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Abstract In this work, we model and analyse drill-
string vibrations. A special attention is paid to stick-
slip and bit-bounce behaviours that are normally
treated as the non-smooth dynamics. A two degrees-
of-freedom lumped parameters model is employed to
account for axial and torsional vibrations based on the
model proposed by Christoforou and Yigit (J. Sound
Vibr. 267:1029–1045, 2003). The coupling between
both vibration modes is through contact with the for-
mation, where the axial force is the catalyst to gener-
ate a resistive torque. The forces and torques are de-
fined according the contact or non-contact scenarios,
establishing a non-smooth system. Besides, the dry
friction between the formation and the drill-bit intro-
duces the other non-smoothness of the system. Here
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we adopt smoothened governing equations which are
advantageous in terms of mathematical description
and numerical analysis. Our studies have shown that
the mathematical model is capable of predicting a full
range of dynamic responses including the stick-slip
and drill bit-bounce. A global analysis shows differ-
ent scenarios related to parameter changes allowing to
develop an in depth understanding of the drill-string
dynamics and define critical behaviours of the sys-
tem.

Keywords Non-linear dynamics · Stick-slip ·
Bit-bounce · Drill-string · Non-smooth

1 Introduction

Non-smooth behaviour occurs in many engineering
systems. Some of such phenomena as chatter and
squeal cause serious problems in industrial applica-
tions and, in general, these vibrations are undesir-
able because of their detrimental effects on the op-
eration and performance of engineering systems. Nu-
merical simulations of non-smooth systems are com-
plicated by a necessity of an accurate detection of
non-smoothness and then a robust switch from one
set of equations to another. This fact makes also their
mathematical description cumbersome. Moreover, the
dynamical responses of such systems are complex,
and different kinds of non-linear responses, including
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chaos, are observed (see, for example [1–4, 6, 7, 9,
12–14].

One of the engineering systems which exhibits non-
smooth behaviour is a drilling rig used in the oil and
gas industry for creation of the wellbore. The fun-
damental part of the drilling rig is a drill-string and
during the system operation it experiences dangerous
vibrations. A drill-string can be modelled as a non-
smooth system where alternating contact and non-
contact phases of the drill-bit with the rock have to
be considered. The drill-string vibrations can be clas-
sified into three different modes: axial, torsional, and
flexural vibrations. The coupling of these modes is es-
sential in order to describe some important phenomena
occurring during drilling [5, 8, 15].

The main objective of this research is to undertake
nonlinear dynamics analysis of drilling modelled as
a non-smooth system. The mathematical model de-
scribes contact and non-contact phases by different
sets of ordinary differential equations, being based on
the model proposed by Christoforou and Yigit [5]. Ax-
ial and torsional modes of vibrations are analysed us-
ing lumped parameters two degrees-of-freedom model
where the coupling between these modes is taken into
account through force generated during the bit-rock
interactions, as a result of the string’s rotational move-
ment. This model allows one to describe complex re-
sponses including stick-slip and bit-bounce.

A smoothening procedure is employed for numeri-
cal simulation of the system. Frictional effects caused
by interaction of the drill bit with the formation in the
torsional mode are described by a smoothened con-
tinuous function, as proposed in [17] and [11]. More-
over, to assist numerical simulations, contact and non-
contact non-smoothness, associated with a split phase
space, is treated by redefining the subspaces and the
transition between them. Under this assumption, the
equations of motion are represented by different sets
that describe system behaviour in each phase subspace
and also in the transition among them [11, 14, 17].

The numerical simulations are carried out to inves-
tigate the stick-slip and bit-bounce behaviours. In gen-
eral, it is possible to show how different set of param-
eters can dramatically change the system behaviour.
In essence, four different situations are discussed: nor-
mal operation, stick-slip, bit-bounce, and simultane-
ous stick-slip and bit-bounce. Besides, a global analy-
sis of the system allows one to develop a general un-
derstanding of some critical operations of the consid-

ered system due to drill-string vibrations. In particu-
lar, the drill-pipe length and the rotary table frequency
variations are investigated for different values of the
weight-on-bit. Maximum axial amplitudes and angu-
lar velocities are monitored in order to observe system
dynamics.

2 Mathematical model

The mathematical description of the drill-string inter-
acting with the rock considers a two degrees-of free-
dom system associated with axial and torsional vibra-
tions. The model used in this work is based on the one
proposed by Christoforou and Yigit [5] where the cou-
pling between axial and torsional degrees-of-freedom
are taken into account. The model aims to describe the
non-smooth phenomena related to these two modes,
and in particular stick-slip and bit-bounce phenomena.
A lumped parameter system is used, so that the equa-
tions are simplified to ordinary differential equations.
The forcing comes from the bit-rock interactions, as
a result of the string’s rotational movement. The tor-
sional forcing is caused by friction between bit and
rock and the cutting torque acting on the bit. Through
a coupling between the equations, the bit interactions
with the rock generate the forcing in axial direction.
There is a stiffness associated with the formation, re-
lating the bit penetration into the formation and the
axial force exerted.

