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Abstract Origamis are becoming the inspiration of

new adaptive structures applied for several purposes.

One of the challenges of the design of the origami

inspired structures is to deal with the large number of

variables and degrees of freedom (DoFs) associated

with such complex structures. Closed tessellations

have a reduced number of DoF when compared to the

opened ones. Besides, the coupling due to the closure

of the tessellation promotes some periodicity along the

structure. Symmetric behaviors allow the description

of the structure from a unit cell behavior, establishing

reduced-order models. This paper investigates the

origami waterbomb pattern, exploring the unit cell

behavior and its symmetries. Initially, kinematics

analysis based on an equivalent mechanism approach

establishes a reduced-order model associated with

symmetry hypotheses. Afterward, mechanical analy-

sis is investigated using a nonlinear finite element

analysis through bar-and-hinge formulation. A com-

parison between both formulations is performed

showing the range of validity of the reduced-order

model description. The general conclusions are

applied to a cylindrical tessellation under symmetric

actuation showing the capability of the reduced-order

model for the origami description. Results show that

the rigid foldability hypothesis is the essential point

for the equivalence between the two descriptions.

Keywords Origamis � Tessellation � Equivalent
mechanism � Nonlinear analysis � Kinematic analysis �
Symmetries

1 Introduction

Origami is the art of folding a flat paper (2D structure)

into various forms (3D structures) following a

sequence of folding creases, without stretching, cut-

ting, or gluing other pieces of paper to it. Once that it

can be flattened onto a plane without distortion (it has

a zero Gaussian curvature) and the 3D form is

generated by the process of bending, but not stretching

or shrinking [31], origami is a developable surface.

Therefore, the concept of origami can be applied to the

manufacturing of various complex 3D forms by out-

of-plane deformation (bending and folding), from a

watertight sheet of hard material such as paper, fabric,

plastic, and metal.

Origami description can be made considering either

kinematics or mechanical approaches. Themechanical

description of the folding process is essentially based
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on forces and movements, or work and energy, which

captures the actual behavior of such slender structures.

The folding process usually involves significant

geometric nonlinearity, which promotes additional

nonlinear behaviors related to the deformation of the

panels. If such deformation occurs, the origami is

considered a non-rigid one. On the other hand, if no

bending is observed during the entire folding process,

the origami is classified as a rigid one or rigidly

foldable.

The study of origami kinematics is recent and has

gotten the attention of researchers from several fields

of knowledge [32–35]. A challenging aspect is to

obtain a closed-form mathematical description for the

folding process, allowing to describe the correlation

between a flat sheet and the folded 3D shape.

However, this description is mathematically complex

and, in some cases, fails to have a necessary flexibility

and applicability on real circumstances. Different

approaches have been applied varying according to the

description needed.

Lang [17, 18] proposed an arithmetic description of

origamis using tree theory, reshaping the problem of

finding an efficient folding pattern as a succession of

nonlinear restrict optimization problems. Belcastro

and Hull [1] described the folding process of a flat

sheet via piecewise isometries. Another approach is

the study of linkages, where the creases are repre-

sented by joints and the faces are represented by rigid

links [3, 5, 19, 30]. The origami element is then

represented by an equivalent mechanism, and its

motion is studied with transformation matrixes

describing the relative motion between the joints.

The above-described formulations are suitable only

for origamis where the rigid foldability hypothesis is

valid. Non-rigid origamis present additional degrees

of freedom associated with the deformation of the

panels and, usually, a mechanical approach is required

to fully describe its behavior. One approach is the

analysis through finite elements analysis (FEA) con-

sidering shell elements [12, 23]. This analysis provides

information such as stress distribution, plastic defor-

mations, regions of failure and even vibration modes,

but with a high computational cost. Besides, the focus

is the general behavior of the origami instead of local

deformations.

Liu and Paulino [22] developed a general nonlinear

formulation for structural analysis of origami struc-

tures considering an origami representation based on

the bar-and-hinge model proposed by Schrenk and

Guest [29]. This formulation assumes that both the

material and the folding process have nonlinearities,

consisting in a continuous process of quasi-static

stabilization at each iteration. This idea was imple-

mented in an open-source code called ‘MERLIN’.

This paper presents a general investigation of the

waterbomb origami pattern through the unit cell

behavior. Initially, kinematics formulation is devel-

oped considering an equivalent mechanism approach

of the unit cell. A reduced-order model is proposed in

order to describe the origami from its unit cell and

symmetry hypotheses. In the sequence, a mechanical

description is performed using finite element analysis

(FEA). The symmetry hypotheses are evaluated com-

paring both approaches. The main goal of the paper is

the analysis of the symmetry hypotheses, establishing

proper conditions for the use of reduced-order models

and establishing validity of the rigid-foldability and

symmetry hypotheses. The general conclusions are

applied to a cylindrical tessellation under symmetric

actuation showing the capability of the reduced-order

model for the origami description. The closed tessel-

lation analysis allows the evaluation of the strangula-

tion effect that contains local asymmetries.

2 Origamis

An origami structure is built by a tessellation that is a

repetition of a unit cell covering the entire sheet.

Different unit cells generate different tessellations,

with specific properties related to motion, configura-

tion, and actuation [11]. One of the challenges of the

origami design is to deal with the large number of

variables and degrees of freedom (DoFs) associated

with such complex structures. Zhao et al. [36]

explored this complexity designing generalized water-

bomb tessellations to describe several 3D shapes going

from spherical and cylindrical elements to hyperbolic

paraboloids and torus, exploring asymmetries on both

the pattern design and its shape configuration.

Closed tessellations have a reduced number of DoF

when compared to the opened ones. Besides, the

coupling due to the closure of the tessellation

promotes some periodicity along the structure, which

can be described considering different kinds of

symmetries. Basically, it is important to consider a

local or a global symmetry. A global symmetry is
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related to the structure while the local symmetry is

related to a unit cell. An origami tessellation can be

described as a periodic structure built as the connec-

tion of fundamental substructures, called representa-

tive volume element (RVE). In this regard, it is

possible to imagine a total symmetry where the

fundamental substructure is the unit cell, or other

situations where the fundamental structure is built by a

set of unit cells, RVE. Symmetry conditions might

need to be associated with both geometrical and

mechanical aspects.

The complexity of the origami description

increases as the asymmetry of the fundamental

representative element accentuates. Therefore, the

complexity of the closed tessellation representation

relies mostly on the unit cell configuration, regarding

its degree of asymmetry.

