-

ior. Operational conditions are investigated considering different

thermomechanical loading processes, and critical situations are

exploited. Numerical simulations are carried out based on different

situations that represent real scenarios, such as soil roughness and

thermal fluctuations. Some critical motions are investigated. It is

noticeable that either mechanical or thermal loadings can deeply

affect the system response and should be properly investigated

during the design stage. This means that such a slender structure

can be exposed to fatigue failure of the creases when subjected

to an opening/closure cycles. Chaotic and high-periodic behaviors

can be achieved even with small operational condition changes.

Besides, although a thermal field can control origami wheel shape,

its dynamical behavior is affected by small perturbations that can

increase the complexity of the response, leading to high-periodic

or chaotic motions. This sensitivity can also be exploited using

chaos control approach, being possible to reduce the response

complexity or even mitigate it with the proper stimulus or with
mall changes on the parameters of the system for a desired

perational condition. 
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