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Origami-inspired structures have found many innovative applications in engineering
fields. The expressive volume changes intrinsically related to their geometry is very useful
for different purposes. Nevertheless, the mathematical description of origami structures
is complex, which makes the design a challenging topic. This work deals with the use
of reduce-order models for the origami description. A cylindrical origami structure with
waterbomb pattern, called origami stent, is of concern. A reduced-order model (ROM)
is developed based on kinematics and symmetry hypotheses. Afterward, a finite element
analysis (FEA) is developed based on a nonlinear bar-and-hinge model. Numerical simu-
lations are carried out evaluating the ROM validity range. Rigid and non-rigid situations
are investigated showing that ROM is able to be employed for origami description.

Keywords: Origami; kinematics; reduced-order model; finite element analysis.

1. Introduction

Origami is the art of paper folding with vast aesthetic concept that recently
has found many applications in engineering fields, giving rise to the origami-
inspired structures. The essential characteristic of origami is the creation of a
three-dimensional structure from a bi-dimensional one through folding sequences.
Therefore, it draws attention in situations where deployment and save space are
necessary [Turner et al., 2016]. In general, origami geometries are complex which
makes the folding and motion analyses to be complex and related to a lot of effort
[Debnath and Fei, 2013].

Advantages of origami-inspired structures include intrinsic synchronized move-
ments, expressive volume changes and lightweight [Schenk et al., 2013; Morgan et al.,
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2016; Jasim and Taheri, 2018]. Such advantages are of special interest in aerospace
and biomedical applications [Johnson et al., 2017], but robotics is another field with
several applications due to ability to undergo large displacements [Fonseca and Savi,
2020; Edmondson et al., 2013; Vander Hoff et al., 2014]. These structures have also
been employed as an energy absorption device since the origami technique enables a
thin-walled tube to follow a pre-determined failure mode and to improve its energy
absorption efficiency [Zhou et al., 2017].

All these applications are strictly connected to innovative ideas of active materi-
als that are able to promote a multiphysics conversion, converting a form of energy
into mechanical work, performing the folding behavior of interest. The main goal
is to expand structures with the application of an external field instead of exter-
nal loads [Onal et al., 2012; Salerno et al., 2016; Lee et al., 2017; Chen et al.,
2019]. In this regard, the use of active materials in origami-inspired structures is
wide, establishing new ideas of self-expandable structures [Peraza-Hernandez et al.,
2014]. In particular, it is noted that the use of shape memory alloys as actuators
in the origami creases seems to be promising since they can promote the origami
deployment in an effective way [Ansari et al., 2018].

Origami modeling is usually established by two approaches: one treats the kine-
matics of the structure, considering a rigid origami where the creases are modeled
as hinges and the panels between the creases are rigid, without stretch or bend;
the second approach considers the flexibility of thin sheets, where panel deforma-
tion adds degrees of freedom (DoF) to the model. Usually, this approach is built
using finite element models and provides thorough information about strain and
stress distributions. Although this analysis provides a good description, it is com-
putationally expensive and requires a detailed information of the design [Liu and
Paulino, 2016]. On the other hand, kinematics modeling is essential to the analy-
sis and design of origami structures [Peraza-Hernandez et al., 2016]. It is usual to
consider a zero-thickness sheet hypothesis to build the model [Lang et al., 2018].

Even though non-rigid origami is a more realistic model, rigid origami formula-
tion is sufficient in plenty of cases [Tachi, 2010]. Symmetry assumptions allow the
construction of reduced-order models (ROMs) that are interesting to describe the
origami behavior, especially in dynamical analysis [Fonseca and Savi, 2020; Fonseca
et al., 2019; Rodrigues et al., 2017].