This paper considers a 6 creased waterbomb pattern

(Fig. 1a), which closed tessellation results in a cylin-

drical-like structure. The natural force associated with

the folding process of the closed tessellation tends to

generate a conic-like structure (Fig. 1b) [15, 24],

which results in local asymmetries even for a

symmetric actuation. This conic-like natural force

can generate several 3D structures, including a ball-

shaped origami (Fig. 1c) and a cylindrical origami

(Fig. 1d).

The following sections present a local asymmetry

study, evaluating the behavior of a unit cell of the

waterbomb pattern considering both kinematics and

mechanical approaches.

3 Equivalent mechanism

The analysis of the waterbomb pattern can be based on

the hypothesis of rigid origami, where all the defor-

mation is localized on the creases (mountain and

valley folds), which means that faces remain flat and

undeformed. Therefore, it is possible to analyze the

waterbomb unit cell as a mechanism (Fig. 2), where

the creases are represented by revolute (or cylindrical)

joints and the faces are represented by rigid links.

Waterbomb pattern is a spherical mechanism where its

movement is restricted to a sphere. Based on that, it

can be described as a 6R linkage mechanism [3, 5]

with mobility 3 [9, 10]), meaning that 3 variables are

necessary to fully describe the position of the

mechanism.

The kinematics of a unit cell can be described using

this rigid 6R mechanism, allowing to define the

number of inputs required to completely describe the

unit cell, treated as a linkage mechanism. Therefore,

the shape of the unit cell can be completely defined by

a required number of inputs or angles between the

links, which is defined by the mobility of the

mechanism. Chebyschev–Grübler–Kutzbach (C–G–

K) equation can be employed for this aim as follows

(a) (b)

(c)

(d)

Fig. 1 Waterbomb pattern and natural way of folding. a 6

creased waterbomb unit cell with sizes 2a and 2b and inner angle

k, b illustration of the geometric relationship between natural

force and waterbomb fold pattern, c illustration of a closed m�

n waterbomb tessellation, with m ¼ 3 lines and n ¼ 8 cells in

each line; d Illustration of a closed m� n waterbomb

tessellation, with m ¼ 6 lines and n ¼ 20 cells in each line
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[13], defining the mobility, M, as a function of the

number of links, N, the number of joints, J, and the

joint type (planar, spherical, cylindrical). The joint

type influences two variables: the generalized dis-

placement of the ith joint, fi (i ¼ 1. . .J), and the

constraint parameter related to the mechanism move-

ment, K. Therefore,

M ¼ K N � J � 1ð Þ þ
XJ

i¼1

f i: ð1Þ

A unit cell of the waterbomb pattern is typically a

spherical mechanism (K = 3) with 6 faces or links

(N = 6) and 6 creases or joints (J = 6). Since all the

joints are R-type (revolute joints), each one has only

one DoF (fi = 1), the rotation around its axis. There-

fore, C–G–K equation establishes that M = 3, which

means that each cell is completely described by three

angles, each angle defined between two consecutive

links.

The objective of forward kinematics analysis is to

determine the cumulative effect of the entire set of

joint variables and the mechanism configuration is the

output. On the other hand, the objective of the inverse

kinematics is to determine the individual values for

each joint that result in a specific configuration, and

therefore, the mechanism configuration is the input.

This paper uses a forward kinematics formulation to

evaluate the mechanism configuration. A proper

formulation is chosen to avoid singularities that would

cause the inverse problem to be ill-posed. One way to

address the problem is the use of dual quaternion

method [8], a robust technique that allows to unify the

translation and the rotation into one single invariant

state. Another formulation involves the use of screw

theory applied to the joints, or even the definition of

screw polygons [25] and screw triangles [14]. The

screw triangles theory, applied by Huang and Chen

[14], is focused on the unification of finite and

infinitesimal kinematics, that proved to be relevant

since the motion of rigid bodies can be described as a

serial chain of screws.

The Denavit–Hartenberg (D–H) formulation is

employed [6], and the transformation between two

consecutive joints i and iþ 1 is a consequence of two

rotations and two translations, resulting in a 4

parameters description for each joint-link pair. There-

fore, the transformation matrix from joint i and to joint

iþ 1 is given by

iT iþ1 ¼

cos hið Þ cos hið Þ sin hið Þ cos aið Þ sin hið Þ sin aið Þ ai cos hið Þ
sin hið Þ cos hið Þ cos aið Þ � cos hið Þ sin aið Þ ai sin hið Þ
0 sin aið Þ sin aið Þ cos aið Þ Ri

0 0 0 1

2
664

3
775

ð2Þ

where ai is the angular distance between two consec-

utive joints, from zi to ziþ1 axis about the xiþ1 axis; hi is
the rotation of the ith joint, from xi to xiþ1 axis about

the zi axis; ai is the offset distance measured from the

origin Oi to the intersection of axes zi and xiþ1, along

the xiþ1 axis; and Ri is the joint offset, measured as the

distance from the i frame to the intersection of axes zi
and xiþ1, along the zi axis (Fig. 3).

The waterbomb pattern has a characteristic that all

joints intercept at a common point (point O in Fig. 2),

resulting in ai ¼ Ri ¼ 0 ði ¼ 1. . .6Þ. In addition, ai is
fixed for each pair of consecutive joints, being

associated with the angle k that defines the shape of

Fig. 2 Equivalent mechanism for the waterbomb pattern

described by a unit cell showed in light blue

Fig. 3 D–H parameters’ setup for the mechanism analysis of

the waterbomb
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the waterbomb cell and, for a squared waterbomb cell,

k ¼ p=4.
The D–H formulation allows the description of

each i ! iþ 1 joint pair through just four parameters

and since three of them are constant values, each joint

can be represented by one degree of freedom, hi,
resulting into 6 free variables. Since the waterbomb

pattern is related to a closed chain, the last joint is

connected to the first one. In this regard, it is not

necessary to think about the end-effector, but instead,

it is necessary to evaluate the loop closure equation

that acts as a restriction, reducing the number of

degrees of freedoms and pointing to the mobility 3

mechanism previously analyzed. The loop-closure

equation is as follows

1T2 2T3 3T4 4T5 5T6 6T1 ¼ P hð Þ ð3Þ

where h ¼ h1 . . . h6½ �T is the vector of hi,
i ¼ 1. . .6. Besides, once that the first and last joint

are connected by a link, the loop-closure equation

must satisfy P hð Þ � I ¼ 0.

