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a b s t r a c t 

Origami is an ancient art of the paper folding that has been the source of inspiration in many engineering designs 

due to its intrinsic ability of changing shape and volume. Self-expandable devices have been created based on 

origami concept together with smart materials. Shape memory alloys belong to this class of materials and provide 

high forces and large displacements by varying their temperature. This work deals with the nonlinear dynamics 

of an origami-stent, a cylindrical shaped origami structure, which has the capacity of changing its radius. The 

actuation is provided by antagonistic torsional shape memory alloy wires placed in the origami creases. The math- 

ematical model assumes a polynomial constitutive model to describe the shape memory alloy thermomechanical 

behavior. Geometric assumptions establish a one-degree of freedom model with constitutive and geometric non- 

linearities. Numerical simulations are carried out considering different thermomechanical loadings that represent 

operational conditions. The system presents complex responses including chaos. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Origami, the art of the paper folding, has been inspiring many in-

ovative designs of engineering systems. This Japanese art creates a

hree-dimensional geometry by following a sequence of folds in a sheet

f paper. Some of these sequences creates a geometry able to contract-

xpand itself with an expressive change in its shape. Such behavior is of

reat interest to self-expanding adaptive systems. 

The capacity of compacting structures, the lightness and the ability

o present synchronized movements is of special interest of aerospace,

obotic and medical applications [4,16] . In aerospace applications, the

eed and transportation restrictions motivate the use of packed con-

gurations and, once arrived at the desired place, be deployed to the

xpanded configuration. Miura [15] developed a foldable solar panel

ased on origami concept. In medical applications, origami has inspired

he design of new medical apparatus especially dedicated to minimally

nvasive surgery. 

Shape memory alloys (SMAs) are widely employed as actuators due

o their capacity of generate high forces and large displacements when

ubjected to thermomechanical fields that yield phase transformations.

he association of SMA actuators with origami structures is promising

eing the focus of some research efforts [7 , 8 , 17] . Lee et al. [13] de-

eloped an origami-wheel actuated by SMA connected to a bias linear

pring, being able to alter its radius in a robotic vehicle. The water-

omb pattern is employed for the origami design as employed on several

pplications since it allows significant shape changes [6 , 14] . Le et al.
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12] also used a waterbomb origami pattern in an aerial drone employed

o landing in water. Salerno et al. [18] presented an SMA origami device

hat takes advantage of geometric relations of the origami movements

o increase the maneuver capacity. 

Origami system is a slender structure with complex geometry that

akes stability analysis an essential part of the design. Therefore, dy-

amical behavior of origami systems is an important issue to be inves-

igated and only few works are available in literature. Basically, this

nalysis combines geometric and constitutive nonlinearities, providing

 rich dynamics with operations close to the stability limits. In this re-

ard, Fonseca et al. [5] presented a dynamical analysis of an origami-

heel with shape memory actuators. A single degree of freedom system

s employed as an archetypal model of the origami structure. Results

how a rich response, including chaos. 

This work investigates the nonlinear dynamics of an origami-stent, a

elf-expandable cylindrical origami being originally presented by Kurib-

yashi et al. [11] . The stent is usually employed as a tubular medical

evice used to protect weakened arterial walls in the human body, but

t can also be applied to increase stiffness of several systems includ-

ng pipes and oil drilling well. Basically, origami-stent has a cylindrical

hape and the folds allow the change of its radius ( Fig. 1 ). 

A shape memory alloy origami-stent system is analyzed considering

orsion SMA wires (TSW) as actuators. A polynomial constitutive model

escribes thermomechanical behavior of SMAs. Origami geometric rela-

ions are employed to propose a one-degree of freedom (1-DOF) system
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Fig. 1. Origami-stent deployment: three different configurations from folded, closed one, 

to deployed, opened one. 
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hat represents the system dynamics. Numerical simulations are carried

ut showing rich responses due to situations related to different ther-

omechanical operational excitations. 

After this introduction, this paper is organized as follows. Initially,

 geometric analysis is performed, establishing geometric relations and

he kinematics of the origami system. Dynamical model is then proposed

onsidering a single-degree of freedom system. Afterward, numerical

imulations are discussed considering different thermal and thermome-

hanical loadings. Concluding remarks are presented in the sequence. 

. Geometric analysis 

The origami-stent is a self-expandable cylindrical origami con-

tructed by following the folding pattern showed in Fig. 2 -a, where the

ontinuous lines mean mountain folds (folds outwards the paper plane)

nd the dashed lines mean valley folds (folds inwards the paper plane).

his pattern is composed by the repetition of rectangular components

s showed in Fig. 2 -b, which is known as waterbomb base, shifted half

n element in comparison with those on their side. The rectangular ele-

ent has a length L and an angle 𝛼0 , and therefore, L 2 = L /tan( 𝛼0 ) and

0 = 45° means it is a square element. A single waterbomb base folded

s presented in Fig. 2 -c. 

Geometric relations are now in focus and some hypotheses are es-

ablished for this aim. The first one is the symmetry, assuming that all

lements behave in the same way and the element itself behaves sym-

etrically. Under this assumption, one-quarter of the cell element is

epresentative of the general cell behavior. The second assumption is

hat fold occurs only in the creases and therefore, the element facets

emain straight. Under these assumptions, it is possible to analyze the

hole origami from a single cell element. 

The deployment of the origami goes through two stages [10] . On the

rst stage, the element unfolds until it reaches a flattened configuration

nd the nodes A, C and A 2 are co-linear. On the second stage, the crease

A 2 moves outwards in the radial direction ( Fig. 3 ). 

The cell element geometry is characterized by three angles: 𝜃, 𝜑 and

. These angles are coupled in such a way that each one can be described

s a function of the others. Hence, it is possible to elect 𝜃 as the basic
ig. 2. Origami-stent folding pattern: (a) waterbomb folding pattern where continuous line re

lement; (c) three-dimensional view of the single cell element. 
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ngle. It is noticeable that 𝜃 < 90° characterizes the first stage while 𝜃

 90° characterizes the second stage. 

