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Vibration-based energy harvesting is of increasing importance and there is a current challenge to
improve energy harvesting capacity exploiting nonlinear and random effects. This article inves-
tigates random effects in a nonlinear energy harvesting system. The system is represented by a
magnetoelastic structure with two piezoceramic layers attached to the root of a cantilever beam,
obtaining a bimorph generator. The energy harvesting system is subjected to three excitation
conditions: pure harmonic, pure random and a combination of harmonic and random excita-
tions. Noise-to-Signal Ratio (NSR) is employed to quantify different combinations of the forcing
terms, establishing a procedure to evaluate the system performance. This approach is based on
Power Spectral Density (PSD) of input and output signals. Numerical simulations are carried
out, identifying the better combinations of harmonic and random excitations for energy harvest-
ing purposes. Discussions about the influence of the kind of response are carried out evaluating
the differences between periodic and chaotic motions. Conclusions show that both random and
nonlinear effects can be tuned in order to enhance energy harvesting capacity.

Keywords : Piezoelectric; nonlinear dynamics; energy harvesting; randomness; chaotic response;
bifurcation.

1. Introduction

Piezoelectric vibration-based energy harvesting is
of increasing importance due to the necessity of
clean energy generation. Besides that, it can be used
together with vibration reduction purpose, creating
a dynamical absorber that will be useful for either

energy harvesting or vibration reduction. The cur-
rent challenge is the energy harvesting enhancement
that motivates the analysis of nonlinear and random
effects.

Several applications have been analyzed
through different research efforts. The use of human
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walk movement is an interesting possibility to
charge portable electronic devices using ambient
vibration. In this regard, Feenstra et al. [2008] and
Rome et al. [2005] investigated a system that can
be used in backpack. Shenck and Paradiso [2001]
proposed a device to be used in shoes. Sohn et al.
[2005] proposed an energy harvesting device to be
applied to the blood pressure variation. Hou et al.
[2017] developed a sensor to monitor a pavement
powered by the energy provided by a piezoelectric
cantilever beam.

The analysis of linear energy harvesting devices
shows that an excitation close to the system reso-
nant condition is the best option to obtain a rea-
sonable amount of generated energy. Nevertheless,
small variations from this resonant condition cause
drastic reduction of the electrical response, mak-
ing the linear system to be narrowband vibration
energy harvesting. Broadband vibration in linear
energy harvesters can be obtained by consider-
ing self-tuned systems using active or semi-active
control [Cheng et al., 2017; Lallart et al., 2010;
Roundy & Zhang, 2005].

Based on that, nonlinear systems are imagined
in order to spread the energy to a broadband energy
harvester. The increase of the number of equilib-
rium points is an interesting possibility related to
the introduction of nonlinear effects on energy har-
vesting systems. Basically, the introduction of new
equilibrium points can be exploited forcing the sys-
tem to oscillate around more points, increasing the
motion amplitudes and therefore, the energy har-
vested. In this regard, bistable or tristable oscilla-
tors are exploited.

Concerning bistable systems, Litak et al. [2016]
investigated a vertical beam with a tip mass. Kim
et al. [2016] showed that out-of-phase mode is the
best regime, under resonant conditions, for energy
harvesting purpose. Chiacchiari et al. [2017] inves-
tigated the harvested energy in a bistable system
subjected to impulsive excitations. Some authors
explored magnetic interaction to obtain a bistable
system, as investigated by Mann and Sims [2009],
Erturk et al. [2009] and Abdelmoula et al. [2017].

Concerning tristable systems, Zhou et al. [2016]
analyzed the external load influence. Oumbé Tékam
et al. [2015] used the Melnikov criterion to analyze
complex dynamics. Similar system was explored by
Cao et al. [2015] showing the influence of geometry
parameters. Zhou et al. [2015] addressed a system
that can be bistable or tristable by shifting some

parameters, with impact-induced device. Results
showed that the system obtains high energy oscilla-
tions under low excitation levels.