By using the transformation matrix presented in

Eq. (2) on the loop-closure, Eq. (3), for a waterbomb

unit cell, a system composed by 6 variables hið Þ and 16
equations is obtained, f i hð Þ ¼ P hð Þ � I½ �mn, where

i ¼ 4 m� 1ð Þ þ n, for m; n ¼ 1. . . 4. Note that even

though both P hð Þ and I are squared matrixes with

dimension 4, the D–H parameters for a waterbomb

unit cell result in Pm4 ¼ 0 and P4n ¼ 0 for every

m; n ¼ 1. . .3, and P44 ¼ 1. Therefore, the system of

equations is conceived without the last row and the last

column of matrix P hð Þ, resulting in

f i hð Þ ¼ P hð Þ � I½ �mn, where i ¼ 3 m� 1ð Þ þ n, for

m; n ¼ 1. . .3.
The system is solved using nonlinear least-square

solver, where the system solutions are obtained as the

minimization of the vector F hð Þ, for a vector input h,
given by

F hð Þ ¼ f1 hð Þ f2 hð Þ. . .f9 hð Þ½ �T

min
h

F hð Þk k2¼ min
h

X9

i¼1

fi hð Þ2
 !

:
ð4Þ

The system solution considers the lower and upper

boundaries that define each hi range, 0; p½ �, with a

central method to estimate gradients for the finite

difference estimation. The boundaries are used to

avoid superposition or penetration of panels, since

even though some configurations are allowed in the

equivalent mechanism, they are not achievable by the

origami unit cell itself, due to these superpositions/

penetrations. The solution is considered converged for

a threshold of 10�15 for both the function, satisfying

f i hð Þ ¼ P hð Þ � I½ �mn � 0, and the variables (hi).

3.1 Workspace analysis of the waterbomb unit cell

The mechanism workspace represents a region of

movement of the end-effector relative to a referential

frame, usually attached to the frame associated with

the first linkage. In this subsection, a workspace

analysis is carried out considering the motion of the

waterbomb unit cell, related to the frame attached to

the crease OA.

The origami analysis considers a subset of angles

h1; h2; h3ð Þ that, if physically attainable without

stretching, twisting, or compressing the links and

without penetration of panels, is identified in a feasible

region of the 3D space named as workspace. Fig-

ure 4a–i presents the waterbomb unit cell workspace,

defined by the feasible region generated by giving

h1; h2; h3ð Þ in a range 0; p½ �. The workspace assumes a

spherical configuration, centered at 0; 0; 0ð Þ. Note that
it is composed by two spheres: an inner sphere,

associated with the motion of vertices B and E, and an

outer sphere, associated with motion of vertices C,

D and F, being vertex A an inertial point located in the

outer sphere.

The workspace contained in Fig. 4 corresponds to

the dots, being formed through a contribution of the

combined motion of vertices B to F of the waterbomb

cell, where vertex A is the inertial one. The waterbomb

cell is represented through the connection of the

position of each vertex on the workspace where

vertices A, C, D and F belong to the outer sphere with

radius OA = OC = OD = OF = b
ffiffiffi
2

p
, and vertices B

and E belong to the inner sphere with radius

OB = OE = b. The points in the workspace should

not be considered individually, but as a set of 6 points

that define the unit cell. As examples, 9 sets are

selected where each one corresponds to a subset of

angles h1; h2; h3ð Þ given as an input and a subset of

angles h4; h5; h6ð Þ that corresponds to the output. The
subset for each case in Fig. 4a–i is shown in Table 1,

along with the converged remaining three angles,
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Fig. 4 Different representations of the unit cell shape config-

urations for distinct values of the input angles h1; h2; h3ð Þ. The
waterbomb cell is represented through the connection of the

position of each vertex on the workspace where vertices A, C, D

and F belong to the outer sphere with radius OA = OC = OD =

OF = b
ffiffiffi
2

p
, and vertices B and E belong to the inner sphere with

radius OB = OE = b (see Fig. 1a)

Table 1 Subsect of input

angles h1; h2; h3ð Þ and
numerically converged

remaining three angles

h4; h5; h6ð Þ

a b c d e f g h i

h1 0 30 90 90 95 95 95 105 180

h2 0 45 75 75 110 145 170 105 180

h3 0 30 75 130 90 145 80 105 175

h4 0 22.70 19.51 68.00 63.52 174.04 100.90 66.60 165.90

h5 0 48.28 49.30 74.86 99.44 153.67 173.72 96.64 175.00

h6 0 34.56 111.11 140.73 98.11 144.33 83.09 116.49 170.04
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Table 1. Figure 4a shows the particular case where the

waterbomb is fully unfolded.

A different perspective of the workspace is now of

concern highlighting the vertices on the workspace.

Figure 5 highlights each joint-linkage pair, consider-

ing a referential frame at creaseOA (joint A). It should

be highlighted that superposition and penetration of

panels define unfeasible regions associated with an

empty space on the workspace. In other words, holes

and isolated groups are generated in the workspace

due to unfeasible configurations. These isolated

groups represent a peculiar set of tridimensional

configurations achieved by the waterbomb cell, where

the structure has an inversion of crease type or is on the

verge of a panel penetration. Any configuration that

would be in between these isolated components results

in a cell with a superposition and/or penetration of

panels and, therefore, are not contemplated in the

workspace. A connection between these isolated

components requires a deformation on at least one

panel that is not feasible for the equivalent mechanism

description due to geometrical restrictions.

Fig. 5 Workspace for each joint-linkage pair of the waterbomb cell, considering the referential frame at joint A (crease OA)
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3.2 Symmetries of the waterbomb unit cell

The mobility of the unit cell mechanism can be

reduced by imposing symmetry conditions that can be

associated with either the actuation or mechanical

restriction imposed to the origami. The actuation

providing symmetric responses is related to external

forces that are applied in such a way that preserves the

symmetry. The mechanical restriction can be achieved

by considering some displacement constraint.

By observing the unit cell in Fig. 6a, three

symmetry plans can be defined, where the first one

leads to a symmetry plane type P1 (with mobility 2),

the second one leads to a symmetry plane type P2

(with mobility 2) and the third one leads to a symmetry

plane type P3, which represents the cell with a

symmetric behavior (with mobility 1). The first

symmetry plane is obtained through a diagonal of

the unit cell, either AD or CF (P1), resulting in

hi ¼ hiþ3, for i ¼ 1. . .3. The second symmetry plane is

obtained through the plane containing OBE (P2),

resulting in h3 ¼ h5 and h2 ¼ h6. The third symmetry

plane is obtained by connecting the middle points of

the linksCD andAF such that AF k CD (P3), resulting

in h2 ¼ h3 ¼ h5 ¼ h6 and h1 ¼ h4. Note that this third
case has a shape that can be fully described by only

one angle, since the origami is fully symmetric

(mobility 1). In addition, the shapes resulting from

P3 can be considered as a subset of the shapes

resulting from both P1 and P2, as can be observed in

Fig. 7a–c, where the intersection between the work-

spaces considering P1 and P2 is the workspace

considering P3.