A tubular origami structure named origami stent is the focus of this work. Stent
is a medical device used to open up a blocked lumen and protect a weakened lumen
in the human body. Usually, stents are made of a wire frame while stent grafts
use a thin cover attached to the stent. The term origami stent is employed in
this work to represent the stent graft that was first explored by Kuribayashi et al.
[2006] as a structure that can change its radius significantly. Different materials
are investigated into the literature as stent graft actuator, as for example, shape
memory alloys [Rodrigues et al., 2017] and shape memory polymers [Liu et al., 2019,
2020]. Both of them present good biocompatibility and biodegradability.
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This paper deals with the description of origami stent using a ROM. A kine-
matics analysis is developed considering different symmetry hypotheses. Results
predicted by this model is compared with a mechanical analysis based on finite
element analysis (FEA). A quasi-static bar-and-hinge model with an implicit non-
linear displacement-based formulation is performed based on the Liu and Paulino
[2017] analysis using the MERLIN code. Results define the validity range of
the main hypotheses, showing that the ROM description is useful for several
purposes.

After this introduction, this paper is organized as follow. An overview of the
origami stent characteristics is presented in Sec. 2. In Sec. 3, the ROM based on kine-
matics analysis with different symmetry hypotheses is presented. Section 4 describes
the mechanical analysis based on FEA. A comparison between models is presented
in Sect. 5. Finally, Sec. 6 presents the conclusions of this work.

2. Origami Stent

Origami stent is a cylindrical structure built with waterbomb pattern and first
presented by Kuribayashi et al. [2006] as a new foldable stent graft (Fig. 1). It is an
expandable structure that can change considerably its radius promoting the stiffness
increase, and being able to be applied in lumen, general pipes and oil drilling wells.

Origami stent is built from a tessellation of a folding pattern repetitively ordered
in a sequence presented in Fig. 2. This waterbomb based pattern consists of six
creases, two mountains and four valley creases, around a central vertex, being inves-
tigated in some references [Hanna et al., 2014; Chen et al., 2016]. The more usual
configuration of the waterbomb pattern is a square shape with L = L2, which means
α0 = 45◦ (L2 = L tanα0).

(a) (b)

Fig. 1. Origami stent, a cylindrical origami structure with expandable characteristics. Stage (a)
and (b) present a closed and an open configuration, respectively after folding deployment where a
significantly radius change is perceptible.
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(a) (b)

(c)

Fig. 2. (Color online) Origami stent folding pattern is given by the repetition of a unit cell (a).
Red lines represent mountain folds and blue lines represent valley fold as indicate in (b). This unit
cell is known as waterbomb base. In a planar sheet, these unit cells are in rows half-unit shifted
of each other and sheet extremities are connected to form a cylindrical shape (c).

The analysis of the origami stent needs the evaluation of the waterbomb pattern
that is a multi- DoF system. A unit cell can be described by a spherical 6R linkage
with three DoF [Chen et al., 2016] and the connection of several unit cells increases
significantly the DoF of the structure. In this regard, symmetry hypotheses are
interesting in order to define a proper number of the necessary DoF for the origami
description.

3. Reduced-Order Model

In this section, a ROM is formulated for the origami stent based on symmetry
hypotheses. It is assumed that there is no stretching in the structure, which means
that the panels remain straight during all the folding process and the folding occurs
only in the creases.

Figure 3 presents an origami unit cell showing that for each crease, there is
an associated angle between the adjacent panels (α1–α6). These angles are geo-
metrically coupled and Fig. 4 illustrates some aspects related to the symmetry
possibilities. For the sake of simplicity, it is assumed a plane-symmetry state, where
there are two pairs of equal angles (α2 = α6 and α3 = α5). This hypothesis reduces
the number of DoF, being plausible in real structures when subjected to certain
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Fig. 3. Waterbomb base geometry can be described with even six angles (α1–α6) defined in the
crease between panels. Symmetric waterbomb base can be achieved if some angles are equal to
each other.

Fig. 4. Symmetry considerations about origami unit cell: asymmetric, plane-symmetric and whole
symmetric waterbomb base. Bottom side of figure shows top view where presence of symmetry is
more evident. In a plane-symmetric base α2 = α6 and α3 = α5 and in a whole symmetric base
α2 = α3 = α5 = α6.

types of load [Liu et al., 2014; Feng et al., 2018]. If these four angles are equal
(α2 = α3 = α5 = α6) and consequently α1 = α4, it is a whole symmetric case and
there is a single degree of freedom [Rodrigues et al., 2017].