Silva et al. [2015] investigated the influence
of nonlinear piezoelectric couplings indicating that
quadratic constitutive equations can strongly mod-
ify the system dynamics, presenting better matches
with experimental data. Triplett and Quinn [2009]
showed that nonlinearities of the piezoelectric cou-
pling can enhance the harvested energy, however,
the efficiency of the system can be reduced. Silva
et al. [2013] analyzed hysteretic piezoelectric behav-
ior suggesting that optimum responses can be found
depending on the hysteresis level.

The analysis of random effects is another
important aspect to be evaluated concerning energy
harvesting capacity enhancement. Basically, energy
due to nondeterministic sources can alter system
response, changing system capacity. Leng et al.
[2017] investigated the performance of a tristable
piezoelectric energy harvester under random excita-
tion. Litak et al. [2010] verified that a bistable struc-
ture has a stochastic resonance when excited with a
white noise excitation. De Paula et al. [2015] inves-
tigated a system subjected to a random excitation
establishing a comparison among linear, nonlinear
monostable and nonlinear bistable configurations.
Results showed conditions where random excitation
influenced system performance. Ferrari et al. [2011]
evaluated RMS voltage on bistable system.

In general, it is possible to say that the combi-
nation of random and nonlinear effects seems to be
an essential point to be exploited in vibration-based
energy harvesting systems. Besides, the presence of
noise is unavoidable in experimental systems, mean-
ing that the influence of randomness on determin-
istic systems needs to be considered for design pur-
poses [Litak, 2014].

This paper investigates the influence of ran-
domness on nonlinear energy harvesting system.
A bistable piezomagnetoelastic structure subjected
to deterministic and nondeterministic excitations
is analyzed. Basically, three excitation conditions
are treated: a pure harmonic; a pure random; and
random-harmonic combination. Energy harvesting
system performance is evaluated by proposing a
procedure based on Power Spectral Density (PSD)
that uses information of input (mechanical exci-
tation) and output (voltage). Results show that
both effects can alter energy harvesting capacity
and need to be explored for enhancement purposes.
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Numerical simulations are carried out identifying
the better combinations of harmonic and random
excitations for energy harvesting purposes.

After this introduction, this paper is organized
as follows. In Sec. 2, the mathematical model of the
piezomagnetoelastic structure is presented, propos-
ing a procedure to evaluate system performance
appropriate for both deterministic and nondeter-
ministic signals. In Sec. 3, numerical simulations are
carried out considering harmonic excitation, while
in Sec. 4, random excitation is of concern. Combined
harmonic and random excitations are treated in the
sequence. Section 5 presents the system dynamical
behavior, evaluating different noise levels. Section 6
discusses system performance. Finally, the conclud-
ing remarks are discussed.

2. Piezomagnetoelastic Structure

Consider an energy harvesting system repre-
sented by a magnetoelastic structure that captures
the environmental vibration using piezoelectric
elements. Figure 1 presents a schematic representa-
tion of the structure that consists of a ferromagnetic
cantilever beam with two permanent magnets, one
located at the free end of the beam and the other
at a vertical distance d from free end. The mechan-
ical system is based on [Moon & Holmes, 1979]
presenting a Duffing-type nonlinearity. The use of
this device as an energy harvester is associated
with piezoelectric elements that perform electric-
mechanical coupling. Erturk et al. [2009] used two
piezoceramic layers to the cantilever beam root
obtaining a bimorph generator. The piezoelectric
layers are connected to an electrical circuit that,
for the sake of simplicity, can be represented by a

Fig. 1. Schematic representation of the piezomagnetoelastic
structure.

resistor. Base excitation is represented by a combi-
nation of random and harmonic excitations consid-
ering three situations: pure harmonic; pure random;
harmonic and random combination.

Equations of motion of the energy harvesting
system are presented in the sequence assuming that
x is the dimensionless transverse direction tip dis-
placement of the beam and v is the dimensionless
voltage across the load resistance. Time, t, is also
dimensionless as considered by Moon and Holmes
[1979] and Erturk et al. [2009]. By assuming a linear
electro-mechanical piezoelectric coupling, governing
equations are the following,

ẍ + 2ξẋ − 1
2
x(1 − x2) − χv = F (t), (1)

v̇ + λv + κẋ = 0, (2)

where ξ is the mechanical damping ratio, χ is the
dimensionless piezoelectric coupling term in the
mechanical equation, κ is the dimensionless piezo-
electric coupling term in the electrical circuit equa-
tion, λ is the reciprocal of the dimensionless time
constant (λ ∝ 1/RLCP where RL is the load resis-
tance and CP is the equivalent capacitance of the
piezoceramic layers) and F (t) is the dimensionless
excitation due to base movement. It is important to
highlight that the system is dimensionless, this pro-
cess can be seen in the works of Moon and Holmes
[1979] and Erturk et al. [2009].