Plane-symmetry constrains mostly the workspace

of the joint 4, associated with the crease OE. The

original spherical surface covered by the motion of

crease OE (see Fig. 5) is now reduced to a single

spherical arc for all three cases, P1, P2 and P3. It is

important to remember that the referential frame

associated with the crease OA is considered as the

inertial frame. The study of the symmetry cases is an

interesting strategy to design the actuation of the

origami. This advantage is clear when observing the

change on the workspace of node E from a general

case (Fig. 5) to the plane-symmetric cases (Fig. 7). If

the objective is to constrain the waterbomb to a

symmetric or quasi-symmetric motion, it suffices to

control the motion of node E, keeping it in a spherical

arc, as shown in Fig. 5. Additionally, it is possible to

notice that for all three plane-symmetric and symmet-

ric cases the workspace of node F is confined within a

single dot in space. This immovability of node F is the

main reason that makes node E behaves the same way

as node B, describing just a single arc in space.

Symmetry assumptions can be employed to reduce

the necessary equations for the origami description,

leading to a simplified formulation. Another way to

obtain the equations for the symmetric case is the use

of other formulations such as spherical trigonometry,

since the waterbomb is a spherical mechanism

[2, 4, 7, 9, 10].

The next section presents the mechanical descrip-

tion of the origami unit cell using FEA. A comparison

is performed between kinematics and mechanical

formulations.

4 Finite element analysis (FEA)

Origami description based on the kinematics analysis

focus on the rigid origami hypothesis where the

folding process occurs only on the creases and the

faces remain flat (no bending is considered). This type

of description allows one to use closed-form expres-

sions for the equivalent mechanism.

Mechanical behavior of the origami takes place

when deformation on the faces is allowed, establishing

a non-rigid origami analysis. FEA is an approach to

deal with this, contemplating all possible deformations

and twists on the structure. However, this type of

description is usually related to a high computational

cost.

Schrenk and Guest [29] proposed a simplified bar-

ang-hinge model for the structural analysis of origami

structures, including some bending through virtual

folds added on the faces with a low computational

cost. Nevertheless, this formulation is based on

infinitesimal displacements and deformations and

origami description is essentially based on large

displacements. Liu and Paulino [22] developed a

formulation that combines a simplified analysis

approach with the ability to describe either small or

large configurational transformations with a consider-

ably small computational cost. The Merlin Code

proposed in this reference is employed here for FEA,

with a modification on the deformation description,

described in the sequence.
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4.1 Formulation

Liu and Paulino [22] developed a finite element

representation of the origami considering non-rigid

hypothesis and employing the formulation proposed

by Schrenk and Guest [29] that describes the origami

as a simplified bar-and-hinge structure. In this formu-

lation, the creases act as rotational springs resisting the

folding process and the face edges are represented by

bar elements (Fig. 8). The panel behavior depends on

the bar responses.

The mechanical behavior of origami structures is

described assuming quasi-static equilibrium, where

the shape change is due to a succession of equilibrium

configurations. It is assumed that the total potential

energy U is the sum of the strain energy stored in bars,

Fig. 6 Symmetry conditions on a waterbomb unit cell: a plans of symmetry, b configuration related to Case P1, with mobility 2,

c configuration related to Case P2, with mobility 2, d symmetric configuration related to Case P3, with mobility 1
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Ubar , the strain energy stored in folding (torsional

springs on the creases) and bending (torsional springs

as virtual folds), Uspr, and the work done by external

loads, Vext, such that, by considering quasi-static

equilibrium,

oU
ou

¼ oUbar

ou
þ oUspr

ou
� oVext

ou
¼ Tbar þ Tspr � Fext

¼ 0

ð5Þ

where u is the nodal displacement vector, Tbar and Tspr

Fig. 7 Workspaces for the plane-symmetry cases P1 and P2 and the symmetry case P3 (a). The symmetric case P3 is showed

superposed to only the plane-symmetric case P1 in (b), while it is superposed to only the plane-symmetric case P3 in (c)

Fig. 8 Bar-and-hinge description of the origami unit cell
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are internal forces and Fext is the external load.

Internal forces analysis needs to be evaluated consid-

ering a proper constitutive equation for both bars and

springs. A small perturbation of the externally applied

load corresponds to a perturbation in the nodal DoF

displacements, such that

Tbar u0ð Þ þ Tspr u0ð Þ þ
o Tbar þ Tspr

� �

ou

����
u¼u0

du

¼ Fext þ dFext: ð6Þ

Since Eq. (5) is satisfied by the solution u0, Eq. (6)

reduces to

dFext ¼
o Tbar þ Tspr

� �

ou

����
u¼u0

du

¼ Kbar u0ð Þ þ Kspr u0ð Þ
� �

du ð7Þ

The bars are described as one-dimensional elements

and are modeled as a hyper elastic material repre-

sented by a strain energy density function W Exð Þ,
where Ex is the one-dimensional Green–Lagrange

strain. The hyper elastic behavior of the bars is

described by the constitutive model proposed by

Ogden [26], which nonlinearity and generality allows

one to represent different materials just by adjusting

the model parameters.

The simulations presented in this paper use the

N4B5 (4 Nodes, 5 Bars) formulation to describe the

virtual folds or bending regions, which divides each

quadrilateral panel into two triangles by its shorter

diagonal, as demonstrated in Fig. 9. It is important to

highlight that the waterbomb pattern has all hinges as

folding type, since all panels are triangular.

In addition, N4B5 formulation defines the spring

properties by its stiffness kfold ¼ 0:03Nmm�1
� �

and

the bar properties by the bar area (Abar ¼ 0:1mm2)

and its equivalent stiffness kbar ¼ 104 Nmm�1
� �

. The

waterbomb pattern unit cell is defined as a square of

side 200mm.