Under plane-symmetry assumption, four angles are defined for the waterbomb
base description: ϕR, ϕL, θR and θL (Fig. 5). A local coordinate frame is defined with
the origin at the central vertex and the other six vertex coordinates are described
as a function of these four angles.

The coordinates of the vertex are presented in the sequence. Coordinates of B2

are equal to coordinates of B1 but with a negative value in y and similar to B′
2. The

angle α0 (Fig. 2(a)) is commonly 45◦ since a square waterbomb base is considered.
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Fig. 5. A plane-symmetric waterbomb base. A local coordinate frame with origin in the central
vertex is considered and four angles, ϕR, ϕL, θR and θL, are presented for its geometric description.
Index R and L represent right and left side of the base, respectively. The right side is assumed in
the positive z direction.

In the following sections, this angle is omitted due to that.

A = L

⎡
⎢⎣
cos(ϕR)

0

sin(ϕR)

⎤
⎥⎦ (1)

A′ = L

⎡
⎢⎣

cos(ϕL)

0

− sin(ϕL)

⎤
⎥⎦ (2)

B1 = L

⎡
⎢⎣
cos(ϕR) − tan(α0) sin(ϕR) cos(θR)

tan(α0) sin(θR)

sin(ϕR) + tan(α0) cos(ϕR) cos(θR)

⎤
⎥⎦ (3)

B′
1 = L

⎡
⎢⎣

cos (ϕL) − tan(α0) sin(ϕL) cos(θL)

tan(α0) sin(θL)

−sin(ϕL) − tan(α0) cos(ϕL) cos(θL)

⎤
⎥⎦ (4)

By assuming a rigid origami, the distance between adjacent vertices is constant.
Thus, the distance B1B

′
1 measures 2L. Considering Eqs. (3) and (4), the following

relationship among the four angles can be found:

tan2(α0)[cos θL cos θR(cos(ϕL + ϕR)) − sin θL sin θR + 1]

+ tan(α0)[sin(ϕL + ϕR)(cos θL + cos θR)] − cos(ϕL + ϕR) = 1 (5)

This equation gives a relation for any plane-symmetric rigid waterbomb pattern
unit cell. The next modeling step is to analyze the tessellation, the combination of
unit cells. Consider a row of n unit cells, circumferentially connected (Fig. 6) to
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(a) (b)

Fig. 6. A row of an origami stent composed of six unit cells (n = 6). Each unit cell has a
local coordinate frame xyz. The global coordinate frame is XYZ with origin in the center of the
cylindrical structure. Since all unit cells have the same behavior, ρ̄ (distance ŌC) represents an
internal radius of the cylindrical structure.

form a cylindrical structure. A hypothesis of circumferential symmetry is adopted,
which means that each unit cell has the same behavior during all the structure
deployment. Therefore, it is possible to define a global coordinate frame for the
cylindrical structure.

The distance between the local coordinate xyz and the global coordinate frame
XYZ (distance ŌC) is defined as ρ and it can be considered as an internal radius
of the cylindrical structure; when ρ̄ vanishes, it indicates a completely closed con-
figuration. With the aid of Fig. 6 and Eqs. (3) and (4), it is possible to find the
following relations:

ρ =
ρ̄

L
=

1
tan

(
π
n

) tan (α0) sin(θR) − cos(ϕR) + tan (α0) sin(ϕR) cos(θR) (6)

ρ =
ρ̄

L
=

1
tan

(
π
n

) tan (α0) sin(θL) − cos(ϕL) + tan (α0) sin(ϕL) cos(θL) (7)

A new equation may be written making Eq. (6) to (7), furnishing a relationship
among the four angles, as in Eq. (5), but considering circumferential symmetry
together with unit cell plane-symmetry. Based on that, for a row of waterbomb unit
cells in a cylinder, once two angles are known, the other two angles can be found by
solving the system of Eqs. (5)–(7). Since the solution of this system is too long, it
is not explicitly presented here. Nevertheless, it is important to highlight that once
known ϕL and θL system’s solution furnishes ϕR and θR or the inverse.