The model treats the Bottom Hole Assembly (BHA)
as a lumped mass at the bottom of the drill-string. The
drill-pipe mass is considered as a lumped mass equiv-
alent to its distributed mass. Together, the BHA mass
and the equivalent drill-pipe mass make up the axial
mass, ma . The axial displacement is denoted by the
x variable. Figure 1 depicts a free body diagram of
the system for its axial degree-of-freedom. Figure 1a
shows the BHA configuration with the bit hanging just
above the formation. It represents the case where the
bit is just touching the formation but with no force at
all. This point is considered as the origin of the axis,
i.e., x = 0. The x variable is positive when the bit is
below x = 0. Figure 1b presents the static equilibrium,
with the nominal Weight-On-Bit (WOB) F b applied,
but without any rotation of the drill-string. F b is called
nominal WOB because during the dynamic response
of the system the WOB varies. F b is the WOB that
would exist if there are no axial vibrations present in
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Fig. 1 Free body diagram of the BHA with the axial acting forces; (a) contact between the drill bit and the formation when no force
is acting on the formation, (b) contact in static equilibrium; (c) dynamic equilibrium

the system, i.e., the desired WOB. The instantaneous
WOB is called Fb . The static displacement, x, is as-
sociated with the drill-bit penetration, when the WOB
equals F b . Figure 1c represents the dynamic situation,
with the forces involved: the force that the formation
exerts on the bit (instantaneous WOB, Fb = kcx); the
drill string elastic force; and a linear damping force.

The formation force is modelled as being linearly
related to the axial displacement, x, as shown below
for the static and instantaneous cases, respectively.
The formation stiffness is kc. Note that since this force
is always upward, we consider it to be positive upward:

F b = kcx (1)

Fb = kcx (2)

Then the equation for the axial motion is

maẍ + caẋ + ka(x − x ) + kc(x − x ) = 0 (3)

Since the two most important drilling parameters to
be selected when drilling, and on which the system
response will depend are the applied WOB and the
applied drill-string rotation, the equation of motion
is rewritten to make F b explicit. The equation is
also manipulated in such a way that x is not directly
present, since it is only a result of the applied WOB
and formation stiffness.

maẍ + caẋ + kax = F b

(
1 + ka

kc

)
− kcx (4)

For the sake of simplicity, the term F b(1 + ka

kc
), which

is constant, is defined as F0:

maẍ + caẋ + kax = F0 − kcx (5)

The forcing in the axial direction arises as a result
of the drill-bit rotation, thus being the result of the

torsional-axial coupling. To include this coupling, the
equation above is slightly modified. The modelling of
this coupling can be quite challenging and dependent
on many specific geometrical aspects of each bit. In
this work, a simple coupling is employed as proposed
by Christoforou and Yigit [5]. This coupling is made
by considering a surface elevation on the formation
that depends on the bit rotation angle φ. By introduc-
ing the torsional mode, Eq. (2) is valid for the case
where φ = 0, and a more general equation is intro-
duced as follows:

Fb = kc

[
x − s0 sin(nbφ)

]
(6)

where nb is an integer number. By choosing nb = 3,
we are representing the tri-lobe pattern common to tri-
cone bits.

Introducing this change in the axial equation of mo-
tion, we obtain the following equation:

maẍ + caẋ + kax = F0 − kc

[
x − s0 sin(nbφ)

]
(7)

The torsional degree-of-freedom is analysed by con-
sidering that torsional stiffness is provided by the drill-
pipes, kt , in such a way that the BHA does not expe-
rience any torsion. The torsional inertia is composed
by a combination of a lumped inertia in the tip of the
string, associated with the BHA and the drill-pipes, It .
Besides, the torsional model assumes that system dis-
sipation is represented by a linear viscous damping, ct .
The applied rotation on the string, rotary table rotation,
ωmr, is assumed to be constant and the rotary table an-
gle is represented by φmr. If there is no torsional vi-
bration present, φ would be equal to φmr. Under these
assumptions, the torsional governing equation is given
by

It φ̈ + ct φ̇ + kt (φ − φmr) = −Tb (8)
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where Tb is the torque on bit. The torque acting on
the drill-bit is modelled by two terms: the first one is
related to the dry friction existing between the bit and
the formation, while the second one is related to the
torque needed to cut the rock. The equation proposed
by Spanos et al. [16] is used assuming that the friction
is considered to be evenly distributed on the front face
of the bit. Thus, Tb is modelled as follows:

Tb = Fb

[
2

3
rhf (φ̇) + ς

√
rhδc

]
(9)

Here, rh is the drill-bit radius, δc is the average cutting
depth, and ς is a dimensionless parameter that charac-
terises the force necessary to cut the rock. The average
cutting depth, δc, is obtained from the following rela-
tion:

δc = 2πP

ωd

(10)

where P is the average rate of penetration, calculated
as a function of the applied Weight-On-Bit, F b , and
the rotary table rotation, ωmr, using the following em-
pirical relation:

P = e1F b

√
ωmr + e2 (11)

where e1 and e2 are constants.
The function f (φ̇) defines the dry friction and its

definition uses the sign of the angular velocity.