In order to solve the nonlinear problem, Merlin

Code uses a modified generalized displacement con-

trol method (MGDCM), a robust approach proposed

by Leon et al. [21] that avoids singularities. This

method has the main feature to converge the solution

even for high values of initial load factor [20]. The

original Merlin Code assumes that the load is applied

with respect to the undeformed configuration, keeping

its initial characteristic during all time steps. Here, this

input load follows the deformed configuration and

therefore, follows the node movement. This approach

allows a proper description of the origami that does not

present any incorrect extra stretching. A workflow for

the modified FEA is presented in ‘‘Appendix’’ for a

single cell.

5 Numerical simulations

A mechanical analysis of the waterbomb unit cell is

now in focus considering numerical simulations using

FEA. The study starts with a general visualization of

the waterbomb movement under external forces, with

evaluation of the deformation of the creases. This

analysis compares the kinematics analysis presented

in Sect. 3, which assumed a rigid-foldable origami,

with the mechanical formulation through Finite Ele-

ment Analysis (FEA) presented in Sect. 4, which

assumed a non-rigid foldable origami in a bar-and-

hinge description. A force type input is employed,

applied perpendicularly to the panel on the origami

deformed configuration, being an adaptative load that

Creases (folding hinges)

Virtual folds 
(bending hinges)

Fig. 9 N4B5 model on an origami pattern with two quadrilat-

eral faces: 1243 and 3465
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keeps its norm but change the direction at each

interaction, following the node movement (Fig. 10a).

All simulations consider the boundary conditions

and inputs force as defined in Fig. 10b, where the face

AFO (face formed by nodes 5, 6 and 7) is fixed in

space and the nodes 1, 2, 3 and 4 (vertices B, C, D and

E, respectively) are subjected to external forces.

The folding process of the waterbomb cell is

evaluated using FEA for four cases: the plane-

symmetric cases (typeP1 and typeP2) and symmetric

case (P3), presented in Sect. 3, and an asymmetric

case. These four cases are evaluated with the inputs

showed in Table 2, where the input is described by the

Node where the Force is being applied and a crease.

The crease as an input has two purposes: the first one is

to define the Face to which the Force remains

perpendicular to, following the Node movement. The

second one is the direction of the Force. Thus, a Force

applied to Node 1 with Crease identification 7� 6

results in a Force normal to Face ABO (face 167)

following the motion of Node 1, folding the origami

along the crease OA such that OA is a valley type fold.

On the other hand, a Force applied to Node 1 with

Crease identification 6� 7 results in a Force normal to

Face ABO (face 167) following the motion of Node 1,

folding the origami along the crease OA such that OA

is a mountain type fold.

At this point, it is important to define the symmetric

characteristics and their deviations of the symmetric

case. From mechanical point of view, a symmetric

behavior of the unit cell can be defined as the case

where the creases have identical behaviors, and all

mountain type folds present the same absolute defor-

mation along the entire folding process (creases

OA; OC; OD and OF) and all valley type folds

present the same absolute deformation along the

entire folding process (creases OB and OE). A similar

observation is made for the angle variation. For the

waterbomb unit cell under symmetric behavior, the

angle variation of all mountain type folds is the same

(angles A; C; D and F) along the entire folding

process, just as the angle variation of all valley type

folds (angles B and E). Discrepancies along the

folding process on both deformation and angle vari-

ation are understood as deviation of the symmetric

case. This deviated case is identified as a plane-

symmetric case if the angle relation is according to

either P1 or P2. Otherwise, it is defined as an

asymmetric case.

The bar-and-hinge formulation considers a simpli-

fied model of the origami face, where the face

deformation is represented by the sum of the contri-

bution of each edge and/or crease deformation.

Therefore, a deformation on face OAF is represented

by the cumulative effect of the deformation on creases

OA and OF and edge AF.

Figure 11 shows the motion in space of the four

cases presented in Table 2. In addition, Fig. 11 shows

the deformation occurring on each one of the six faces

of the waterbomb unit cell along the folding process.

Figure 11b shows the deformation evolution for the

waterbomb origami under symmetric behavior of type

P3. It is possible to note that facesOBC andODE have

the same deformation, just as faces OAB and OEF.

More than that, faces OAB, OBC, ODE and OEF have

the same absolute deformation. Face OAF presents a

larger deformation related to face OCD due to the

boundaries applied to the origami, where nodes A and

F have their motion restricted on two out of 3

directions. One deviation from the symmetric case is

X

Y

Z

1

2

3

4

5

6

7

(a) (b)

Fig. 10 Force type input applied to the referential frame (x, y, z) that follows the node movement. Axis z ? Face237 and plane xy is
contained within Face237 (a); and the origami waterbomb pattern unit cell with boundary conditions and force type input (b)
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observed in Fig. 11c, where the waterbomb behaves

according to the plane-symmetric case of type P2.

Note that there is a divergence on the deformation of

faces OBC and ODE, just as for faces OAB and OEF.

An interesting behavior is observed in Fig. 11d, where

the waterbomb unit cell behaves according to plane-

symmetric case of type P1. For this configuration,

diagonally opposed faces present the same deforma-

tion, by pairs: faces OAB and ODE, faces OBC and

OEF and faces OAF and OCD. Finally, for the

asymmetric case, shown in Fig. 11e, no symmetry is

observed among the deformation of origami unit cell

faces.

The folding process can also be evaluated through

the inner angles of the origami unit cell, as can be seen

in Fig. 12. Note that for the case P3, the kinematics

formulation can precisely describe the increasing of

the angles, even with the creases and edges presenting

a large deformation, showed in Fig. 11b, and A ¼
C ¼ D ¼ F and B ¼ E along the entire folding

process (Fig. 12a). A similar analysis is performed

for the caseP2, showed in Fig. 12b, where A ¼ C and

D ¼ F.

As evaluated through the kinematics formulation,

when the waterbomb is folding according to case P1,

the inner angles relate as hi ¼ hiþ3, for i ¼ 1; 2; 3. By

observing the vertices, this can be translated as A ¼ D,

C ¼ F and B ¼ E. Figure 12c shows the angles

evolving with the increment, and it can be noticed

that A ffi D, C ffi F and B ffi E. The deviation can be

considered a result of the deformation that happens on

the creases (Fig. 11d).

The fourth case, with inner angles showed in

Fig. 12d and faces deformation showed in Fig. 11e,

represent a general asymmetric motion, with no

relation among the angles. Note that in the asymmetric

case, the continuous folding of an angle (angle A, for

example) might occur in a sequential folding—

unfolding—folding of another angle (angle E, for

example). This behavior can be seen between time 50

and 100 of Fig. 12d.