System parameter values are the same as con-
sidered by Erturk et al. [2009]: ξ = 0.01, χ = 0.05,
κ = 0.5 and λ = 0.05. Under these assump-
tions, the equilibrium points of the structure are
composed by two stable spiral points located at
(x, ẋ, v) = (±1, 0, 0) and unstable saddle point
located at (x, ẋ, v) = (0, 0, 0), characterizing a typ-
ical bistable system.

Three different excitations, F (t), are treated
considering a combination of random and harmonic
situations. In the first case, a pure harmonic exci-
tation is considered, F (t) = f0 cos(ωt) where f0 is
the dimensionless excitation amplitude due to base
movement (f0 ∝ Ω2X0 where X0 is the dimension-
less base displacement amplitude). In the second
case, a random excitation is considered, F (t) =
N(σ, x) representing a Gaussian white noise with
mean value x and standard-deviation σ. Finally,
a combined harmonic and random forcing excita-
tion is treated. The general case is represented as
follows,

F (t) = f0 cos(ωt) + N(σ, x). (3)

1950046-3



April 12, 2019 16:46 WSPC/S0218-1274 1950046

T. L. Pereira et al.

In order to characterize the combination of
random and harmonic excitations, Noise-to-Signal
Ratio (NSR) measure is established

NSR =
σ

f0
. (4)

2.1. Energy harvesting and system
performance

The energy harvesting system has a performance
related to electro-mechanical conversion. In brief,
it is important to establish a relation between
mechanical, or input, and electrical, or output,
responses. The combination of harmonic and ran-
dom excitations is important to establish a proper
criterion for this aim. An interesting possibility
to analyze energy harvesting capacity proposed in
this article is based on the Power Spectral Density
(PSD). The PSD is the power distribution in fre-
quency domain, defined as follows:

PSD =
|x̂(ω̂)|2

T
, (5)

where x̂(ω̂) is the Fourier Transform of x(t), ω̂ are
frequencies that construct the analyzed signal

x̂(ω̂) =
∫ ∞

−∞
e−2πiω̂tx(t)dt (6)

and T is the total time of analysis. The area under
the curve of PSD is defined as Power of the Sig-
nal (PS). Moreover, it is important to define the
PS of the excitation (PSf ) and voltage (PSv). The
relation between these two quantities, r, is an indi-
cator of the system performance, as first proposed
by Pereira et al. [2017], that presents a preliminary
analysis of the system studied in the present work:

r =

∫ ω̂u

0
PSDv(ω̂)dω̂

∫ ω̂u

0
PSDf (ω̂)dω̂

=
PSv

PSf
. (7)

The value of PSDf is the mechanical input
power decomposed in the frequency domain rep-
resenting a measure of the mechanical energy. On
the other hand, the value of PSDv is the electrical
output power decomposed in the frequency domain
related to the electrical output representing a mea-
sure of the harvested energy. They are both cal-
culated by an FFT-based periodogram approach

and Hanning windowing [Newland, 1993]. Based on
that, PSv and r are parameters used to evaluate the
harvested energy and system performance, respec-
tively. Since the quantities v(t) and F (t) are dimen-
sionless, PSv and PSf can be compared directly.
The values of ratio r can be greater than 1 mean-
ing that the area under PSD of electrical output is
greater than the area related to PSD of mechanical
input. Besides, the ratio r is evaluated from 0 up
to ω̂u, within the frequency band of interest. This
procedure is appropriate for both deterministic and
nondeterministic signals.