2.1 Smoothening the governing equations

The dry friction between the formation and the drill-
bit in general introduces a non-smoothness to the sys-
tem in torsional mode. However, in some cases, it is
possible to define a continuous function able to de-
scribe both the static and dynamic friction to repre-
sent the non-smooth shape of the dry friction. Here, a
smoothened model proposed by Wiercigroch [17] and
Leine [11] is employed:

f (φ̇) = −sign(φ̇)

(
2

π

)
arctan(εφ̇)

(
μe − μd

1 + τ |φ̇| + μd

)

(12)

In this equation, the constants μe and μd are the static
and dynamic friction coefficients, respectively; ε and
τ are dimensionless numerical constants, where ε � 1
and τ > 0. These constants are responsible for the
proper transition from −μd to +μd . If properly cho-
sen, these constants can get the smoothened shape of

the dry friction really close to that of its original non-
smooth function.

Concerning the contact/non-contact non-smooth-
ness, this non-linearity is far more complex and should
be properly treated for numerical simulations pur-
poses. Here, the same procedure used in Savi et al.
[14] is employed in order to smooth the governing
equations that are characterised by two different equa-
tions, representing situations with and without contact.
Therefore, state space of the system may be split into
two subspaces separated by a hyper-surface. The cen-
tral idea to smoothen this system is to redefine the sub-
spaces and the transition hyper-surfaces. Therefore, it
is assumed that the transition has a linear variation
within the transition hyper-surfaces, which is related
to a thin space defined by a narrow band η around the
hyper-surface of discontinuity. Under these assump-
tions, the system is governed by the following equa-
tions:

For the situation with contact, where x ≥
s0 sin(nbφ) + η:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

maẍ + caẋ + kax = F0 − kc

(
x − s0 sin(nbφ)

)
It φ̈ + ct φ̇ + kt (φ − φmr)

= −kc(x − s0 sin(nbφ))

×
(

2

3
rhf (φ̇) + ς

√
rhδc

)
(13)

For the situation without contact, where x ≤
s0 sin(nbφ) − η:
{

maẍ + caẋ + kax = F0

It φ̈ + ct φ̇ + kt (φ − φmr) = 0
(14)

For the transition region, where s0 sin(nbφ)−η < x <

s0 sin(nbφ) + η:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maẍ + caẋ + kax = F0 − kc

2
(x − s0 sin

(
nbφ

) + η)

It φ̈ + ct φ̇ + kt (φ − φmr)

= −kc

(
2

3
rhηf (φ̇)

+ ς
√

rhδc

(x − s0 sin(nbφ) + η)

2

)
(15)

For more details about this procedure, see the follow-
ing references: Savi et al. [14]; Divenyi et al. [6]; Wier-
cigroch [17]; Leine [11].
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2.2 Parameter definitions

Many of the system parameters are obtained from the
drill-string and drilling fluid characteristics. Thereby,
it is important to apply convenient formulations that
allow these parameters to be obtained. Here, parame-
ters are obtained in a similar way to that of Christo-
forou and Yigit [5]. The axial mass is given by sum-
ming up the BHA mass with the equivalent drill-pipe
mass:

ma = mBHA + mad + ρπ(d2
e − d2

i )ldp

12
(16)

where ρ is the steel density, de and di are the drill
pipes internal and external diameters, ldp is the drill-
pipe length, and mBHA and mad are the BHA mass and
fluid added mass, respectively, and both values can be
expressed by the following equations:

mBHA = ρπ(d2
ce − d2

ci)lBHA

4
(17)

mad = ρflπ(d2
ci + CAd2

ce)lBHA

4
(18)

lBHA is the BHA length, CA is the added mass co-
efficient, ρfl is the drilling fluid, and dce and dci are
the drill collars external and internal diameters. In this
model, for the sake of simplicity, the BHA is consid-
ered to be composed of drill collars alone. One should
pay attention to the fact that the total depth is the sum
of lBHA and ldp. The string stiffness is given by

ka = Eπ(d2
e − d2

i )

4ldp
(19)

where E is the Young’s module for the steel. The tor-
sional inertia is given by the sum of the BHA inertia
and the equivalent drill pipe inertia.