A closer observation of the asymmetric case is now

performed comparing the path described through

kinematics formulation with the path obtained by

FEA. Figure 13 establishes a comparison between

both formulations. Figure 13a presents the superposed

trajectories followed by both cases, showing a good

match. This evaluation is ensured by observing the

difference on the inner angles for each increment

(Fig. 13b). For the kinematics formulation, the input is

given by the set of angles (h1; h2; h3), corresponding to
the inner angles of vertices B, C and D, respectively.

Note that the deviance is smaller than 1 degree

(approximately 0.017 rad), meaning that the kinemat-

ics formulation can represent the folding process of the

waterbomb origami. In other words, the rigid fold-

ability hypothesis is valid.

5.1 Closed waterbomb tessellation: cylindrical

origami

After the verification of the rigid foldability hypoth-

esis, it is possible to investigate the description of the

origami tessellation by using both the kinematics

model and the FEA. Cylindrical origami tessellation is

becoming an interesting alternative for the production

of stents [16, 27, 28]. This section investigates the

cylindrical origami tessellation that allows one to

Table 2 Input and final configuration for each one of the four cases: quasi-symmetric (P1 and P2), symmetric (P3) and asymmetric

Case P1 P2 P3 Asymmetric

Node 1 4 3 1 4 2 1 4 1 4 2

Crease 7� 6 7� 3 7� 4 7� 6 5� 7 7� 3 7� 6 5� 7 7� 6 5� 7 3� 7

Final configuration
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check the conditions on validity of the assumption that

a unit cell can represent the general behavior of the

structure. The analysis is performed considering a

closed m� nwaterbomb tessellation, withm lines and

n cells on each line (Fig. 14). The tessellation is

bFig. 11 Workspace for cases P1 and P2 and simulations for a

generic case (asymmetric), plane-symmetric behavior (P1, P2)

and symmetric behavior (P3). The correspondent deformation

of each origami face is shown for cases P3 (b), P2 (c), P1

(d) and asymmetric (e)

Fig. 12 Evolution of the inner angles of the waterbomb cell

with the increment during the folding process, for a folding

occurring according to cases P3 (a), P2 (b) and P1 (c), and

according to an asymmetric actuation (d). The final configura-

tion is also shown in evidence in each case
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symmetrically actuated by considering that the cells

are pulled radially through the middle vertex of each

unitary cell (point O in Fig. 2). Longitudinal symme-

try is placed on the unit cells vertex, in such a way that

the radius of each line measured from the tessellation

axis to the vertex (point O in Fig. 2) is the same

between lines and within the same line.

This analysis is performed in two stages: the first

study evaluates the influence of the number of lines

(m) considering a tessellation with n = 6 cells on each

line; the second study evaluates the influence of the

number of cells on each line (n) considering two

tessellations: with m = 5 lines and with m = 6 lines.

In order to evaluate the influence of the number of

lines (m), four tessellations formed by waterbomb unit

cells on each line are of concern varying the numbers

of lines (Fig. 15): lines (Fig. 15a); lines (Fig. 15b);

lines (Fig. 15c) and lines (Fig. 15d). For all tessella-

tions, initial configuration is the opened one (gray

color). Figure 15 shows each tessellation in a final

closed configuration. The purpose of the analysis is to

evaluate the behavior of each individual waterbomb

unit cell when the structure is folded in a symmetric

way. In order to visualize any local asymmetry, the

inner angles are represented according to the previous

cases: P1, P2 and P3.

This first set of simulations is represented in

Fig. 16, by a relation between the inner angles of

each one of the cells. The inner angles are represented

according to the relation of P2. Therefore, they are

plotted as: A versus C, D versus F and B versus E,

where the bisector line represents the symmetric case

(P3). Figure 17 shows, respectively, the inner angle

relation for the tessellation with lines (Fig. 17a), lines

(Fig. 17b), lines (Fig. 17c) and lines (Fig. 17d).

Two major observations can be made about these

cases. The first one is related to the influence of the tips

or endings in this tessellation. Note that this tessella-

tion has free ends, where at least 6 vertices on the top

(related to vertex E) and at least 6 vertices on the

bottom (related to vertex B) are not restrained in any

way, and an inversion of crease type (from mountain

to valley fold) might occur freely. Besides, these free

endings result in additional degrees of freedom, even

when a controlled symmetric folding process is

performed. The tip influence can be seen on all four

Fig. 13 Asymmetric behavior of the waterbomb cell described

by the kinematic formulation (using D–H parameters) and the

FEA formulation (using bar-and-hinge description).

a Tridimensional movement of the cell on folding process;

b difference between the inner angles evaluated by kinematics

method and by FEA method
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graphs by the deviance of both vertices B and E from

the symmetric condition (case P3). Note that for all

four cases, the first and the last lines, associated with

the bottom and the top of the tessellation, behave

according to caseP2, while the lines contained within

the first and the last one tends to behave according to

P3. This analysis comes from the observation of the

points places outside the bisector line.

The second observation is related to the influence of

the number of lines in the structure behavior. Specif-

ically, the waterbomb cell in the tessellation with and

odd number of lines (Fig. 15a, c) presents a plane-

symmetric behavior (according to caseP2) for all cells

on the first and last lines (Fig. 16a, c), while it presents

a symmetric behavior (case P3) for the remaining

lines. On the other hand, the waterbomb in the

tessellation with and even number of lines (Fig. 15b,

d) tends to behave in a plane-symmetric condition

(according to case P2), with a more prominent plane-

symmetry occurring on the external lines (first and last

one) and a more prominent symmetry occurring on the

other lines (Fig. 16b, d).

The second study evaluates the influence of the

number of cells on each line on the structure behavior

during the folding process. For this study, a series of

tessellations are considered, going from 6 cells per line

until 22 cells per line. As observed in Fig. 16a–d, the

major deviance occurs on the first and last lines,

because of the endings. Concerning the influence of

the number of cells on the symmetric behavior of the

inner lines, it is necessary to focus on the line that

presents the major deviance from the symmetric

behavior (case P3) for each simulation, neglecting

the first and the last lines (ending effect). In addition, it

should be pointed out that there is a point for each

simulation where this deviance reaches its maximum

value, as can be seen in Fig. 16a–d. Figure 17 brings

the maximum deviance observed for each case, going

from to. Figure 17a shows this evaluation for a

tessellation with an odd number of lines (m = 5 lines),

while Fig. 17b shows the deviance for a tessellation

with an even number of lines (m = 6 lines). The

deviance is evaluated as the absolute difference

between the angles of a cell on the line m and a cell

on the line mn=2, for the tessellation with an even

number of lines, and on the line mðnþ 1Þ=2, for the
tessellation with an odd number of lines.