Origami stent is made of several rows shifted (Fig. 2(a)). It should be noted
that there are vertices in a row that connect to the adjacent row. By considering
the index j to indicate the row, Fig. 7 shows that vertex Aj=1 is equivalent to B′

2j=2

and B1j=1 is equivalent to A′
j=2. With the help of Eqs. (1)–(4), (6) and (7), it is
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(a) (b)

Fig. 7. Highlight of three unit cells of the origami stent. Coincident vertices (for example, Aj=1

and B′
2j=2

) help to understand geometric relations between unit cells of different rows.

possible to find the following two relations:

θLj+1 = sin−1

(
1

tan(α0)

(
ρj + cos(ϕRj ) sin

(π

n

)))
(8)

ϕLj+1 = sin−1

(
sin(θLj ) − sin(θLj+1) cos

(
π
n

)
cos(θLj+1) sin

(
π
n

)
)

(9)

Under these assumptions, it should be pointed out that knowing two angles of
a row allows one to find the other two by solving a system of equations and this
row is well defined. Therefore, two angles of adjacent rows are found using Eqs. (8)
and (9). Once again, the other two angles can be found by solving the system
of equations. Thereby, knowing only two angles, it is possible to characterize the
whole geometry of the origami stent with different number of rows, considering
circumferential symmetry (all unit cells in a row present the same behavior) and
unit cell plane-symmetry.

Origami stent geometry is entirely defined by these simple equations under sym-
metry hypothesis. It is emphasized that it is necessary that the knowledge of two
angles in a row solve the system of equations that furnishes the other two angles
of the same row and once a row is well defined, the adjacent rows can also be geo-
metrically defined by Eqs. (8) and (9). Therefore, if a relation between these two
initial angles is found, it is necessary to know only one of them to describe the
whole structure. This can be achieved going further on symmetry hypotheses. By
assuming a bilateral symmetry, the origami stent has two equal halves (Fig. 8). In
this case, there are two possible formulations: for an odd number of rows and for
an even number of rows.
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(a) (b)

Fig. 8. Origami stent with two equal halves divided by a plane of symmetry. It is called origami
stent with bilateral symmetry. For an odd number of rows (a), the middle row is halved then the
unit cells of this row must be whole symmetric. It does not happen for an even number of rows (b).

Let m be the number of rows in the origami stent. By considering m an odd
number, it is necessary that the waterbomb unit cell in the middle of the structure
is wholly symmetric (see row j = 2 on Fig. 8(a)), that is, ϕR2 = ϕL2 and θR2 = θL2 .
Therefore, only two angles describe the unit cell of the middle row but it is necessary
to know only one to find another one by using Eq. (5). Once the middle row is
defined, the angles of adjacent rows can be found as previously described considering
unit cells plane-symmetric.

For instance, the general case where all unit cells are plane-symmetric needs two
angles of any row to be entirely defined, which means that it is a 2-DoF system. If
the structure has a bilateral symmetry as in Fig. 8(a), it can be reduced to 1-DoF
system and it is necessary to know just one angle of the middle row.

By considering an origami with an even number of rows (m is even), a row in
the left side of the plane-symmetry must have a mirrored behavior of a row in the
right side. For example, in Fig. 8(b), ϕR2 = ϕL3 , θR2 = θL3 and vice-versa. Using
coordinates of vertices A′, B′

1 and B′
2 defined by Eqs. (1)–(4) (Fig. 7) of the row

j = 3, it is possible to find a relation for θL3 as a function of ϕR2 and θR2 . As in
this case θL3 = θR2 , with the aid of Eqs. (6) and (7), an expression of ϕR2 as a
function of θR2 is found, see Eq. (10). Note that this expression is only valid for the
two rows in the middle (in this example, row j = 2 or row j = 3 remembering that
ϕR2 = ϕL3 and θR2 = θL3).