It = ρπ(d4
ce − d4

ci)lBHA

32
+ 1

3

ρπ(d4
e − d4

i )ldp

32
(20)

The torsional stiffness is given by

kt = Gπ(d4
e − d4

i )

32ldp
(21)

and the torsional damping is expressed as follows:

ct = πμfllBHAd3
ce

2(2rh − dce)
(22)

The next section considers numerical simulation per-
formed with the proposed model.

Table 1 Parameters used in simulations

c1 c2 η τ ε

– – (m) – –

1.35 × 10−8 −1.9 × 10−4 10−6 10.9 104

3 Numerical simulation

In this section, numerical results obtained using the
proposed model are discussed. Runge–Kutta–Fehlberg
method with adaptive steps is employed to perform
the simulations. The appropriate values for the length
of the transition region, η, are defined as discussed
in [6]. Table 1 presents parameters that are used for
all simulations (parameters for the rate of penetration
equation, the dry friction smoothening, and the tran-
sition region). Basically, four different situations are
discussed: normal operation, stick-slip, bit-bounce and
simultaneous stick-slip, and bit-bounce.

3.1 Normal operation

Initially, dynamic responses for normal conditions are
computed for the parameters given in Tables 2 and 3.
Figure 2 presents steady state phase portraits for ax-
ial and torsional motion. It is a period-1 behaviour that
is expected in regular drilling operations, without se-
vere vibrations. Under this condition, discontinuities
are not occurring, which indicates that there is no bit-
bounce, meaning that the bit does not lose contact with
the formation. Since the angular displacement grows
with time, the torsional phase space is monitored by
φmr – φ. One can deduce that the torsional behaviour
is also periodic and bounded, which means that the
drilling takes place without severe torsional vibration.
No occurrence of discontinuities and the fact that the
angular velocity is always positive endorse the fact that
there is no stick-slip present.

Figure 3 shows the angular displacement φ as a
function of time. As the drill-string is continuously
rotating, φ always increases, fluctuating around φmr

value. Figure 3 shows φ varying with time and also
φmr. One can realise that both curves are almost the
same. A more useful way of visualising the behaviour
of φ is through the difference between φmr −φ against
time. This way what is obtained is the angular distance
between the bit and the rotary table. The figure shows
how much the rotary table is ahead of the drill-bit, in
rad/s.
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Table 2 Typical operation
system parameters Fb ωmr lBHA ldp di de dci dce dp

(lb) (RPM) (m) (m) (in) (in) (in) (in) (in)

10,000 50 200 700 4 5 3 9 17.5

(kN) (rad/s) – – (mm) (mm) (mm) (mm) (mm)

44.763 5.23599 – – 101.6 127 76.2 228.6 444.5

Table 3 Values of the
system parameters used for
calculations

ρfl μf ld cma ca kf s0 nb μe μd ς

(lb/gal) (cP) – – (N/m) (mm) – – – –

12.5 200 1.7 4000 25 × 106 1 1 0.35 0.3 0.1

(kg/m3) (Pa s) – – – – – – – –

1497.83 0.2 – – – – – – – –

Fig. 2 Normal condition behaviour: (a) phase portraits for axial and (b) torsional vibrations

3.2 Stick-slip

The stick-slip behaviour is now considered and a new
set of parameters is given in Tables 3 and 4.

The angular velocity amplitude increases until it
reaches zero velocity (stick). Thereafter, the system
behaves with stick-slip. The stick-slip can be clearly
seen on the horizontal line present in dφ/dt = 0.
The amplitude increase is also noticeable, both in
terms of the angular velocity and in the angular dis-
placement, associated with stick-slip. This analysis
shows that the angular phase space is an adequate
tool to identify the stick-slip. The axial phase space

is also presented in this picture showing far more in-
tricate steady state behaviour, since the complex tor-
sional behaviour changes the axial behaviour effec-
tively. Despite its complexity, this phase space does
not display any discontinuity whatsoever, indicating
that the bit-bounce phenomenon is not taking place
(Fig. 4).

Under these conditions, the drilling takes place
with the stick-slip behaviour that can be easily ob-
served in Fig. 5 that shows the time history of angu-
lar velocity dφ/dt . Time intervals in which the angu-
lar velocity vanishes can be observed, corresponding
to the stick intervals in which the drill-bit stops rotat-
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Fig. 3 Normal condition behaviour: (a) drill-bit and rotary table angular displacement in time; (b) difference between angular dis-
placement of the drill-bit and rotary table

Table 4 Stick-slip system
parameters Fb ωmr lBHA ldp di de dci dce dp

(lb) (RPM) (m) (m) (in) (in) (in) (in) (in)

15,000 30 200 4000 2.764 3.5 2.8125 6.5 26

(kN) (rad/s) – – (mm) (mm) (mm) (mm) (mm)

67.1445 3.14159 – – 70.2056 88.9 71.4375 165.1 660.4

Fig. 4 Stick-slip behaviour: phase portraits for (a) axial and (b) torsional vibrations
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Fig. 5 Stick-slip behaviour: time histories of (a) angular velocity and (b) relative angular displacement

ing. It is hard to compare the velocity peaks of this
result with those of the previous one because many
parameters are really different. Nevertheless, a quali-
tative comparison can be made observing the forcing
frequencies (the rotary table angular velocity) in each
case.