On the first stage, 𝜑 can be expressed by considering the positions of

he points A and B on the ( x, y ,z ) system with origin on C: A = ( L 2 sin( 𝜑 ),0,

 2 cos( 𝜑 )) and B = ( L 2 , L sin( 𝜃), L cos( 𝜃)). Since the distance AB is equal

o L , the following equation can be written: 

os 
(
𝛼0 
)
= cos 

(
𝛼0 
)
sin ( 𝜑 ) + sin 

(
𝛼0 
)
cos ( 𝜑 ) cos ( 𝜃) (1)

By solving Eq. (1) , the following equation is obtained: 
 

sin ( 𝜑 ) − 

1 − ta n 2 
(
𝛼0 
)
cos 2 ( 𝜃) 

1 + ta n 2 
(
𝛼0 
)
cos 2 ( 𝜃) 

) 

( sin ( 𝜑 ) − 1 ) = 0 (2)

Based on that, there are two possible solutions for 𝜑 . Since this angle

annot be constant on the first stage, the following equation is estab-

ished to define 𝜑 during the first stage: 

 = asin 

( 

1 − ta n 2 
(
𝛼0 
)
cos 2 ( 𝜃) 

1 + ta n 2 
(
𝛼0 
)
cos 2 ( 𝜃) 

) 

(3)

In order to analyze the angle 𝛽 on the first stage, consider the triangle

 p B p C ( Fig. 4 ). Since A p C = L 2 cos( 𝜑 ) and D p C = L cos( 𝜃), it is possible to

rite A p D p = L 2 cos( 𝜑 ) − L cos( 𝜃). On the other hand, AD = L cos( 𝛽) and,

ince the angle ∠ADD p = 𝜑 , the distance A p D p = L cos( 𝛽)sin( 𝜑 ). There-

ore, the following relation is written for the first stage: 

= acos 

( 

cos ( 𝜑 ) ∕ tan 
(
𝛼0 
)
− cos ( 𝜃) 

sin ( 𝜑 ) 

) 

(4)

In order to obtain a function of 𝛽 that depends only of 𝜃, the

ngle 𝜑 in Eq. (4) is substituted by Eq. (3) and it is found that

= acos(cos ( 𝜃)) = 𝜃. 

On the second stage, Fig. 3 shows that the angle 𝜑 remains con-

tant, being equal to 90°. This can be also pointed out by considering

he second term on the left side of Eq. (2) . Besides, since both facets that

ontains the crease BC remains on the same plane, 𝛽 = 180°− 𝜃. 

An analysis of the origami-stent radii is now of concern. Let O be

he central point of the origami-stent. Fig. 5 shows two radii that define

rigami geometry: an internal radius, R i , defined as OC; and an external

adius, R e , defined as OB p . The angle 𝛼, defined as ∠A p OB p , is related

o the number of cell elements circumferentially distributed, n , and by

he hypotheses already assumed, it is equal to all elements. Therefore,

his angle is such that n (2 𝛼) = 360°. Hence: 

= 180 ◦∕ 𝑛 (5)

Reminding that 𝜃 is the angle ∠A p CB p , it is possible to see from

ig. 5 that R e sin( 𝛼) = L sin( 𝜃) and R e cos ( 𝛼) = R i + L cos( 𝜃), furnishing

he following relations: 

 𝑒 = 

𝐿 sin ( 𝜃) 
sin ( 𝛼) 

(6)
presents mountains and dashed line represents valleys; (b) plane view of the single cell 
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Fig. 3. Origami-stent two-stage configurations: (a) row of elements; (b) single element. 

Fig. 4. Geometric characterization using angles of the origami-stent single element. 

Fig. 5. Geometric characterization using internal and external radii of the origami-stent: 

(a) perspective view; (b) frontal view. 
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 𝑖 = 

𝐿 sin ( 𝜃) 
tan ( 𝛼) 

− 𝐿 cos ( 𝜃) (7)

The origami has physical limitations that can be expressed as fol-

ows: the radius R i cannot be less than zero, which means that the

tructure does not penetrate itself; R i cannot be greater than R e , which

eans that the mountain AC does not become a valley avoiding a

old in another direction that would result in the structure collapse.

ence, R i = 0 implies that tan ( 𝜃) = tan ( 𝛼) and R i = R e implies that

an ( 𝜃) = sin ( 𝛼)/(cos ( 𝛼) − 1). These restrictions can be written by the

efinition of limit angles, 𝜃min and 𝜃max : 

min = 𝛼 (8) 

max = 

𝜋 + 

𝛼
(9)
2 2 B

305 
In summary, the origami geometry can be described with the follow-

ng set of equations: 

= 

{ 

𝜃

180 ◦ − 𝜃

if 𝜃min ≤ 𝜃 < 90 ◦
if 90 ◦ ≤ 𝜃 ≤ 𝜃max 

(10) 

 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
asin 

( 

1 − ta n 2 
(
𝛼0 
)
cos 2 ( 𝜃) 

1 + ta n 2 
(
𝛼0 
)
cos 2 ( 𝜃) 

) 

90 ◦

if 𝜃min ≤ 𝜃 < 90 ◦
if 90 ◦ ≤ 𝜃 ≤ 𝜃max 

(11) 

Based on the geometric relations of the origami-stent, Fig. 6 il-

ustrates the general behavior of an origami with square elements

 𝛼0 = 45°). Fig. 6 -a shows the evolution of the angles 𝛽 and 𝜑 as a func-

ion of the angle 𝜃. Note that at 𝜃 = 90°, both angles ( 𝛽 and 𝜑 ) have

 transition configuration between the different stages. Fig. 6 -b shows

nternal and external radii divided by the length L for different values

f n (the number of elements circumferentially distributed). Besides the

imit angles, 𝜃min and 𝜃max , the number n influences the radius maxi-

um values. The maximum value of the external radius R e occurs at

= 90°. Fig. 6 -b also shows the degree of compactness of the structure.

or n = 6, R e can double its size, while for n = 10, R e can triplicate its

ize. Hence, the greater is the value of elements n , the more compact

he origami is able to be. Nevertheless, the increase of the number of

lements makes harder the origami manufacturing process. 

.1. Kinematic analysis 

Kinematics of the origami-stent system is now treated. Due to sym-

etry assumptions, it is possible to analyze one-quarter of the cell ele-

ent. A global coordinate frame F(O XYZ ) is placed on the center axis

f the origami-stent with origin on O (see Fig. 5 ). A local coordinate

rame P(C xyz ) is placed due to a translation from O to C (see Fig. 5 ).

ence, the coordinate frame P is translated from the coordinate frame

 through Z direction of a distance equal to OC, that is, R i . 