It is noticeable that the tessellation with an odd

number of cells (Fig. 17a) presents the maximum

absolute deviance that tends to grow linearly with the

increase of the number of cells per line. Besides, all

cells outside the central line mðnþ 1Þ=2 behave

according to the P2 plane-symmetric case. It is also

noticeable that for a tessellation with up to 10 cells per

line, the maximum deviance observed is around 18.
The combined result from simulation presented at

Fig. 16a, c and the simulation presented in Fig. 17a

indicates that for a tessellation with an odd number of

lines and a maximum of 10 cells per line, a simplified

model describing the unit cell behavior, such as the

trigonometric formulation presented as Sect. 4, can be

extrapolated as representative of the structure behav-

ior, and the influence of the endings is contained

within the cells from the first and the last line. In

addition, a tessellation with an even number of cells

per line (Fig. 17b) presents a significant deviance from

the symmetric behavior (caseP3). In opposition to the

result presented in Fig. 17a, Fig. 17b indicates a

smoother increasing of the maximum deviance.

Fig. 14 Closed waterbomb tessellation generated with the 6

creased waterbomb unit cell. The tessellation is defined by the

number of lines (m) and the number of cells on each line (n)
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Besides, the increase of the number of cells causes the

loss of the circumferential symmetry. This fact is due

to the folding process that occurs on the tessellation.

The natural force (Fig. 1b) associated with the

folding process of the closed tessellation evaluated in

Fig. 17 tends to generate a ball-shaped origami, where

the middle lines tend to present a symmetric behavior,

and the endings tend to be asymmetric. On the other

hand, if this natural force (Fig. 1b) tends to generate a

cylindrical-like origami, a different behavior is

observed, where the middle lines tend to present an

asymmetric behavior and the endings tend have a

symmetric behavior.

The folding process of a cylindrical-like origami is

shown in Fig. 18. The structure presents a motion that

can be translated as a circumferential reduction,

followed by an axial compression, a strangulation,

and an axial relaxation. This motion sequence is

presented at Fig. 18a, for a tessellation with m = 5

lines, and at Fig. 18b, for a tessellation with m = 6

lines. Note that the strangulation is more prominent on

the tessellation with an even number of lines

(Fig. 18b).

The strangulation effect is further explored by

considering an index, D, expressed by the difference

between the tessellation radius measured from the

middle axis to the vertex B of a cell in the middle line

and the tessellation radius measured from the tessel-

lation axis to the vertex B of a cell in the first line.

Thus, D = 1 means that the tessellation does not

present a strangulation, having a cylindrical surface

(zero Gaussian curvature). On the other hand, D = 1

means that the tessellation presents a strangulation that

can be a positive Gaussian curvature (D[ 1) or a

negative Gaussian curvature (D\ 1). It is important to

notice that closed waterbomb tessellations with an

even number of lines always presents a negative

Gaussian curvature under symmetrical actuation,

(a) (b) (c) (d)

Fig. 15 Closed waterbomb tessellation formed by m lines, with each line composed by n = 6 squared cells. am = 3; bm = 4; cm = 7;

d m = 8
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which is an important consideration when designing

closed waterbomb tessellations. Figure 19 presents the

relation between the number of origami lines (m) and

its even/odd parity with the prominence of the

strangulation effect. It is clear that the origamis with

even number of lines have a greater strangulation

effect.

Figure 20 presents the influence of the number of

cells on each line (n) on the strangulation effect (D),
for both even and odd closed waterbomb tessellations.

Figure 20 also brings the information regarding the

influence of the number of lines (m). The first

important thing to be noticed is that the parity of lines

(m odd or even) of the tessellation seems to be more

expressive in the strangulation than the number of

lines itself (m). For a fixed number of cells on each line

(n), the tessellation with an even number of lines

(m) always presents a negative Gaussian curvature.

Besides, the increase of the number of lines (m) does

not have an expressive influence on the strangulation

effect (D), apart from the increasing from m = 3 to

m = 5 that stands out. A similar analysis is made on

the tessellation with an odd number of lines, where the

increase of the number of lines slightly changes the

Fig. 16 Relation between the inner angles of each one of the 6L

cells of the tessellation, where m is the number of lines of that

tessellation. a Relation for the case m = 3, b Relation for the

case m = 4, c relation for the case m = 7, and d Relation for the

case m = 8. For all four cases, the bisector line represents the

symmetric behavior (case P3)
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Fig. 17 Maximum deviation of each inner angle with the

increasing of the number of cells per line, considering a

tessellation with m lines. aMaximum deviation for a tessellation

with an odd number of lines, with m = 5; bMaximum deviation

for a tessellation with an even number of lines, with m = 6

Intermediate
configurations

Folding process

(a)

(b)

Circumferential
reduction

Axial
compression

Strangulation Axial
relaxation

Initial
configuration

Final
configuration

Fig. 18 Folding process of a tessellation with m = 5 lines (a) and m = 6 lines (b), with each remarkable phase highlighted. The

strangulation that happens in the middle of the tessellation is highlighted by red arrows
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curvature of the outer surface of the closed waterbomb

tessellation, varying between positive (D[ 1) and

negative (D\ 1) Gaussian curvature. The increase of

the number of lines in cases where m\ 6 can be an

improvement for applications such as stents, since a

positive Gaussian curvature surface does not present a

gap. Cases where m C 6, however, tends to generate

an unfolded closed waterbomb tessellation with a

negative Gaussian curvature, which generates the gap

on the middle line. The increase of the number of cells

on each line (n) does not present a significant influence

on the tessellation with an odd number of lines for

cases where n[ 5. Nevertheless, the number of cells

on each line (n) significantly influences the strangu-

lation effect (D), reducing its expressivity with the

increasing on the number of lines (m).