ϕR2 = tan−1

⎛
⎝ sin θR2

(
cos π

n − 1
)

√
2(sin θR2)2

(
cos π

n − 1
)

+
(
sin π

n

)2
⎞
⎠ (10)

As previously described, the other angles of the origami stent structure can be
defined if two angles are known. Once again, the system can be assumed as a 1-DoF
system instead of 2-DoF due to the possible relation of Eq. (10).
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Table 1. Physical limitations of the origami configurations. Approximate val-
ues of the minimum and maximum angle for the origami stent under symmetric
hypotheses (n is the number of unit cells in a row and m is the number of rows).

n = 6 n = 8 n = 10

m = 1 8.3◦ ≤ ϕR1 ≤ 90◦ 4.6◦ ≤ ϕR1 ≤ 90◦ 2.9◦ ≤ ϕR1 ≤ 90◦

m = 2 8.8◦ ≤ ϕR2 ≤ 64.8◦ 4.8◦ ≤ ϕR2 ≤ 70.8◦ 3.0◦ ≤ ϕR2 ≤ 75.3◦

m = 3 8.3◦ ≤ ϕR2 ≤ 59.3◦ 4.6◦ ≤ ϕR2 ≤ 67.8◦ 2.9◦ ≤ ϕR2 ≤ 72.6◦

m = 4 8.8◦ ≤ ϕR2 ≤ 57.1◦ 4.8◦ ≤ ϕR2 ≤ 65.9◦ 3.0◦ ≤ ϕR2 ≤ 71.2◦

m = 5 8.3◦ ≤ ϕR3 ≤ 56.4◦ 4.6◦ ≤ ϕR3 ≤ 66.3◦ 2.9◦ ≤ ϕR3 ≤ 71.5◦

Under these assumptions, bilateral symmetry allows the description of origami
stent with either an odd number or an even number of rows by a 1-DoF model.
Therefore, only one angle is needed to describe the whole rigid origami stent
structure.

In brief, three considerations of symmetry have to be done to allow the descrip-
tion of the structure as a 1-DoF model: plane symmetry of each unit cell (Fig. 4);
circumferential symmetry, all unit cells in a row have the same behavior; and bilat-
eral symmetry, plane symmetry of the whole structure (Fig. 8). The idea of plane
symmetry of the unit cells is important to analyze the origami stent. Indeed, if a
whole symmetric unit cell (Fig. 4) is taken for every row, origami rigid theory does
not allow the structure to have more than one row [Kuribayashi, 2004].

It is important to emphasize that there is a physical limit for the origami angles
that include material penetration and the transformation of a valley into a moun-
tain or vice-versa, which may mischaracterize the origami. For example, the radius
of the origami stent cannot be less than zero, otherwise it represents a material
penetration. Values indicating these limits are presented in Table 1 and, out of that
range, the system of equations has not a feasible solution.

4. Finite Element Analysis

Origami description can be performed by mechanical approach using the FEA. A
quasi-static finite element model proposed by Liu and Paulino [2017] is adopted
in this paper. The idea is to use a bar-and-hinge model with an implicit nonlin-
ear displacement-based formulation, considering quasi-static analysis of non-rigid
origamis (with deformable panels). The MERLIN code is employed to develop
numerical simulations.

In a bar-and-hinge model [Shenk and Guest, 2011], an origami sheet is repre-
sented by triangular truss framework (triangular panels may not need to be divided).
Figure 9 presents a schematic illustration of the model where bars are placed in fold
lines and across panels for in-plane stiffness. Rotational hinges are along these bars
to model folding creases or bending of panels.

The structure is assumed to be nonlinear elastic and therefore, the total potential
energy Π is due to the strain energy stored in bars (Ubar), the strain energy stored
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Fig. 9. Bar-and-hinge model illustration: origami panels are triangulated to a truss framework.
Rotational springs are placed along folding and bending lines.

in folding deformation (Uspr) and the external work (Vext): Π = Ubar + Uspr − Vext.
By assuming that u is the nodal displacement vector, equilibrium of the system is
given by

∂Π
∂u

=
∂Ubar

∂u
+

∂Uspr

∂u
− F = 0 (11)

Derivatives of Ubar and Uspr denote internal forces and F denotes external forces.
The tangent stiffness matrix KT is a summation of the contributions from the bars
and the rotational springs (KT = Kbar + Kspr). For each bar element, a stored
energy density is assumed to be a function of the one-dimensional Green–Lagrange
strain Ex considering both material and geometric nonlinearities. This strain also
leads the evaluation of the 2nd Piola–Kirchhoff stress Sx and tangent modulus C.
Thus, the tangent stiffness matrix can be expressed by

Ki
bar = AiLi

[
Sx

∂2Ex

∂u2
i

+ C
∂Ex

∂ui

(
∂Ex

∂ui

)T
]

(12)

where Ai and Li denotes the area and the length of the bar and ui is the displace-
ment.