Basically, kinematic analysis corresponds to two triangles which

ovements are geometrically coupled to each other. It is assumed that

ach one of these triangles rotates presenting inertia. The triangle BB p C

otates of an angle 𝜃 while the triangle ABC rotates of an angle 𝜑 and

hen of an angle 𝛽 (see Fig. 4 ). Besides that, translation motion associ-

ted with each triangle has a lumped mass placed in its centroid: m 1 on

he centroid of the triangle ABC and m 2 on the centroid of the triangle

B p C. 
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a) b)

Fig. 6. Geometric relations defined by origami angles and radius as a function of 𝜃 (in degrees for 𝛼0 = 45°): (a) angle relations ( 𝛽 and 𝜑 ); (b) radius relations ( R i and R e ) for different 

values of n . 

Fig. 7. Coordinate frames defined on the origami-stent single element. 
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Therefore, five coordinate frames are considered: F and P; Q, R

nd S. The coordinate frames Q, R and S have origin on C, present-

ng movements related to each geometric angle, 𝜑 , 𝛽 and 𝜃, respec-

ively ( Fig. 7 ). The triangle ABC rotates about 𝜑 and, then, rotates about

. Q(C x (1) y (1) z (1) ) rotates about 𝜑 in the x (1) -axis direction of P while

(C x (2) y (2) z (2) ) rotates about 𝛽 in the z (2) -axis direction of Q. The trian-

le BB p C rotates 𝜃. S(C x (3) y (3) z (3) ) rotates about 𝜃 on the y (3) -axis of P.

ince the coordinate frame P does not rotates about the global coordi-

ate frame F (it only translates), the rotation matrices are the following:

 𝑻 𝑸 = 

⎡ ⎢ ⎢ ⎣ 
1 0 0 
0 cos ( 𝜑 ) sin ( 𝜑 ) 
0 − sin ( 𝜑 ) cos ( 𝜑 ) 

⎤ ⎥ ⎥ ⎦ (12)

 𝑻 𝑹 = 

⎡ ⎢ ⎢ ⎣ 
cos ( 𝛽) sin ( 𝛽) 0 
− sin ( 𝛽) cos ( 𝛽) 0 

0 0 1 

⎤ ⎥ ⎥ ⎦ (13)

 𝑻 𝑺 = 

⎡ ⎢ ⎢ ⎣ 
cos ( 𝜃) 0 sin ( 𝜃) 

0 1 0 
− sin ( 𝜃) 0 cos ( 𝜃) 

⎤ ⎥ ⎥ ⎦ (14)

It is assumed that the lumped masses m 1 and m 2 are located in the ge-

metric center of the triangles ABC and BB p C, respectively. The vectors

hat indicate their positions are represented on the coordinate frames R
306 
nd S, respectively, given by: 

 

 

𝒓 1 = 

⎡ ⎢ ⎢ ⎣ 
0 

𝐿 1 ∕3 
2 𝐿 2 ∕3 

⎤ ⎥ ⎥ ⎦ (15)

 

 

𝒓 2 = 

⎡ ⎢ ⎢ ⎣ 
0 

𝐿 2 ∕3 
2 𝐿 1 ∕3 

⎤ ⎥ ⎥ ⎦ (16)

The triangle inertia tensors are the following: 

 𝑰 
𝐴𝐵𝐶 

= 𝑚 𝐴𝐵𝐶 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 
6 𝐿 1 

2 + 

1 
2 𝐿 2 

2 0 0 

0 1 
2 𝐿 2 

2 − 

1 
4 𝐿 1 𝐿 2 

0 − 

1 
4 𝐿 1 𝐿 2 

1 
6 𝐿 1 

2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(17)

 𝑰 
𝐵 𝐵 𝑝𝐶 

= 𝑚 𝐵 𝐵 𝑝𝐶 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 
6 𝐿 2 

2 + 

1 
2 𝐿 1 

2 0 0 

0 1 
2 𝐿 1 

2 − 

1 
4 𝐿 1 𝐿 2 

0 − 

1 
4 𝐿 1 𝐿 2 

1 
6 𝐿 2 

2 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(18)

After these definitions, it is defined triangle angular velocities with

espect to the global frame: 

 𝝎 

𝐴𝐵𝐶 
= 

⎡ ⎢ ⎢ ⎣ 
𝜑̇ 

sin ( 𝜑 ) 𝛽̇
cos ( 𝜑 ) 𝛽̇

⎤ ⎥ ⎥ ⎦ (19)
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Fig. 8. Kinetic energy of origami-stent square element with unitary length and unitary 

masses and six elements ( n = 6). 
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 𝝎 

𝐵 𝐵 𝑝𝐶 
= 

⎡ ⎢ ⎢ ⎣ 
0 
𝜃̇

0 

⎤ ⎥ ⎥ ⎦ (20) 

The lumped mass linear velocities v 1 and v 2 are given by the position

ime derivative, reminding that all angles are described as a function of

= 𝜃( t ). 

 𝒗 1 = 

𝑑 

𝑑𝑡 

[
𝑭 𝑻 𝑸 𝑸 𝑻 𝑹 𝑹 

𝑪 
𝒓 1 
]
= 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 
3 𝐿 1 cos ( 𝛽) 𝛽̇

− 

1 
3 𝐿 1 sin ( 𝛽) cos ( 𝜑 ) 𝛽̇ − 

(
1 
3 𝐿 1 cos ( 𝛽) sin ( 𝜑 ) − 

2 
3 𝐿 2 cos ( 𝜑 ) 

)
𝜑̇ 

+ 

1 
3 𝐿 1 sin ( 𝛽) sin ( 𝜑 ) 𝛽̇ − 

(
1 
3 𝐿 1 cos ( 𝛽) cos ( 𝜑 ) + 

2 
3 𝐿 2 sin ( 𝜑 ) 

)
𝜑̇ + 𝑅̇ 𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
(21) 

 𝒗 2 = 

𝑑 

𝑑𝑡 

[
𝑭 𝑻 𝑺 

𝑺 

𝑪 
𝒓 2 

]
= 

⎡ ⎢ ⎢ ⎢ ⎣ 
2 
3 𝐿 1 cos ( 𝜃) ̇𝜃

0 
− 

2 
3 𝐿 1 sin ( 𝜃) ̇𝜃 + 𝑅̇ 𝑖 

⎤ ⎥ ⎥ ⎥ ⎦ (22)

. Dynamical model 

The dynamical analysis of the origami-stent system assumes kine-

atic relations in order to write an equivalent 1-DOF system to rep-

esent the origami dynamics. Equations of motion are formulated by

onsidering energetic approach, electing angle 𝜃 as a generalized coor-

inate. Using the transformation matrices to describe all terms in the

ystem F, the kinetic energy E is given by: 