3. Harmonic Excitation

This section discusses the energy harvesting sys-
tem subjected to pure harmonic excitation. Initially,
Fig. 2(a) shows the basin of attraction for ω = 0.8
and f0 = 0.083, where two coexistent attractors
are observed. The black points are associated with
initial conditions that lead to a period-1 attrac-
tor, shown in phase space and Poincaré section in
Fig. 2(b), while white points are initial conditions
associated with a chaotic behavior in steady state.
The chaotic response is presented in phase space
and Poincaré section in Figs. 2(c) and 2(d), respec-
tively. All Poincaré sections presented in this work
are constructed based on the forcing frequency,
when forcing phase is equal to zero.

Based on the two behaviors identified in Fig. 2,
system response is evaluated for different forcing
parameter. At first, Fig. 3 shows the qualitative
change of system response from bifurcation dia-
grams by varying forcing parameters, either ampli-
tude or frequency. When the forcing amplitude is
varied [Fig. 3(a)], a constant frequency ω = 0.8 is
considered. In addition, when the forcing frequency
is under variation, a constant forcing amplitude
f0 = 0.083 is applied. Two different initial condi-
tions are treated. The black points are associated
with initial conditions (x0, ẋ0, v0) = (1, 0, 0), which
correspond to a chaotic response for the initial forc-
ing parameters considered, while the pink points
are associated with initial condition (x0, ẋ0, v0) =
(1, 1, 0), which corresponds to a period-1 orbit
for the initial forcing parameters. Note that these
initial values of f0 and ω are in the middle of
the bifurcation diagrams presented in Figs. 3(a)
and 3(b). From the two reference behaviors, chaotic
and period-1 orbits, forcing amplitude is increased
and decreased and plotted together in the diagram
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(a) (b)

(c) (d)

Fig. 2. System behavior for ω = 0.8 and f0 = 0.083: (a) Basin of attraction; (b) period-1 attractor associated with the black
points of the basin of attraction in phase space and Poincaré section; chaotic response associated with the white points of the
basin of attraction in (c) phase space and (d) Poincaré section.

of Fig. 3(a). A similar procedure is adopted for
forcing frequency and is shown in Fig. 3(b). From
the initial period-1 orbit (pink points), only peri-
odic behaviors are observed when varying forcing
amplitude and frequency. When starting from the
chaotic response (black points), different kinds of
responses are observed, including periodic behavior
with different periodicity and chaotic response. By
considering black and pink points of both bifurca-
tion diagrams, coexisting attractors are observed in
Fig. 3(a) for values of f0 greater than 0.03 and in

Fig. 3(b) for values of ω greater than 0.27. In the
forthcoming analysis, nine different responses are
chosen to be further investigated.

Based on the global analysis provided by the
bifurcation diagrams, different kinds of responses
are picked to analyze the system performance.
Table 1 identifies and classifies some responses, pre-
senting forcing parameters and initial conditions.
Note that the phase space and Poincaré section
consist in a three-dimensional space (x, ẋ, v), how-
ever, only the projection in the space of (x, ẋ) is

(a) (b)

Fig. 3. Bifurcation diagram: (a) ω = 0.8 and different values of f0 and (b) f0 = 0.083 and different values of ω. Chaotic
(black) and period-1 orbits (pink).
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Table 1. Forcing parameters and initial condition.

ω f0 Initial Condition Behavior

Case 1 0.500 0.100 (1.426, 0.480, −0.726) Periodic

Case 2 0.800 0.083 (1.000, 1.000, 0.000) Periodic

Case 3 1.400 0.100 (0.960, 2.966, −0.519) Periodic

Case 4 0.800 0.083 (1.000, 0.000, 0.000) Chaotic

Case 5 0.800 0.100 (−1.231, −0.004, 0.347) Chaotic

Case 6 0.865 0.100 (−0.672, 0.283, −0.178) Chaotic

Case 7 0.800 0.093 (−1.000, 0.000, 0.000) Periodic

Case 8 0.815 0.100 (0.298, 0.419, −0.518) Periodic

Case 9 0.800 0.063 (1.173, −0.002, −0.099) Chaotic

presented. Cases 1 to 3 are period-1 responses and
their phase space and Poincaré section are shown
in Fig. 4(a). Cases 4 to 6 are chaotic presenting
phase space and Poincaré section in Figs. 4(b)–
4(d). Cases 7 and 8 are period-5 responses shown
in Fig. 4(e). Case 9 is presented in Fig. 4(f),
being associated with a period-1 orbit that oscil-
lates around only one equilibrium point (1, 0, 0), dif-
ferent from Cases 1–3 that oscillate around both
stable equilibrium points. The system evolves to
this oscillatory behavior around the equilibrium
point (1, 0, 0) due to the initial condition. Note that