In the previous simulation, ωmr = 5.236 rad/s and
the peaks of dφ/dt reach about 5.8 rad/s, which is
just above the forcing frequency. In this second case,
on the other hand, ωmr = 3.14 rad/s and the peaks
of dφ/dt is about 7.0 rad/s, which is far above the
forcing frequency. Therefore, it is possible to con-
clude that when stick-slip is present, the drill-bit rota-
tion exhibits high amplitude peaks, what could explain
the strong drill-bit wear usually related to this kind
of response. In order to understand this phenomenon,
one should observe that whether there is stick-slip or
not, the average angular velocity of the bit should be,
in the long term, very close to that of the rotary ta-
ble. Hence, when stick-slip is present there are peri-
ods during which the drill-bit angular velocity van-
ishes, and this must be compensated with periods in
which the drill-bit velocity is far above the one of
the rotary tables; so in this way the average is main-
tained.

Figure 5 also presents the time history of φmr − φ.
This picture allows one to observe that an angular
distance between the drill-bit and rotary table oscil-
lates around approximately 7 rad, which corresponds
to a little bit more than a complete turn. Besides,
this movement amplitude varies about 1.7 rad around

this average value. In the previous case, the aver-
age was around 0.11 rad, and the amplitude around
0.08 rad. This larger distance between the drill-bit
and rotary table is probably not due to the stick-
slip, but to the fact that the drill-string used in this
case has a lower stiffness. That occurs because it is
composed of smaller diameter drill-pipes and it is
much longer. The larger fluctuations of φmr − φ, on
the other hand, may be related to the stick-slip. Dur-
ing the stick phase, the rotary table keeps on turning
while the bit is standing still, and that brings both far
apart.

Another interesting conclusion is that stick-slip is
not easily identifiable through the analysis of the angu-
lar displacement. Therefore, to identify this behaviour
it is more adequate to analyse the angular velocity or
the phase space, as presented before.

3.3 Bit-Bounce

The bit-bounce behaviour is now in focus by having a
new set of parameters presented in Tables 3 and 5.

Figure 6 shows the axial phase portrait where the
behaviour is quite different from the others, since bit-
bounce is observed. The system response is clearly
divided in two distinct regions, highlighting the non-
smoothness related to the bit-bounce. It can be clearly
seen that the displacement is much greater than in
the previous cases, despite the fact that the param-
eters have not been changed too much. The surface
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Table 5 Bit-bounce system
parameters Fb ωmr lBHA ldp di de dci dce dp

(lb) (RPM) (m) (m) (in) (in) (in) (in) (in)

5000 70 200 5000 2.764 3.5 2.8125 6.5 17.5

(kN) (rad/s) – – (mm) (mm) (mm) (mm) (mm)

22.3815 7.33038 – – 70.2056 88.9 71.4375 165.1 444.5

Fig. 6 Bit-bounce behaviour: phase portraits for (a) axial and (b) torsional vibrations

elevation (s0), just like before, is 1 mm, and the dis-
placement amplitudes now reach values on the order
of 40 mm, which gives clear evidence that the contact
has been lost.

By looking at the torsional phase portrait, one
can see that there is no apparent stick-slip but, in
a similar way to what the stick-slip did to the ax-
ial phase portrait, the bit-bounce has turned the tor-
sional behaviour much more complex. The orbits seen
fill the phase space, but the behaviour should not
be confused with a chaotic motion. It is interesting
to point out that, unlike what happens during the
stick-slip, when the torsional mode discontinuity can-
not be seen on the axial phase space, here the axial
mode discontinuity can be seen on the torsional phase
space.

Figure 7 shows the axial displacement and the
axial velocity time histories. Compared to the first
case, which had steady state vibrations, it can be ob-
served that the responses are less smooth and having
sharper peaks. However, it is not easy to realise the bit-
bounce existence through these graphs. Therefore, the

identification of this phenomenon requires a deeper
investigation that should include acceleration analy-
sis [10].

3.4 Simultaneous stick-slip and bit-bounce

At this point, friction coefficients are altered in order
to investigate a case where stick-slip and bit-bounce
behaviours occur simultaneously. Tables 3 and 6 give
the system parameters and μe = 0.35 and μd = 0.3
from Table 3 are replaced by μe = 0.6 and μd = 0.5
in this example.