 = 

1 
2 𝑚 1 

𝑭 𝒗 1 ⋅
𝑭 𝒗 1 + 

1 
2 𝑚 2 

𝑭 𝒗 2 ⋅
𝑭 𝒗 2 + 

1 
2 

(
𝑭 𝝎 𝐴𝐵𝐶 

)𝑻 𝑭 
𝑰 𝐴𝐵𝐶 

𝑭 𝝎 𝐴𝐵𝐶 + 

+ 

1 
2 

(
𝑭 𝝎 

𝐵 𝐵 𝑝𝐶 

)𝑻 
𝑭 𝑰 

𝐵 𝐵 𝑝𝐶 
𝑭 𝝎 

𝐵 𝐵 𝑝𝐶 

(23) 

Fig. 8 shows the kinetic energy E as a function of 𝜃 and its time

erivative, 𝜃̇, for a square element, considering n = 6, unitary length L

nd unitary masses. Fig. 9 shows the projection of this energy for differ-

nt values of n , in the left as a function of 𝜃̇ for 𝜃 = 90° and in the right

s function of 𝜃 for a unitary velocity ( ̇𝜃 = 1/s). It should be pointed

ut that the energy is a nonsmooth function at 𝜃 = 90° due to changes

f the angles 𝛽 and 𝜑 (see Fig. 6 ). 

The actuation of the origami-stent is provided by a Torsion SMA Wire

TSW) with length L S and radius r S [9] . Two TSWs are antagonistically

laced on each side of a cell element on the crease AC ( Fig. 10 ) and these

ctuators promote the origami configuration changes (opening and clos-

ng). 

The SMA thermomechanical behavior is described by a polynomial

onstitutive model [3 , 19] that establishes a stress-strain-temperature

 𝜎 − 𝛾 − T ) relation. This constitutive model considers that the austenitic
307 
hase is stable at high temperatures, and two variants of the martensitic

hase, induced by positive and negative stress fields, stable at low tem-

eratures. 

= 𝑎 1 
(
𝑇 − 𝑇 𝑀 

)
𝛾 − 𝑎 2 𝛾

3 + 𝑎 3 𝛾
5 (24)

here a 1 , a 2 and a 3 are material parameters and T M 

is the temperature

elow which the martensitic phase is stable. By considering T A as the

emperature above which the austenitic phase is stable, it is possible to

rite the following relationship: 𝑎 3 = 

1 
4 

𝑎 2 2 
𝑎 3 ( 𝑇 𝐴 − 𝑇 𝑀 ) 

. 

Aguiar et al. [1] and Enemark et al. [2] showed that helical

pring force-displacement-temperature curve is similar to the stress-

train-temperature curve assuming homogeneous phase transforma-

ion through the spring element. Under this assumption, it is possi-

le to use the same argues to define an torsional actuator torque-

isplacement-temperature relation that is formally similar to the stress-

train-temperature: 

 = 

𝐽 

𝑟 𝑠 

[ 
𝑎 1 
(
𝑇 − 𝑇 𝑀 

)( 

2 
𝑟 𝑠 

𝐿 𝑠 
𝜃 − 2 

𝑟 𝑠 

𝐿 𝑠 
𝜃𝐼 

) 

− 𝑎 2 

( 

2 
𝑟 𝑠 

𝐿 𝑠 
𝜃 − 2 

𝑟 𝑠 

𝐿 𝑠 
𝜃𝐼 

) 3 
+ 𝑎 3 

( 

2 
𝑟 𝑠 

𝐿 𝑠 
𝜃 − 2 

𝑟 𝑠 

𝐿 𝑠 
𝜃𝐼 

) 5 
] 

(25) 

here 𝜃I is the angle where the TSW is free of stress. Note that this

xpression represents constitutive relation of both actuators, being ex-

ressed by M TSW 1 and M TSW 2 . 

On the origami-stent system, the generalized forces Q 𝜃 are related to

he TSW generalized force M SMA , which due to symmetric considerations

s given by: M SMA = ( M TSW 1 + M TSW 2 )/2. An external generalized force

 ext is applied at the point C, z -direction. Hence, the expression of the

irtual work 𝛿W , neglecting gravitational effect, is given by: 

𝑊 = 𝑄 𝜃𝛿𝜃 = − 𝑀 𝑆𝑀𝐴 ( 𝜃) 𝛿𝜃 + 𝑄 𝑒𝑥𝑡 𝛿𝑅 𝑖 (26)

Note that R i = R i ( 𝜃), 𝛿R i = 𝜕 R i / 𝜕 𝜃𝛿𝜃, and therefore, Q 𝜃 = − M SMA ( 𝜃) +
 ext 𝜕 R i / 𝜕 𝜃. Two extra generalized forces are considered in order to have

 complete description of the origami-stent system. The first one is re-

ated to a linear viscous dissipation of coefficient 𝜁 representing all dis-

ipation processes, including the hysteresis phenomenon: 𝛿𝑊 𝐷 = 𝜁𝜃̇𝛿𝜃.

he second one is related to origami geometric restrictions that limit 𝜃

o vary in the range [ 𝜃min , 𝜃max ] Eqs. (8) and (9) , expressed as a moment

f the form: 

 𝑙𝑖𝑚 ( 𝜃) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑘 𝑙𝑖𝑚 

(
𝜃 − 𝜃𝑚𝑖𝑛 

)
0 
𝑘 𝑙𝑖𝑚 

(
𝜃 − 𝜃𝑚𝑎𝑥 

) , if 𝜃 < 𝜃𝑚𝑖𝑛 , if 𝜃𝑚𝑖𝑛 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 
, if 𝜃 > 𝜃𝑚𝑎𝑥 

(27) 

here k lim 

limits the system response and represents an equivalent elas-

ic spring stiffness. 

Equation of motion is then obtained from Lagrange’s equation. 