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Phase space (line) and Poincaré section (point): (a) Cases 1–3, (b) Case 4, (c) Case 5, (d) Case 6, (e) Cases 7–8 and
(f) Case 9.
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equilibrium point (−1, 0, 0) remains stable, thus,
due to the symmetry of the system, depending on
the initial conditions, system trajectory leads to an
orbit symmetric to the one presented in Case 9 that
oscillates around (−1, 0, 0). It should be observed
that Cases 2 and 4 are coexisting behaviors. In
general, it is possible to establish four qualita-
tively different kinds of behaviors: period-1 oscil-
lating around two stable equilibrium points (SEP),
chaotic, period-5 and period-1 oscillating around
only one SEP.

In order to investigate the frequency domain
response, Fig. 5 shows the distribution of power
of input signal (PSDf ), mechanical displacement
(PSDx) and electric output (PSDv). Figure 5(a)
presents the spectrum of the period-1 response oscil-
lating around two SEP (Case 2), showing a discrete
number of peaks that is a characteristic of a periodic
signal. Note that similar behavior is presented with
the greatest peak occurring in the same frequency
of peak. Chaotic response spectrum (Case 4) is

presented in Fig. 5(b) showing a distribution of the
power around a broad band of frequency. Period-5
response spectrum (Case 7) is presented in Fig. 5(c)
showing more peaks when compared to Case 2, rep-
resenting that more frequencies are present in the
response. The spectrum of period-1 response oscil-
lating around only one SEP (Case 9) is presented
in Fig. 5(d) showing the presence of a discrete num-
ber of peaks with the first peak of response in the
same frequency of the excitation peak, as observed
in Case 2 analysis.

Frequency domain analysis of all cases are
assessed and summarized in Table 2. Values are pre-
sented for PSV , PSf and ratio r. Cases 1 to 3 are
related to period-1 orbits that oscillate around mul-
tiple SEP but with different amplitudes. Note that
higher amplitudes are associated with higher values
of PSv. Thus, the oscillation amplitude is directly
related to the harvested energy and Case 3 presents
the best results. Case 3 also presents the best per-
formance, and greater value of r, since variation of

(a) (b)

(c) (d)

Fig. 5. PSD curves for (a) Case 2, (b) Case 4, (c) Case 7 and (d) Case 9.
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Table 2. Forcing parameters and initial condition.

Behavior PSf (10−3) PSv(10−3) r

Case 1 Periodic 0.10 11.09 110.96
Case 2 Periodic 0.68 17.81 258.53
Case 3 Periodic 0.10 39.31 393.13
Case 4 Chaotic 0.68 7.36 106.87
Case 5 Chaotic 1.00 7.96 79.60
Case 6 Chaotic 1.00 7.60 76.01
Case 7 Periodic 0.86 9.30 107.59
Case 8 Periodic 1.00 9.43 94.33
Case 9 Chaotic 0.39 0.19 4.83

PSf values are considerably smaller than variation
of PSv.

Cases 4 to 6 are related to the chaotic behavior.
From phase spaces [Figs. 4(b)–4(d)], it is observed
that the system trajectory fills all phase space and
oscillation amplitudes are similar. This similarity
leads to similar values of PSv. The best case is
obtained from the greatest value of r, which is
related to Case 4.

Cases 7 and 8 present period-5 orbits, as shown
in the Poincaré section of Fig. 4(e). The two orbits
are similar and, therefore, the values of PSv are very

close. In contrast, the value of r is greatest in Case 7,
indicating the best performance.