6 Conclusions

This paper presents an investigation of the origami

waterbomb pattern from its unit cell, exploring

different formulations for origami structures. Two

approaches are presented: kinematics based on equiv-

alent mechanism; and mechanical based on finite

element analysis (FEA). Kinematics analysis is based

on rigid hypothesis where all deformations occur on

creases and the panel is rigid, defining a reduced-order

model. A global investigation is performed, evaluating

the tridimensional behavior of the unit cell under

symmetric and asymmetric conditions. Mechanical

analysis considers asymmetric situations and non-

rigid cases as well. Numerical simulations show that a

reduced order model formulation is justified and

applicable, and its range of validity can be established

by the FEA. A closed tessellation analysis is per-

formed considering symmetric actuation showing that

the structure presents a strangulation effect that is

more prominent for tessellations with an even number

of lines. This strangulation affects a small region of the

tessellation where the unit cells present a quasi-

symmetric or plane-symmetric behavior. A tessella-

tion with an odd number of lines tends to present both

local and global symmetries and, for a tessellation

with a minimum of five lines, neither the increase of

the number of lines nor the increase of the number of

cells on each line has a significant effect on the

strangulation effect. This information is important for

a design strategy and for the use of reduced-order

models.
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Fig. 19 Evaluation of the strangulation effect (D) for even and

odd tessellation, as a function of the ratio between the number of

lines (m) and the number of cells on each line (n)
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Fig. 20 Strangulation (D) evaluation for both even and odd

tessellations as a function of the number of cells on each line (n),

with a color map on the number of lines (m)
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Appendix

This appendix presents details about the origami

formulation.

Equivalent mechanism analysis

The waterbomb unit cell is a closed-loop mechanism

and, for the formulation used in this paper, it is

assumed that the first linkage i ¼ 1ð Þ is associated

with the crease OB, being numbered counterclock-

wise. Therefore, the last linkage i ¼ 6ð Þ is related to

the crease OA (see Fig. 2). The frame definition is

summarized as:

1. The first frame i ¼ 1ð Þ is defined as the creaseOB.
2. Frames are disposed following a counterclockwise

sequence, following the vertex order

B; C; D; E; F and A, starting from i ¼ 1ð Þ at

vertex B and ending at i ¼ 6ð Þ at vertex A.

3. The zi axis of each i frame is aligned with the

crease, with the origin at O (see Fig. 2).

4. The yi axis of each frame is coplanar with the

origami face delimited by the joints i and i� 1,

and the y1 frame is coplanar with the origami face

delimited by frames 1 and 6.

5. The xi axis of each i frame is the normal of the face

delimited by joints i and i� 1, and the x1 frame is

the normal to the face delimited by frames 1 and 6.

6. The waterbomb defines an inner region and an

outer region, where the inner region is contained

within the waterbomb edges

AB; BC; CD; DE; EF and FA. Each xi axis points

outwards the inner region.

Each zi axis is defined such that every hi angle
belongs to the range 0; p½ �. With this consideration, zi
axis associated with valley folds (creases

OA; OC; OD andOF) are positioned along the crease,

pointing from Oi to the correspondent vertex (A; C; D

or F), while zi axis associated with mountain folds (OB

and OE) are positioned along the crease, pointing to

the opposite direction of the correspondent vertex (B

or E). The values of the D–H parameters for a generic

waterbomb cell are given in Table 3.

The waterbomb pattern has a characteristic that all

joints intercept at a common point (point O in Fig. 2),

resulting in ai ¼ Ri ¼ 0 ði ¼ 1; . . .6Þ. In addition, ai is
fixed for each pair of consecutive joints, being

associated with the angle k that defines the shape of

the waterbomb cell wherein, for a squared waterbomb

cell, k ¼ p=4.

Finite element analysis

The behavior of origami structures is described

assuming quasi-static equilibrium, where the shape

change is due to a succession of equilibrium config-

urations. It is assumed that the total potential energyU
is the sum of the strain energy stored in bars, Ubar , the

strain energy stored in folding (torsional springs on the

creases) and bending (torsional springs as virtual

folds), Uspr, the work done by external loads, Vext,

U ¼ Ubar þ Uspr � Vext ð8Þ

By considering quasi-static equilibrium, the ith bar

element is represented by

Ti
bar ¼ AiLiSx

oEx

oui

Ki
bar ¼ AiLi Sx

o2Ex

ou2i
þ C

oEx

oui

oEx

oui

� 	T
" # ð9Þ

where Sx is the second Piola–Kirchhoff (P–K) tensor,

C is a tangent modulus, Ai is the transversal section

area of the bar element and Li is the length of the bar

element. The degree of freedom that describes the

torsional spring (its rotation) is given by the dihedral

angle between the panels and can be obtained straight

from the displacements and the original coordinates of

the vertices. Besides, the torsional spring has its

behavior assumed as linear elastic. Thus, for the jth

torsional spring,

Table 3 D–H parameters and its correspondence to each

vertex of the unit cell

Vertex B C D E F A

i 1 2 3 4 5 6

ai p� k pþ 2k p� k p� k pþ 2k p� k

hi h1 h2 h3 h4 h5 h6
Ri 0 0 0 0 0 0

ai 0 0 0 0 0 0
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T j
spr ¼ Lj

oW
oh

oh
ouj

LjMRES
oh
ouj

K j
spr ¼ Lj MRES

o2h
ou2j

þ k
oh
ouj

oh
ouj

� 	T
" # ð10Þ

where MRES is the resisting moment per unit length, k

is the rotational stiffness modulus per unit length,W is

the stored energy function and h is the dihedral angle.

The linear formulation of the moment MRES does not

detect local penetration of origami panels and, to avoid

that, additional kinematic constraints are considered.

Based on that, the moment per unit length is given by

MRES ¼
k h1 � h0ð Þ þ 2kh1

p

� 	
tan

p h� h1ð Þ
2h1

� 	

k h� h0ð Þ

k h2 � h0ð Þ þ 2k 2p� h2ð Þ
p


 �
tan

p h� h2ð Þ
4p� 2h2

� 	

; h 2 0; h1� ½

; h 2 h1; h2½ �

; h 2 h2; 2p� ½

8
>>>><

>>>>:

:

ð11Þ

The original Merlin Code assumes that the load is

applied with respect to the undeformed configuration,

keeping its initial characteristic during all time steps.

Here, this input load follows the deformed configura-

tion and therefore, follows the node movement. This

approach allows a proper description of the origami

that does not present any incorrect extra stretching. A

workflow for the modified FEA is presented in Fig. 21,

illustrated by a single cell. The XYZ coordinates of

each node of the origami is used as input, being

reshaped as a combination of nodes and panels, and

the creases are properly identified and stored as bars in

a trussed-like structure. Additionally, the boundary

conditions and the actuation are defined as inputs,

being either force or displacement type. This set of

inputs are fed to the solver that, using an iteration

method and with the formulation previously pre-

sented, converge the solution through a quasi-static

analysis of the unbalanced system, until it reaches the

equilibrium.
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