The axial phase portrait depicted in Fig. 8a shows
the presence of the bit-bounce phenomenon. This con-
clusion is drawn from the existence of two distinct re-
gions, indicating the non-smoothness characteristic of
this phenomenon. Figure 8b shows the torsional phase
space, where one can find points with zero velocity,
which characterises the stick phases. Here, it is possi-
ble to identify both behaviours from the phase space.
The stick phases are indicated by a circle around
it.



1026 S. Divenyi et al.

Fig. 7 Bit-bounce behaviour: time histories of (a) axial displacement and (b) axial velocity

Table 6 Simultaneous
stick-slip and bit-bounce
system parameters

Fb ωmr lBHA ldp di de dci dce dp

(lb) (RPM) (m) (m) (in) (in) (in) (in) (in)

5000 70 200 5000 2.764 3.5 2.8125 6.5 17.5

(kN) (rad/s) – – (mm) (mm) (mm) (mm) (mm)

22.3815 7.33038 – – 70.2056 88.9 71.4375 165.1 444.5

Fig. 8 Stick-slip and bit-bounce behaviours: phase portraits for (a) axial and (b) torsional vibrations
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Table 7 System
parameters for the analysis
of drill pipe length
influence

Fb ωmr lBHA ldp di de dci dce dp

(lb) (RPM) (m) (m) (in) (in) (in) (in) (in)

5000 30 200 Varies 5.345 6.625 3.0 9.0 12.25

(kN) (rad/s) – – (mm) (mm) (mm) (mm) (mm)

22.3815 3.14159 – – 135.763 168.275 76.2 228.6 311.15

4 Global dynamics analysis

This section presents a global analysis of the drill-
string dynamics predicted by the proposed model. The
idea is to promote a slow variation of some system
parameter, evaluating its influence on system dynam-
ics. The axial mode is monitored by the displacement
peaks while the torsional mode is monitored by the
angular velocity peaks. Therefore, we are construct-
ing a kind of bifurcation diagram monitoring some
system variable under the slow quasi-static variation
of some parameter. We also indicate the occurrence
of stick-slip and bit-bounce behaviours on these dia-
grams. Concerning the system parameter, the analy-
sis started by considering the influence of the drill-
pipe length ldp, keeping all other parameters con-
stants. Afterward, we consider the variation of ro-
tary table frequency, ωmr. The simulations are per-
formed for several values of the Weight-On-Bit. This
kind of analysis allows us to develop a general under-
standing of the system dynamics, pointing some crit-
ical conditions of the drill-string during oil exploita-
tion.

4.1 Influence of the drill-pipe length (ldp)

Let us start the global dynamics analysis by consider-
ing the influence of the drill-pipe length ldp, varying
its value and keeping all other parameters, including
the BHA length, constant. The influence of the WOB
is also of concern by considering different, constant
values.

Tables 3 and 7 present system parameters employed
in this analysis where nb = 1 from Table 3 is replaced
by nb = 3 as a tri-cone bit is used in this example.
Only the highest peak of the maximum amplitudes is
presented for each ldp. Besides, we employ a proce-
dure to identify stick-slip and/or bit-bounce for each
ldp. Green circles on the horizontal axis indicate values
where there is stick-slip while blue dots indicate val-
ues for which there is bit-bounce. The sensitive depen-

dence to initial conditions and the multi-stability char-
acteristics related to the co-existing of attractors can
be evaluated by constructing two different diagrams
with distinct initial conditions: one in which the ini-
tial conditions are restarted for each value of ldp (all
variables take the zero value) and another one where
initial conditions are not restarted and, therefore, re-
sults from previous values are used as initial condi-
tions.

Initially, we apply a 5000 lbf (22.24 kN) WOB. Fig-
ure 9 shows the amplitude peaks calculated for dif-
ferent values of the drill pipe length, ldp. Two differ-
ent approaches were adopted in the calculations: in
parts (a) and (b) the responses were calculated start-
ing from the same initial conditions for each value of
ldp, while in parts (c) and (d) the attractor obtained for
the lower value of the drill pipe length was followed as
the length increases. The peak related to the torsional
resonance is identified around ldp = 780 m. For val-
ues close to ldp = 6000 m, there is a peak in the axial
displacement amplitude and apparently the high axial
amplitude increases the torsional amplitude until start-
ing the stick-slip.

It should be highlighted that bit-bounce is more of-
ten present at high depths, and with great differences in
their amplitudes. In some regions, we can observe that
amplitude varies quickly between higher and lower
values. This behaviour can be observed by enlarg-
ing some of these regions as presented in Fig. 10.
These variations are related to attractors co-existence
which can be identified by analysing system responses
for different initial conditions. Figure 11 presents two
distinct behaviours associated with both kinds of re-
sponses presented in Figs. 9 and 10 for ldp = 2750 m.
The parts (a) and (b) show results with all initial con-
ditions set to be 0. On the other hand, the parts (c)
and (d) present the trajectories on the phase space for
the case where initial axial velocity is 0.003 m/s.