Case 9 presents the lowest values of PSv and r
of all cases. This is expected since this orbit has an
oscillatory response around only one SEP, present-
ing small amplitudes [Fig. 4(f)].

Based on this analysis, one can conclude that
the best orbit for energy harvesting purpose is
related to higher oscillation amplitudes, repre-
sented by Case 3. When comparing chaotic behav-
ior (Cases 4–6) with a periodic one that presents
similar vibration amplitude (Case 1), the periodic
solution presents the highest value of PSv, being
more appropriate for energy harvesting. This hap-
pens because the periodic solution always presents
the highest amplitude while the chaotic solu-
tion visits distinct unstable orbits with different
amplitudes.

4. Random Excitation

This section analyzes the energy harvesting sys-
tem subjected to white noise excitation for differ-
ent values of excitation variance. Figure 6 presents
three different excitation characteristics, presenting

(a) (b)

(c) (d)

Fig. 6. Response in time domain and the PSD curve for (a) and (b) σ = 0.2, (c) and (d) σ = 0.4 and (e) and (f) σ = 2.
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(e) (f)

Fig. 6. (Continued)

phase space, as well as PSDf and PSDv: σ = 0.2,
Figs. 6(a) and 6(b); σ = 0.4, Figs. 6(c) and 6(d);
and σ = 2, Figs. 6(e) and 6(f). It is noticeable from
Fig. 6(a) that for σ = 0.2 the system visits only
one SEP, and therefore, presents small amplitude.
By increasing the variance to σ = 0.4 [Fig. 6(c)],
the system starts to visits multiple SEP, as can be
observed from system response around x = −1 and
x = +1. For σ = 2, the system oscillates around
multiple SEP with more transitions between them
when compared to the lower variance of σ = 0.4.

It has been experimentally verified that energy
harvesting system subjected to random excitation
presents greater output voltage values when the
beam oscillates around multiple SEP. Moreover, the
best performance is obtained when a greater num-
ber of transitions from one SEP to the other occurs
[De Paula et al., 2015].

Table 3 presents the results of harvested energy
and system performance of all cases analyzed under
random excitation. Figure 7 summarizes the same
results highlighting the kinds of response, present-
ing PSf , PSv and r, as a function of excitation

Table 3. Harvested energy and system perfor-
mance of cases analyzed under random excitation.

σ PSf (10−3) PSv(10−3) r

0.2 0.80 0.03 0.3722
0.4 3.22 0.19 0.0588
0.6 7.25 0.86 0.1184
0.8 12.90 1.52 0.1177
1.0 20.16 1.90 0.0942
1.2 29.03 3.28 0.1129
1.4 39.52 3.69 0.0933
1.6 51.62 4.13 0.0800
1.8 65.33 4.17 0.0638
2.0 80.66 5.67 0.07025

(a)

(b)

(c)

Fig. 7. System behavior when σ is increased from 0.2 to 2:
(a) PSf and qualitative response of the system identified in
phase space, (b) PSv and (c) r.

variance, σ, varied from 0.2 to 2. The variance
is related with the signal dispersion and hence,
an increase of the variance promotes an increase
of forcing energy. Figure 7(a) also illustrates the
kind of behavior presented by the system in phase
space (blue). Note that lower vibration amplitudes
(with oscillations around only one SEP) occur for
0.2 < σ < 0.4. After that, a transition region
(hatched) is observed, 0.4 < σ < 0.6. When σ > 0.6,
a different kind of behavior is obtained, where the
system oscillates around multiple SEP and higher
amplitudes are obtained. Note that when oscillation
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amplitudes become greater (σ > 0.6), there is an
increase of harvested energy, PSv.

5. Combination of Harmonic and
Random Excitation

After the analysis of pure harmonic and pure
random excitations, this section presents the com-
bination of both kinds of excitations. This analy-
sis is representative of real energy harvesting sys-
tems since random excitations can represent either
unavailable noise or excitation variations. Differ-
ent values of forcing amplitude and frequency are
investigated, considering distinct levels of random-
ness. The analysis begins considering predominant
harmonic excitation, with small NSR. The value
of NSR is then increased until random excitation
becomes predominant.