𝜕 

𝜕𝑡 

( 

𝜕𝐸 

𝜕 ̇𝜃

) 

− 

(
𝜕𝐸 

𝜕𝜃

)
= 𝑄 𝜃 = − 𝜁𝜃̇ − 𝑀 𝑆𝑀𝐴 ( 𝜃) − 𝑀 𝑙𝑖𝑚 ( 𝜃) + 𝑄 𝑒𝑥𝑡 

𝜕 𝑅 𝑖 

𝜕𝜃
(28)

The kinetic energy (23) is a nonlinear expression in 𝜃 multiplied by

he velocity and can be written as 𝐸 = 𝑔 ( 𝜃) ̇𝜃2 . Details about this function

re presented in Appendix . Substituting this expression in the left hand

ide of Lagrange’s Eq. (28) , it gives a term 𝑔 1 ( 𝜃) ̈𝜃 and a term 𝑔 2 ( 𝜃) ̇𝜃2 (see

ppendix for more details). Therefore, the equation of motion is written

s follows: 

 1 ( 𝜃) ̈𝜃 + 𝑔 2 ( 𝜃) ̇𝜃2 = − 𝜁𝜃̇ − 𝑀 𝑆𝑀𝐴 ( 𝜃) − 𝑀 𝑙𝑖𝑚 ( 𝜃) + 𝑄 𝑒𝑥𝑡 

𝜕 𝑅 𝑖 

𝜕𝜃
(29)

In order to write dimensionless equations, it is defined a dimension-

ess time 𝜏 = 𝜔 REF t , where 𝜔 REF is a reference frequency, defined from

he linear part of the restitution force: 

 𝑅𝐸𝐹 = 

√ 

𝐽 𝑎 1 𝑇 𝑀 

𝑚 1 𝐿 
2 𝐿 𝑆 

(30) 
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a) b)

Fig. 9. Projections of the kinetic energy of origami-stent square element with unitary length and unitary masses for different number of elements, n ; (a) 𝜃 = 90°; (b) 𝜃̇ = 1/s. 

Fig. 10. Actuation system provided by Torsion Spring Wires (TSWs): (a) the placement of the actuators at the planar single element; (b) a folded single element with TSWs and lumped 

masses placed on the triangles ’ centroids; (c) Torsional Spring Wire (TSW). 

a) b)

Fig. 11. Dimensionless functions f 1 ( 𝜃) and f 2 ( 𝜃) that define geometrical nonlinearities of the dynamical model ( 𝛼0 = 45°). 
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Hence, after dividing Eq. (29) by m 1 L 
2 𝜔 REF 

2 , the following set of

quations of motion is written: 
 

𝜃′ = 𝑣 

𝜃′′ = − 𝑓 1 ( 𝜃) 𝑣 2 − 𝑓 2 ( 𝜃) 𝜉𝑣 − 𝑓 2 ( 𝜃) 𝐻 𝑀 

( 𝜃) + 𝑓 2 ( 𝜃) 
(

1 
𝐿 

𝜕 𝑅 𝑖 

𝜕𝜃

)
𝐷 𝑒𝑥𝑡 

(31)

here ( ) ′ = 𝜕 ()∕ 𝜕 𝜏, and therefore 𝜃̇ = 𝜃′𝜔 𝑅𝐸𝐹 and 𝜃̈ = 𝜃′′𝜔 𝑅𝐸𝐹 
2 . Be-

ides, the following dimensionless terms are employed: 

 1 ( 𝜃) = 

𝑔 2 ( 𝜃) 
𝑔 1 ( 𝜃) 

(32)

 2 ( 𝜃) = 

𝑚 1 𝐿 
2 

𝑔 1 ( 𝜃) 
(33)

 𝑀 

= 

𝑀 𝑆𝑀𝐴 ( 𝜃) + 𝑀 𝑙𝑖𝑚 ( 𝜃) 
𝑚 1 𝐿 

2 𝜔 𝑅𝐸𝐹 
2 (34)

 𝑒𝑥𝑡 = 

𝑄 𝑒𝑥𝑡 

𝑚 1 𝐿 𝜔 𝑅𝐸𝐹 
2 (35)

= 

𝜁

𝑚 1 𝐿 
2 𝜔 𝑅𝐸𝐹 

(36)

Fig. 11 presents dimensionless functions f 1 ( 𝜃) and f 2 ( 𝜃) for a square

lement and equal masses. The discontinuity of the function f 1 ( 𝜃) at

= 90° is due to the nonsmoothness of the kinetic energy. These func-

ions indicate the origami-stent nonlinearities. 
308 
. Numerical simulations 

Dynamical behavior of the origami-stent system actuated by two an-

agonistic TSWs is now analyzed. Numerical simulations are carried out

y employing the fourth-order Runge–Kutta method. Different thermal

nd thermomechanical loads are contemplated to study the system be-

avior under distinct operational conditions. 

Table 1 presents the origami-stent parameters employed in all sim-

lations considering a square element. Besides, a dissipation coefficient

= 0.3 is employed. Under these conditions, the reference frequency is

 REF = 62.09 rad /s. Temperature T 0 represents a reference temperature

here the origami-stent actuator does not apply any moment at a cho-

en angle of 𝜃 = 30° (closed configuration). Thereby, one actuator has

I = 30° The other one has 𝜃I = 90° since this assures that the origami can

each the opened configuration of maximum radius ( 𝜃 = 90°) by chang-

ng the TSW temperature. This set of parameters can represent a human

ody stent. Note that the length L of the cell element is 6.6 mm. Hence,

or n = 6, the external radius R e = 13.2 mm for 𝜃 = 90° ( Eq. (6) ), which

s close to the usual radius of aortal stent grafts. 

Fig. 12 presents the torque of the TSWs as a function of 𝜃 at the

emperature T 0 and at T = 310K ( T > T A ). TSW-1 is located at 𝜃I = 90°

ith a temperature T while TSW-2 is at 𝜃 = 30° with a temperature T .
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Table 1 

Origami-stent parameters. 

m 1 = m 2 (kg) m ABC = m BBpC (kg) L (m) r s (m) L s (m) k lim (N m) 

5 ×10 − 5 5 ×10 − 5 6.6 ×10 − 3 8.0 ×10 − 5 2.2 ×10 − 3 1.0 ×10 − 2 

a 1 (MPa/K) a 2 (MPa) a 3 (MPa) T M (K) T A (K) T 0 (K) 

1.0 ×10 6 1.4 ×101° 2.2 ×101 2 287.15 309.1 293.15 

a) b)

Fig. 12. Torque of the TSWs at different temperatures: (a) reference temperature T 0 ; (b) T = 310 K. 

Fig. 13. Actuator temperature influence on the generalized forces: (a) TSW-1 and TSW-2 at reference temperature with three vanishing points; (b) TSW-1 at high temperature with one 

vanishing point at 30°; (c) TSW-2 at high temperature with one vanishing point at 90°; (d) TSW-1 and TSW-2 at high temperature with three vanishing points. 
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Concerning external excitation, a harmonic external force is consid-

red of amplitude 𝜇 and frequency Ω. 