Similar equation can be found for the rotational spring element as a function of
the dihedral angle θ as

Kq
spr = Lq

[
M

∂2θ

∂u2
q

+ k
∂θ

∂uq

(
∂θ

∂uq

)T
]

(13)

where M is the resisting moment per unit length, k is the tangent rotational stiffness
and uq represents the displacement.

The bar elements are described by a two-term Ogden constitutive model [Ogden,
1997], being associated with a hyperplastic material represented by the following
nonlinear stress–strain relationship:

Sx =
C0

β1 − β2
[(
√

2Ex + 1)β1−2 − (
√

2Ex + 1)β2−2] (14)
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where C0 is the initial modulus and β1 and β2 are material parameters. It is adopted
as β1 = 5 and β2 = 1 which represents a linear elastic material subjected to small
strains.

In addition, torsional elements are described by a nonlinear moment-angle rela-
tionship, M − θ, given by

M =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k0(θ1 − θ0) + 2k0θ1
π tan

(
π(θ − θ1)

2θ

)
, 0 < θ < θ1

k0(θ − θ0), θ1 ≤ θ ≤ θ2

k0(θ2 − θ0) +
2k0(2π − θ2)

π
tan

(
π(θ − θ2)
4π − 2θ2

)
, θ2 < θ < π

(15)

where θ0 is the neutral angle where the rotational spring is at a stress-free state
and θ1 and θ2 are parameters that define the nonlinear characteristics of the curve.
Note that these parameters define the limit of a linear region and, after that, there
is a stiffness hardening.

An implicit formulation is employed which means that equilibrium is reached
at each converged incremental step. The nonlinear problem of Eq. (11) is solved by

(a)

(b)

Fig. 10. Origami stent model for FEA (MERLIN code). In the waterbomb base, the load is
applied in the central vertex and in the radial direction. Boundary conditions are in the lower
nodes and in longitudinal direction.
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an arc-length type method with an algorithm called Modified Generalized Displace-
ment Control Method [Leon et al., 2014].

Details of the formulation can be obtained on the reference paper due to Liu and
Paulino [2017]. Origami stent is implemented in the MERLIN code where geometry
is added as a closed configuration and loads are applied in order to promote the
structure deployment. Symmetric loads are considered in order to allow a further
comparison to the proposed ROM. A load is applied in the central vertex and
outwards in the radial direction for every unit cell (Fig. 10), being characterized as
a displacement. Boundary conditions are applied in the bottom of the origami stent
(for example, in Fig. 10, nodes 2, 7, 12, 17, 22 and 27 are constrained in longitudinal
direction but can move freely in radial direction). The goal is to reproduce a load
type where plane-symmetry remains. Results are presented in the next section.

5. Results and Discussion

This section investigates the symmetry hypotheses by establishing a comparison
between results of the ROM, developed based on kinematics analysis, and the one
obtained by the mechanical analysis employing the FEA. The idea is to use condi-
tions that establish similar behaviors of both approaches.

Results are presented as a function of ϕj = ϕRj + ϕLj , remembering that j =
1, . . . , m represents the number of rows and angles are represented in degree. Even
though the split of this angle is used on the kinematics description, the evaluation
of the entire angle is more useful since it is not bonded to a frame of reference but
to the unit cell itself.