Figures 9(c) and 9(d) show results of axial and
torsional displacement amplitudes, with continuous
initial conditions for each ldp (initial conditions are
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Fig. 9 Amplitude peaks highlighting bit-bounce and stick-slip
development with the increase of the drill-pipe length—F b =
5000 lbf. (a, b) In these calculations, initial conditions are

restarted for each value of drilling pipe length; (c, d) here the
attractor obtained at the low value of drill pipe length was fol-
lowed (initial conditions are not restarted)

not restarted). The response related to shallow depths
presents bit-bounce behaviour, even though the ampli-
tudes are not very high. Note that there is a high am-
plitude peak around ldp = 780 m. At this depth, the
torsional natural frequency (

√
kt/It ) is 9.4471 rad/s,

what is exactly 3 times the string rotation, which is
coherent with the value of nb = 3. This peak is re-
lated to the torsional mode resonance, being associated
with stick-slip behaviour (as identified by the green
circle on the horizontal axis). Around ldp = 280 m,
there is another small torsional peak that is associ-
ated with a frequency 16.77 rad/s. Since this depth
is related to bit-bounce behaviour, we can infer that

this peak is a consequence of the non-smoothness.
For values of ldp greater than 7500 m, bit-bounce be-
haviour starts causing angular velocity amplitude in-
crease.

The increase of the WOB to 10,000 lbf (44.48kN)
promotes changes in system dynamics. Figures 12(a)
and 12(b) present results calculated for the same ini-
tial conditions for each value of the drill pipe length
ldp, while Figs. 12(c) and 12(d) show the ampli-
tudes for the attractors which was followed from the
low value of ldp. Note that bit-bounce behaviours
related to higher depths observed for lower weight
on bit (see Figs. 9(c) and 9(d)) do not exist any-
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Fig. 10 Enlargement of the axial amplitude peaks in region
with bit-bounce for F b = 5000 lbf

more. As can be seen from Figs. 12(a) and 12(b),
bit-bounce behaviour starts a few hundred meters
deeper than the previous case. In general, it is pos-
sible to observe that the increase of the WOB intro-
duces difficulties to the occurrence of the bit-bounce
behaviour.

This conclusion can be assured by increasing even
more the WOB value. Figures 13 and 14 present the
results for F b = 15,000 lbf (66.72 kN) and F b =
30,000 lbf (133.44 kN), respectively. It is noticeable
that the increase of WOB value tends to make the bit-
bounce behaviour less likely to occur.

4.2 Influence of the rotary table frequency

The forthcoming analysis deals with the influence of
the rotary table frequency, ωmr, on the system dynam-

Fig. 11 Distinct responses for different initial conditions showing the attractor coexistence at ldp = 2750 m; (a, b) trajectories shown
on the phase plane for zero initial conditions, (c, d) trajectories on the phase plane calculated for initial axial velocity of 0.003 m/s
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Table 8 System
parameters for the analysis
of rotary table frequency
influence

Fb ωmr lBHA ldp di de dci dce dp

(lb) (RPM) (m) (m) (in) (in) (in) (in) (in)

Varies Varies 200 4000 5.345 6.625 3.0 9.0 12.25

(kN) (rad/s) – – (mm) (mm) (mm) (mm) (mm)

Varies Varies – – 135.763 168.275 76.2 228.6 311.15

Fig. 12 Amplitude peaks highlighting bit-bounce and stick-
slip development with the increase of the drill-pipe length—
F b = 10,000 lbf. (a, b) In these calculations initial conditions

are restarted for each value of drilling pipe length; (c, d) here
the attractor obtained at the low value of drill pipe length was
followed (initial conditions are not restarted)

ics. This analysis is carried out for several values of

weight-on-bit. The other parameters are shown in Ta-

bles 3 and 8 where nb = 1 from Table 3 is replaced by

nb = 3. The system response is analysed in two dif-

ferent ways: increasing and decreasing the frequency

in a slow quasi-static way. For each forcing frequency,

ωmr, the maximum amplitude of axial displacement at

steady state is plotted to identify system dynamics. Ini-
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Fig. 13 Amplitude peaks highlighting bit-bounce and stick-
slip development with the increase of the drill-pipe length—
F b = 15000 lbf. (a, b) In these calculations initial conditions

are restarted for each value of drilling pipe length; (c, d) here
the attractor obtained at the low value of drill pipe length was
followed (initial conditions are not restarted)

tial conditions are defined from the last value of ωmr.
Stick-slip and/or bit-bounce behaviours are also iden-
tified, respectively, by green circles and blue dots. This
identification is on the bottom horizontal axis when
frequency is increasing and on the top horizontal axis
when it is decreasing.