 𝑒𝑥𝑡 = 𝜇 sin ( Ω𝜏) (37) 

In addition, temperature has fluctuations represented by: 

 = 𝑇 𝑓 + 𝜇𝑇 sin 
(
Ω𝑇 𝜏

)
(38)

here T f is the temperature around which the temperature T oscillates.

.1. Thermal loadings 

The actuator temperature influence on the system dynamical re-

ponse is investigated considering different thermal loadings. An

verview of the origami-stent equilibrium configurations can be pro-

ided by the analysis of the moments represented by H M 

( Eq. (34) ).

ig. 13 presents these moments for different pairs of temperatures and

 = 6. In the reference configuration ( Fig. 13 -a), T 1 = T 2 = T 0 , the sum of
309 
he moments vanishes at three angles: 30°, 60° and 90° If the temper-

ture T 1 is greater than T A ( T 1 = 310 K) while T 2 = T 0 , only 30° is an

quilibrium point ( Fig. 13 -b). On the other hand, if the temperature T 2 
s greater than T A ( T 2 = 310 K) while T 1 = T 0 , only 90° is an equilibrium

oint ( Fig. 13 -c). If the temperatures of both TSWs are greater than T A 
 T 1 = T 2 = 310 K), there are again three points where the sum of the mo-

ents is zero ( Fig. 13 -d). Therefore, by controlling the temperature one

an establish the configuration (opened or closed) of the origami-stent,

efining the equilibrium point structure. 

Free vibration analysis is now of concern identifying the temperature

nfluence. Figs. 14 and 15 present the dynamical behavior of the system

or different initial conditions and temperatures. The temperature of one

ctuator is modified while the other remains constant at the reference

emperature. Fig. 14 presents the phase space at different temperatures

or the TSW-1 while TSW-2 temperature is T 0 . The sum of the moments

oints up to three equilibrium points at T 1 = T 0 , and the phase space
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Fig. 14. Origami free vibration response at different temperatures with 6 elements ( n = 6). (a) Sum of the moments at T 2 = T 0 and different values of T 1 . (b) Phase space at T 1 = T 0 . (c) 

Phase space at T 1 = 306 K. (d) Phase space at T 1 = 310 K. 

Fig. 15. Origami free vibration response at different temperatures with 6 elements ( n = 6). (a) Sum of the moments at T 1 = T 0 and different values of T 2 . (b) Phase space at T 2 = T 0 . (c) 

Phase space at T 2 = 306 K. (d) Phase space at T 2 = 310 K. 
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3  

o  

T  
hows that two of them are stable while the other one is unstable. By

ncreasing the temperature T 1 ( T 1 = 306 K), 30° remains a stable equi-

ibrium point while the other stable equilibrium point is, now, smaller

han 90° When T 1 > T A ( T 1 = 310 K), only 30° is an equilibrium point,

eaning that the structure admits only the closed configuration. 

Fig. 15 presents the phase space at different temperatures for the

SW-2 while the temperature of the TSW-1 is T 0 . By increasing the tem-

erature T 2 ( T 2 = 306 K), 90° remains a stable equilibrium point while

he other stable equilibrium point is now, greater than 30° When T 2 > T A 
 T = 310 K), only 90° is an equilibrium point, and the structure only
2 

310 
dmits an opened configuration. It is important to highlight that the

rigami-stent is initially in a reference configuration where the struc-

ure is closed ( 𝜃 = 30°). The opened configuration can be reached either

y temperature variation or by imposing proper initial conditions, as

ne can see in Fig. 15 -a (or Fig. 14 -a). This reveals an initial condition

ependence that is now investigated using different thermal loads. 

From the reference condition, when temperature T 2 increases up to

10 K, the origami-stent opens ( Fig. 16 ). System response presents an

scillation before reaching 𝜃 = 90° If the temperature T 2 decreases to

 again, the origami-stent remains in the opened configuration. By in-
0 
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a) b)

Fig. 16. Opening-closing process induced by temperature variations ( n = 6): (a) thermal load; (b) time history of the deployment angle 𝜃. 

a) b)

Fig. 17. Opening-closing process induced by temperature variations ( n = 6): (a) thermal load; (b) time history of the deployment angle 𝜃. 

a) b)

Fig. 18. Opening process induced by temperature variations ( n = 6): (a) thermal load; (b) time history of the deployment angle 𝜃. 
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reasing temperature T 1 , 90° is not an equilibrium point anymore and

he origami-stent closes. By decreasing T 1 to T 0 , the structure remains

losed. 

A different thermal loading is now investigated. By increasing T 2 up

o 310 K and subsequently increasing T 1 up to 310 K ( Fig. 17 ), the struc-

ure remains opened but not completely, since the equilibrium point is

round 82° By decreasing the temperature T 2 , the origami-stent closes

nd by decreasing T 1 there is no more changes. 

In contrast, if T 1 is first increased ( Fig. 18 ), there is no structure

hange. By increasing T 2 subsequently, there is a small increase of the

ngle 𝜃 and it stabilizes around 38° If T 1 decreases, the stent-origami

pens and, subsequently, if T 2 decreases, it remains opened. 

Equilibrium configuration small increase can be obtained increasing

oth temperatures T 1 and T 2 simultaneously as presented in Fig. 19 .

ote that the angle 𝜃 is changed to 38°

Until now, all simulations consider the same number of elements,

 = 6. The change of the number of elements can influence the dynam-

cal response, which is now investigated. The first point that should be

bserved is that when n changes, the limit angles change; both 𝜃min 

nd 𝜃max tend to reduce for greater values of n . For n = 6, 𝜃min = 30°
311 
nd 𝜃max = 105° For n > 6, 𝜃min < 30° and the origami is not com-

letely closed at the reference condition and 𝜃max < 105° Besides that,

ig. 9 shows that the amount of kinetic energy is larger for greatest val-

es of n . Fig. 20 presents the origami response when temperature T 2 in-

reases from the reference condition causing the opening of the origami.

ifferent values of n are treated. Although the actuation response occurs

t the same time, the stabilization takes more time to occur for origami

ith larger number of elements due to the greater amount of kinetic

nergy. 