Figure 11 presents the value of the angle θR and of the radius ρ as a function
of the angle ϕ considering a single row (m = 1) with six unit cells (n = 6). All the

(a) (b)

Fig. 11. Comparison between ROM and FEA of an origami stent with a single row. Side view
of the origami stent is presented with the graphs to aid the comprehension of the meaning of the
value of ϕ1. Left side (a) show the geometric relation between the angles of the unit cells and right
side (b) show internal radius evolution with the angle deployment.
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Fig. 12. Origami configurations predicted by the ROM and the FEA for ϕ1 = 165◦. Top side of
figure presents the isometric view and bottom side of figure presents the top view of the origami
stent.

unit cells have the same behavior and it is wholly symmetric, that is, θR1 = θL1

and ϕR1 = ϕL1 . Dashed lines represent the limit angles based on those presented
in Table 1. A side view of the origami stent represented using FEA is also pre-
sented in order to connect the angle ϕ1 with the structure configuration (closed and
opened). During the structure deployment, ROM and FEA present similar results
until approximately ϕ1 = 90◦ and, after that, discrepancies occur. Figure 12 presents
the difference in the final angle (approximately ϕ1 = 165◦) for both models.

The discrepancy between both descriptions can be explained for the stretching
energy calculated by FEA. Figure 13 presents the stretching energy of a single
origami row showing that whenever this energy is different from zero, the origami
structure is deforming and the rigid origami hypothesis, adopted by the ROM, is
not valid.

Origami panel deformation can be decreased or even avoided by considering dif-
ferent external loads, making results of both models closer to each other. Hence,
instead of a load in the central vertex, it is assumed as a load in the longitudi-
nal direction in the vertices A and A′ (Fig. 14(d)). Under this assumption, it is
noticeable that the ROM is more accurate in comparison with the FEA since the
stretching energy starts to increase at a higher angle (120◦ instead of 90◦) but also
due to deformation that now occurs mostly in the longitudinal direction.

Different numbers of unit cells, n, of a single row origami stent are now of
concern (Fig. 15). Results of angle and radius deployment as the stretching energy
evaluated by FEA are presented in Fig. 16. It is shown that the radius depends of the
parameter n but angle deployment remains unalterable which is in agreement with
equations of the ROM. Besides, the stretching energy does not vary significantly
(Fig. 16(c)). It should be pointed out that the maximum radius increases as a
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Fig. 13. Stretching energy of a single row origami stent in FEA. The increase of this energy
means a stretching in the panels which goes against rigid origami theory.

(a) (b)

(c) (d)

Fig. 14. Comparison of a single row origami stent deployment in the ROM and FEA considering
a load applied in vertices A and A’ (d). Angle deployment (a) and radius deployment (b) are equal
in both models but stretching energy in FEA (c) is still valued.
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Fig. 15. A single row origami stent at ϕ1 = 70◦ with different n unit cells distributed circum-
ferentially (isometric and side view). It is visible that the radius differences accordingly to the
number of unit cells even though all structures have the same angle.

consequence of the increase of the number of unit cells (Fig. 16(b)). Note that, for
n = 6, the radius almost double in a complete deployment, and it almost quadruples
if n = 12. This aspect represents the useful origami ability of saving space.

From now on, results of six unit cells (n = 6) are presented. Different rows
are treated, starting with a two-row origami structure (m = 2) (Fig. 17). In this
case, waterbomb unit cells are no longer wholly symmetric but plane symmetric
(ϕR �= ϕL) and a row has a mirrored behavior of the other: θR1 = θL2 and θL1 =
θR2 . Figure 18 presents results as a function of ϕ1 (bottom row). It is important
to highlight that whilst the maximum angle for the rigid theory is reached, the
structure can continue its deployment if deformation is considered.

A three-row origami (m = 3) is now in focus (Fig. 19). Since m is odd, middle
row (j = 2) has a wholly symmetric behavior. Adjacent rows have the mirrored
behavior among them (row 1 and row 3). Figure 20 presents the results of the
origami with three rows. In comparison with the origami with one row (m = 1), ϕ2

has a lower maximum angle since it is limited by the maximum value of ϕ1. The
relation between these angles is presented in Fig. 20(c).

Figure 21 presents the stretching energy estimated by the FEA for the origami
stent with three rows. This energy is presented as a function of ϕ1 and ϕ2. Note
that the peak of energy is higher than the peaks in the previous cases with one or
two rows. This behavior may be associated with higher deformations and also to
increase the number of unit cells in the structure since it corresponds to a total
energy.