5.1. Influence of the forcing
amplitude

Bifurcation diagrams are built in order to iden-
tify the influence of forcing amplitude on system
response. Figure 8 presents diagrams for different

values of NSR using the same procedure employed
to build the bifurcation diagram presented in
Fig. 3. Figure 8(a) presents a weak combination
of harmonic-random forcing (NSR = 0.01). It can
be observed that the period-1 orbit keeps stable
for a large range of forcing amplitude. By increas-
ing NSR = 0.05, the periodic window related to a
period-5 orbit is replaced by a chaotic behavior, as
shown in Fig. 8(b). Figure 8(c) shows the response
for NSR = 0.3. Under this condition, pink points
fill a bigger region in the bifurcation region, rep-
resenting a greater dispersion in Poincaré section.
Nevertheless, the system presents the same quali-
tative behavior. Black points indicate that chaotic
region is enlarged.

With NSR = 1 [Fig. 8(d)], the system response
changes considerably. For values of f0 < 0.04, bifur-
cation diagram identifies two coexistent behaviors
that are symmetric, in both of them the beam
tip oscillates around only one SEP. For values of
0.04 < f0 < 0.085, the behavior changes but there
is still coexistent behavior, both oscillate around
the two SEP. For higher values of f0, there is only
one behavior and system oscillates around both
SEP.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Bifurcation diagram for different levels of combination of forcing and varying the amplitude. (a) NSR = 0.01,
(b) NSR = 0.05, (c) NSR = 0.30, (d) NSR = 1, (e) NSR = 2 and (f) NSR = 5.
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The coexistent behaviors, represented by black
and pink colors, disappear when NSR = 2, as pre-
sented in Fig. 8(e). Under this condition, just two
behaviors are observed: the system oscillates around
only one SEP for smaller values of forcing ampli-
tude; the system oscillates around multiple SEP
for higher amplitudes, filling all phase space. For
NSR = 5, the same result is obtained [Fig. 8(f)].
Based on that, it is possible to assume that random
excitation is predominant for NSR ≥ 2.

5.2. Influence of the forcing
frequency

The influence of forcing frequency on energy har-
vesting system response is now in focus. Figure 9
presents bifurcation diagrams with varying forcing
frequencies and different NSR values. The same
procedure of bifurcation diagram construction pre-
sented in Fig. 3(a) is adopted here. Pink points are
related to a period-1 response obtained with initial
conditions (x0, ẋ0, v0) = (1, 1, 0), while black points
are related to chaotic behavior obtained with ini-
tial condition (x0, ẋ0, v0) = (1, 0, 0) with f0 = 0.083
and ω = 0.8. From these two coexisting attractors,

the forcing frequency is increased and decreased.
These four procedures are plotted together in each
diagram.

Figure 9 presents the bifurcation diagram for
NSR = 0.01, this result is similar with the reference
bifurcation diagram shown in Fig. 3(a). By increas-
ing to NSR = 0.3 [Fig. 9(b)], a significant change
occurs. Note that for ω < 0.78 and ω > 1.3, the
system behavior related to pink and black points
consists of oscillations around just one SEP. Note
that there are two coexisting attractors, one has
Poincaré section points around x = −1 and the
other around x = 1. Thus, depending on the ini-
tial condition, the system oscillates around x = −1
or x = 1, which corresponds to two different behav-
iors. For ω > 0.5, a similar behavior is observed to
the one presented in Fig. 9(a), with pink points with
a greater dispersion of the points in a response that
oscillates around multiple SEP, while black points
are related to chaotic behavior. Even in the presence
of noise, the Poincaré section presents a lamellar
structure. For NSR = 1 [Fig. 9(c)], the coexistence
of behavior disappears, and two distinct behaviors
are presented. For smaller values of forcing excita-
tion all Poincaré section is filled with no pattern, as

(a) (b)

(c) (d)

Fig. 9. Bifurcation diagram for different levels of combination of forcing and varying the frequency. (a) NSR = 0.01,
(b) NSR = 0.3, (c) NSR = 1 and (d) NSR = 5.
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well for the phase space. For higher values of f0, the
system oscillates around both SEP always with big
oscillation amplitudes. When NSR = 5 [Fig. 9(d)],
the same result is obtained. Once again, it is pos-
sible to assume that random excitation is predomi-
nant for NSR ≥ 1.