Since the origami system has strong temperature dependent behav-

or, it is important to evaluate the effect of thermal oscillations on system

esponse. Figs. 21–23 present the influence of thermal oscillations on

emperatures T 1 and T 2 considering n = 6. Fig. 21 presents the opening

rocess changing temperature T 2 . Afterward, both temperatures oscil-

ate at the opened configuration. A variation of temperature T 2 does not

lter the response, but a variation of the temperature T 1 causes small

scillations. The TSW-2 is at a high temperature and 90° is a free-stress

oint (see Fig. 12 ) that does not change with the thermal variation.

ased on that, the sum of system moments is not altered and, therefore,

ts equilibrium point does not change. However, the TSW-1 is at the ref-
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a) b)

Fig. 19. Opening process induced by temperature variations ( n = 6): (a) thermal load; (b) time history of the deployment angle 𝜃. 

a) b)

c) d)

Fig. 20. Comparison of the opening process considering different values of the number of elements, n . (a) thermal load; time history of the deployment angle 𝜃 for: (b) n = 6; (c) n = 8; 

(d) n = 10. 

a) b)

Fig. 21. Opening process with thermal oscillation ( n = 6): (a) thermal load ( 𝜇T = 2.0 K and ΩT = 0.1); (b) time history of the deployment angle 𝜃. 
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rence temperature and thermal fluctuation alters the free-stress points,

xcept the one at 30° Hence, the sum of the moments is altered and its

quilibrium point oscillates while the temperature T 1 oscillates. 

Fig. 22 shows a similar opening condition but with a situation where

oth T 1 and T 2 are increased. Under this assumption, a variation of

emperature T also induces oscillations and the origami response is a
2 

312 
ombination of both influences. Since both actuators have T > T A , a

ariation of any actuator temperature is responsible to alter the sum of

he moments of the system and, as a consequence, there is an oscilla-

ory response. Besides, frequency thermal frequency phase is analyzed.

t is noticeable that when actuator thermal variation is out of phase, the

scillatory response has higher amplitude. 
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a) b)

c) d)

Fig. 22. Opening process with thermal oscillation ( n = 6): (a) and (c) thermal load ( 𝜇T = 2.0 K and ΩT = 0.1); (b) and (d) time history of the deployment angle 𝜃. 

a) b)

Fig. 23. Closed configuration with thermal oscillation ( n = 6). (a) Thermal load ( 𝜇T = 2.0 K and ΩT = 0.1); (b) time history of the deployment angle 𝜃. 
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Fig. 23 presents a situation where both actuators have T < T A , charac-

erizing a closed configuration. Under this condition, only the variation

f T 2 affects the dynamic response. In contrast of the case of Fig. 21 ,

mall fluctuation of T 1 does not alter actuator dynamical response since

0° is an actuator free-stress point (see Fig. 12 ) that does not change

ith a thermal variation. On the other hand, TSW-2 has 90° as a free-

tress point that does not change, while the other points change with

he temperature and, hence, thermal fluctuation changes the sum of the

oments, affecting the system equilibrium point. 

The influence of the number of elements in a case with thermal fluc-

uation is presented in Fig. 24 . Note that the increase of the number of

lements, n , tends to cause a greater change on system response. 

.2. Thermomechanical loadings 

Thermomechanical loadings are now addressed in order to simulate

ome operational conditions of the origami-stent. Basically, opened con-

guration is of concern considering T 1 = T 0 and T 2 = 310 K. Under this

ondition, only 90° is an equilibrium point and an external force is ap-

lied. In order to establish a physical interpretation, the origami-stent

ystem is assumed to represent human body stent. Under this assump-
313 
ion, the magnitude of the external force is compatible to the human

ody blood pressure. Hence, the dimensionless amplitude 𝜇 of the ex-

ernal force D ext is in a range from 0.01 to 0.85, which is related to force

f magnitude 10 − 3 N. 

Initially, a global analysis is performed considering bifurcation dia-

rams that present a stroboscopic view of system dynamics under the

low quasi-static variation of parameter 𝜇 for Ω= 0.30 and different

umber of elements: n = 6; n = 8; n = 10 ( Fig. 25 ). Fig. 25 -a considers

 = 6. Note that, for small force amplitudes, the system presents period-

 response until 𝜇= 0.143. After that, a cloud of points suggests a chaotic

esponse. By increasing the value of 𝜇, the diagram shows other re-

ions where the system response has a periodicity greater than 1. When

= 0.156, bifurcations start from chaotic-like response to period-1 re-

ponse. A period doubling can be noticed at 𝜇= 0.260, nevertheless a

eriod-1 response is predominant until 𝜇= 0.628, where the system re-

ponse becomes chaotic. Inside this chaotic region, there are some peri-

dic windows, especially between 𝜇= 0.740 and 𝜇= 0.781. 

By considering different number of elements, n = 8 ( Fig. 25 -b) and

 = 10 ( Fig. 25 -c), it is noticeable that the increase of the number of

lements tends to stretch the diagram and spread the kind of behavior

ver the values of 𝜇. Note, for instance, that period-1 response for small
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a) b)

c) d)

Fig. 24. Comparison of the opening process with thermal oscillation considering different values of the number of elements, n . (a) Thermal load; time history of the deployment angle 

𝜃 for: (b) n = 6: (c) n = 8; (d) n = 10. 

Fig. 25. Bifurcation diagrams varying excitation amplitude 𝜇 for different number of elements and a fixed frequency ( Ω= 0.30): (a) n = 6; (b) n = 8; (c) n = 10. 
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Fig. 26. Origami-stent response for Ω= 0.3 and n = 6. Phase space (black lines) and Poincaré section (red points). (a) 𝜇= 0.145. (b) 𝜇= 0.200; (c) 𝜇= 0.360. (d) 𝜇= 0.700. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 27. Origami-stent response for Ω= 0.3 and n = 8. Phase space (black lines) and Poincaré section (red points). (a) 𝜇= 0.145. (b) 𝜇= 0.200; (c) 𝜇= 0.360. (d) 𝜇= 0.700. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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e  

t  

o  
mplitudes of the force finishes at 𝜇= 0.143 when n = 6 but at 𝜇= 0.157

hen n = 8 and at 𝜇= 0.308 when n = 10. After the region of period-1

esponse, different bifurcation evolutions occur for each cell number.

hen n = 6, the cloud of points occurred immediately after the period-1

esponse. When n = 8, a period doubling takes place until the system re-

ponse is quasi-periodic and then, the cloud of points takes place. When

 = 10, a period doubling occurs then the cloud of points takes place.

ubsequently, a periodic response window is noticed until there is a
315 
esponse sudden change suggesting a chaotic response. Afterward, a bi-

urcation from chaos to period-1 occurs. 