An analysis of an origami with four rows (m = 4) (Fig. 22) is now in focus.
Figure 23 presents results of the four rows origami showing similar behavior of the
previous cases. Note that the relation of the radius with the angle ϕ does not change
for any case, which is in agreement with the ROM.
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(a) (b)

(c)

Fig. 16. Comparison between ROM and FEA for a single row origami stent varying the number
of unit cells n. Angle deployment (a) is the same for the ROM but has some variations in the
FEA. Radius deployment is presented in (b) and stretching energy in FEA in present in (c).

Fig. 17. Origami stent of two rows (m = 2) obtained by the FEA at three different stages: a
closed configuration (ϕ1 = 17◦), a limit open configuration defined by the ROM (ϕ1 = 129◦) and
an open configuration above that limited by the ROM (ϕ1 = 166◦).
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(a) (b)

(c)

Fig. 18. Comparison between ROM and FEA for an origami stent with two rows. Angle deploy-
ment of one row is presented in (a) and radius deployment is presented in (b). Dashed lines
represent limit angles of the ROM. In (c) the stretching energy is presented.

Fig. 19. Origami stent of three rows (m = 3) obtained by the FEA at three different stages: a
closed configuration (ϕ2 = 17◦), a limit open configuration defined by the ROM (ϕ2 = 120◦) and
an open configuration above that limited by the ROM (ϕ2 = 171◦).
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(a) (b)

(c) (d)

Fig. 20. Comparison between ROM and FEA for an origami stent with three rows. Angle deploy-
ment of the row j = 2 is presented in (a) angle deployment of the row j = 1 is presented in (b).
The angle relation between these two rows is in (c). Radius deployment is presented in (d).

The analysis of the stretching energy is presented in Fig. 24 showing that the
peak of energy is now even higher than the case of the origami with three rows,
as expected. Once again, it can be justified even by higher deformations or by the
increase of the number of unit cells.

In general, it is possible to say that origami description using the ROM is
similar to the FEA in a certain range of validity where there is no deformation.
In all cases presented, the FEA stretching energy starts to increase considerably
around ϕj = 105◦, which means that for angles smaller than that, there are no con-
siderable deformations in the structure which makes both descriptions equivalent.
Besides, FEA can be employed to define the limits of the origami description using
ROM.
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Fig. 21. Stretching energy in function of ϕ1 and ϕ2 for an origami stent of three rows (m = 3).

Fig. 22. Origami stent of four rows (m = 4) obtained by the FEA at three different stages: a
closed configuration (ϕ2 = 17◦), a limit open configuration defined by the ROM (ϕ2 = 113◦) and
an open configuration above that limited by the ROM (ϕ2 = 133◦).

(a) (b)

Fig. 23. Comparison between ROM and FEA for an origami stent with four rows. Angle deploy-
ment of the row j = 2 is presented in (a) angle deployment of the row j = 1 is present in (b). The
angle relation between these two rows is in (c). Radius deployment is presented in (d).
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(c) (d)

Fig. 23. (Continued)

Fig. 24. Stretching energy in function of ϕ1 and ϕ2 for an origami stent of four rows (m = 4).

6. Conclusions

The analysis of an origami stent, a cylindrical origami structure, is developed con-
sidering ROM and FEA. The ROM is built based on a zero-thickness rigid origami
theory and on symmetry hypotheses. Symmetry hypotheses are related to the unit
cell itself and in the whole structure, considering that all unit cells have the same
behavior. Different hypotheses are adopted depending on the origami configuration,
defined by the number of rows. Based on that, an origami with odd number of rows
requires different hypotheses than the even number. Furthermore, limit configu-
ration should be established defining the maximum angle reached by the origami
deployment. FEA is developed considering symmetric loads in order to establish a
comparison with the ROM. FEA allows one to analyze non-rigid origami. In general,
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both approaches are in close agreement except for conditions where panel stretch
occurs. Stretch conditions start close to the upper maximum angle permitted by the
ROM analysis. Based on this comparison, it is possible to establish an applicable
range of angles where ROM can be employed in order to generate similar results
of the FEA, being useful for different purposes. It should be pointed out that FEA
can be employed to determine limit configurations, allowing an accurate origami
description.
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