Simulations for six different values of WOB are
presented in Fig. 15: 5000 lbf (22.24 kN), 10,000 lbf
(44.48 kN), 15,000 lbf (66.72 kN), 20,000 lbf
(88.96 kN), 25,000 lbf (111.20 kN), and 30,000 lbf
(133.44 kN). For all cases, it should be highlighted the

differences between the increase and the decrease of
frequencies. Two curves are plotted: one for the in-
creasing frequency (black-solid) and another for the
decreasing frequency (red-dashed). It is also notice-
able the occurrence of several peaks that change the
position during the increase and the decrease of fre-
quency. For those, some peaks related to decreas-
ing frequencies do not have counterpart when fre-
quency increases. Another aspect of these curves is
that there is an increase of peak values for higher fre-
quencies.
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Fig. 14 Amplitude peaks highlighting bit-bounce and stick-
slip development with the increase of the drill-pipe length—
F b = 30000 lbf. (a, b) In these calculations, initial conditions

are restarted for each value of drilling pipe length; (c, d) here
the attractor obtained at the low value of drill pipe length was
followed (initial conditions are not restarted)

It is important to establish the difference between
black and red responses, where all red responses are
associated with stick-slip phenomenon. Black-solid
curves, on the other hand, are not always related to this
behaviour. This indicates that the stick-slip is some-
how related to the mechanism of creating these high
amplitude peaks. The increase in the torque on bit, re-
sulting from higher axial amplitudes, increases the tor-
sional movement amplitudes and favours the appear-
ance of the stick-slip. This explains why this behaviour
is more likely to occur when starting from higher ax-
ial amplitudes as initial conditions (red-dashed curve).

Besides, although the increase of the torsional ampli-
tudes and the presence of the stick-slip do not increase
the axial forcing amplitude, they change the forcing
frequency. This is because the axial-torsional coupling
of the driving force.

Another interesting behaviour that can be ob-
served from these curves is the dynamical jumps.
With frequency increase, the jumps occur just be-
fore amplitude peaks. On the other hand, when fre-
quency decreases, jumps occur immediately after
the red-dashed amplitude peaks. Once again, the in-
crease of the WOB causes the bit-bounce behaviour
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Fig. 15 Amplitude peaks highlighting bit-bounce and stick-
slip behaviours changing forcing frequency for different WOB.
Green circles indicate stick-slip and blue dots indicate bit-
bounce. The lower axis is related to increasing frequency while

the upper is associated with decreasing frequency. (-•-, red) Fre-
quency increase; (-•-, black) Frequency decrease (Color figure
online)
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more difficult to appear. For high values of WOB
(F b = 20,000 lbf, 25,000 lbf and 30,000 lbf), there
are less occurrence of the bit-bounce behaviour and
lower amplitude peaks for frequency increases (black-
solid curves). During frequency decreases (red-dashed
curves), there is an increase related to bit-bounce
for F b = 25,000 lbf. This region is also related
to stick-slip behaviour and, therefore, it is possible
to argue that the increase of the bit-bounce occur-
rence might be related to the stick-slip behaviour.
Moreover, the stick-slip behaviour is related to the
increase in WOB, which increases the torque on
bit.

5 Conclusions

In this paper, we model and analyse drill-string vi-
brations focusing on two fundamental phenomena:
stick-slip and bit-bounce. We employed a two degrees-
of-freedom model to account for axial and torsional
vibrations based on the model proposed by Christo-
forou and Yigit [5]. The coupling between both vi-
bration modes is through contact with the forma-
tion, where the axial force is the catalyst to gen-
erate a resistive torque. The forces and torques are
defined according the contact or non-contact sce-
narios, establishing a non-smooth system. Besides,
the dry friction between the formation and the drill-
bit introduces the other non-smoothness of the sys-
tem.

We model the abrupt changes (non-smoothes) by
adopting a smoothening procedure which is advanta-
geous in terms of mathematical description and nu-
merical analysis. Based on this procedure, numerical
simulations are carried out showing different kinds
of responses. Basically, four situations are of con-
cern: normal operation; stick-slip; bit-bounce; simul-
taneous stick-slip and bit-bounce. Finally, we per-
form a global dynamical analysis of the system by
analysing the slow quasi-static variation of some sys-
tem parameter evaluating the effect on system dynam-
ics by monitoring some system variables. The drill-
pipe length and the rotary table frequency variations
are considered for different values of the Weight-On-
Bit.

Maximum axial amplitudes and angular veloci-
ties are monitored in order to observe system dy-
namics. Results allow one to identify important phe-
nomena during drilling, highlighting some aspects

of stick-slip and bit-bounce behaviours. Distinct sce-
narios are investigated showing the parameter vari-
ation influence in system dynamics, especially the
one related to non-smooth behaviours. Therefore,
it is possible to say that performed numerical sim-
ulations are capable of predicting a full range of
dynamic responses including the non-smooth be-
haviours.
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