Phase space and its respective Poincaré section are presented in

ig. 26 for different amplitudes of the external force taken from the bi-

urcation diagram of n = 6. In all these cases, the external force is great

nough to push the origami to its physical limits, which is indicated by

he straight lines at 30° and 105° For 𝜇= 0.145, a point inside the cloud

f points region, a chaotic response occurs. By increasing values of 𝜇,
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Fig. 28. Origami-stent response for Ω= 0.3 and n = 10 elements. Phase space (black lines) and Poincaré section (red points). (a) 𝜇= 0.145. (b) 𝜇= 0.200; (c) 𝜇= 0.360. (d) 𝜇= 0.700. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 29. Origami-stent frequency diagram for 𝜇= 0.01 and different number of elements: (a) n = 6; (b) n = 8; (c) n = 10; (d) enlargement of the resonance region for n = 10 elements 

showing dynamical jumps. 

p  

r

 

n  

a  

r  

q  

a  

t  

t  

b

eriod-1 and period-2 responses are achieved for 𝜇= 0.20 and 𝜇= 0.36,

espectively. A chaotic response is again obtained for 𝜇= 0.70. 

The same results of Fig. 26 , that considers n = 6, is now presented for

 = 8, Fig. 27 , and n = 10, Fig. 28 . When 𝜇= 0.145 ( Figs. 27 -a and 28 -

), the system oscillates around 90° with a period-1 response, without

eaching the physical limits of the structure. When 𝜇= 0.20, there is a
316 
uasi-periodic response for n = 8 and, even if the system still oscillates

round 90°, the upper physical limit is reached. In contrast, for n = 10,

his increase of 𝜇 does not affect the system response substantially. On

he other hand, when 𝜇= 0.36, the system response is periodic for n = 8,

ut chaotic for n = 10. When 𝜇= 0.70, a period-1 response is noticed. 
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Fig. 30. Bifurcation diagram varying the excitation amplitude 𝜇 for Ω = 0.16 and for 

n = 6. 
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Resonant condition is usually critical to system response. Concern-

ng chaotic behavior, they can be induced more effectively close to this

ondition. In this regard, Fig. 29 presents the maximum amplitude of

isplacement under the variation of frequency Ω. For n = 6 ( Fig. 29 -

), it presents a typical resonant curve with maximum amplitude at

= 0.159. It is also noticeable a small peak at Ω = 0.085, related to

onstitutive nonlinearities. For n = 8 and n = 10, the peaks of maximum

ngle is shifted to the left and the flat region related to the maximum

alues is due to the maximum displacement constraints imposed by the

rigami physical limits. Besides, the smaller peak is more pronounce-

ble. Furthermore, Fig. 29 -d presents a zoom in Fig. 29 -c where dynam-

cal jumps for different frequencies are observed. 

Fig. 30 shows the bifurcation diagram for n = 6 varying 𝜇 under reso-

ant condition ( Ω = 0.16). Note that system response is predominantly

haotic indicating the influence of the resonant condition on system dy-

amics. Phase space and Poincaré section is presented in Fig. 31 for

= 0.16 and 𝜇= 0.20. A chaotic-like response is observed presenting a

trange attractor in Poincaré section. 

. Conclusions 

This paper deals with the nonlinear dynamical analysis of an

rigami-stent actuated by shape memory alloys. A polynomial consti-

utive model is employed to describe the thermomechanical behavior

f SMA actuators. Geometrical relations allow one to build a single de-

ree of freedom system to analyze the system dynamics. This system

as both constitutive and geometrical nonlinearities, presenting nons-
Fig. 31. Chaotic response for 𝜇= 0.20, Ω = 0.16 an

317 
ooth characteristics. Numerical simulations are carried out showing

ifferent thermomechanical loading situations representing operational

onditions. Concerning thermal loadings, it is possible to identify that

ifferent configurations can be reached by changing the temperature of

ach actuator. Results are affected by the order of actuation. Moreover,

hermal fluctuations can affect the system response depending on con-

itions. It depends on either the origami configuration or the actuator

emperature. The number of cell elements interferes on the response sta-

ilization time as well. An origami with more cell elements takes more

ime to stabilize, being more affected by thermal fluctuations. Thermo-

echanical loadings can produce complex responses including chaos.

he number of cell elements is critical in order to define the system

esponse. In general, the increase of the number of cell elements re-

uces chaotic regions. Furthermore, greater values of external force are

eeded to push the origami to reach its physical limits. Dynamical jumps

re also observed on origami-stent dynamics. 
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ppendix 

Origami-stent equations of motion are related to complex functions

hat express geometric relations. Kinetic energy definition ( Eq. (23) ) is

escribed on the global coordinate frame F, using transformation ma-

rix. Therefore, consider that kinetic energy, Eq. (22) , can be written as

ollows: 

 = 𝑔 ( 𝜃) ̇𝜃2 

Applying this equation in the left hand side of the Lagrange’s equa-

ion ( Eq. (28) ): 

𝜕 

𝜕𝑡 

(
𝜕𝐸 

𝜕 ̇𝜃

)
= 

𝜕 

𝜕𝑡 

( 

𝜕 

𝜕 ̇𝜃

𝑔 ( 𝜃) ̇𝜃2 
) 

= 2 𝑔 ( 𝜃) ̈𝜃 + 2 ̇𝜃 𝜕 
𝜕𝑡 

𝑔 ( 𝜃) 
= 2 𝑔 ( 𝜃) ̈𝜃 + 2 ̇𝜃2 𝜕 

𝜕𝜃

𝑔 ( 𝜃) 

𝜕𝐸 

𝜕𝜃
= 

𝜕 

𝜕𝜃

(
𝑔 ( 𝜃) ̇𝜃2 

)
= 𝜃̇2 𝜕 

𝜕𝜃

𝑔 ( 𝜃) 

Combining the terms with 𝜃̈ and 𝜃̇2 , two others functions, g 1 ( 𝜃) and

 2 ( 𝜃), are defined: 

𝜕 

𝜕𝑡 

( 

𝜕𝐸 

𝜕 ̇𝜃

) 

− 

𝜕𝐸 

𝜕𝜃
= 2 𝑔 ( 𝜃) ̈𝜃 + 𝜃̇2 

𝜕 

𝜕𝜃

𝑔 ( 𝜃) 
= 𝑔 1 ( 𝜃) ̈𝜃 + 𝑔 2 ( 𝜃) ̇𝜃2 

Therefore, g 1 ( 𝜃) = 2 g ( 𝜃) and g 2 ( 𝜃) = 𝜕g ( 𝜃)/ 𝜕𝜃. The equation g ( 𝜃) is

resented in the sequence, where ( ) ′ = 𝜕( )∕ 𝜕𝜃, reminding that 𝜑 and
d n = 6. (a) Phase space. (b) Poincaré section. 
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