6. Energy Harvesting and
Performance Analysis

This section aims to analyze the harvested energy
and system performance. Four reference responses
(identified when NSR = 0) are chosen: one
chaotic orbit; two different period-1 orbits oscillat-
ing around multiple SEP; and one period-1 orbit
oscillating around only one SEP. The dynamic evo-
lution of these reference orbits is analyzed when
NSR is increased.

The analysis of the first case, chaotic response,
is presented in Fig. 10. Harmonic excitation

(a)

(b)

Fig. 10. System behavior when NSR is increased from 0 to
3 by considering the first reference orbit. (a) PSf , PSv and
qualitative response of the system and (b) r.

parameters are f0 = 0.083 and ω = 0.8. By increas-
ing NSR, after a transition region (hatched), the
system presents a response that oscillates around
multiple SEP with large amplitudes. This behavior
presents the best performance and harvested energy
as it can be observed from the values of PSv and
r. For values of NSR > 2, a different behavior is
observed. Comparing this response with the chaotic
one, the value of PSv is greater but with a smaller
r, once more mechanical energy is provided to the
system as the noise increases.

Figure 11 presents details of the three behaviors
identified in Fig. 10. Figure 11(a) shows a chaotic-
like response in phase space and Poincaré section
for NSR = 0.01. Figure 11(b) presents the response
for NSR = 0.5, this kind of behavior occurs for
0.5 ≤ NSR ≤ 1.5. Figure 11(c) shows the behavior
for NSR = 5. Note that in the last case, the sys-
tem oscillates without any pattern, filling all phase
space, showing that random excitation is predom-
inant. This kind of behavior occurs for NSR ≥ 2.
Figure 12 shows the PSD curve for the three behav-
iors presented in Fig. 11.

The same analysis presented in Fig. 10 is
now carried out for the second reference situation,
period-1 orbit oscillating around multiple SEP, pre-
sented in Fig. 13, considering f0 = 1.4 and ω = 0.1.
Values of PS and r are presented as a function of
NSR, varying from 0 to 3. Figure 13(a) also illus-
trates the kind of behavior presented by the sys-
tem in phase space (blue) together with Poincaré
section (pink). Note that the reference response
occurs until NSR = 1 and, after a transition region
(hatched), a different type of behavior is obtained,
where the phase space is all filled. It is important
to highlight that the presented phase spaces and
Poincaré sections are obtained for fixed values of

(a) (b) (c)

Fig. 11. Phase space (blue) and Poincaré section (red) for combined harmonic and random excitations with (a) NSR = 0.1,
(b) NSR = 0.5 and (c) NSR = 5.
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(a) (b) (c)

Fig. 12. PSD curve for combined harmonic and random excitations with (a) NSR = 0.01, (b) NSR = 0.5 and (c) NSR = 5.

(a)

(b)

Fig. 13. System behavior when NSR is increased from 0 to
3 by considering the second reference orbit. (a) PSf , PSv and
qualitative response of the system and (b) r.

NSR, however, each one is used to represent the
qualitative behavior presented by the system in
a range of NSR. Note that the first region (0 <
NSR < 1) is more appropriated for energy harvest-
ing due to higher value of PSv. Moreover, by consid-
ering the value of r, the performance of the system
is better for smaller values of NSR.

The same analysis is now carried out for the
third reference situation, a period-1 orbit oscillat-
ing around both SEP, as presented in Fig. 14. This
reference orbit has lower oscillation amplitude when
compared to the second reference orbit. Harmonic
forcing parameters are f0 = 0.1 and ω = 0.8. Note
that the second reference orbit (Fig. 13) has bet-
ter performance and it is more suitable for energy
harvesting than this third orbit. This is due to
the higher oscillation amplitudes of the first ref-
erence orbit. From Fig. 14, it can be observed
that the first region is better for energy harvest-
ing, PSv, and presents the best performance, r. In

the interval from NSR = 0.3 to NSR = 0.5 emerges
a behavior that oscillates around just one SEP that
is not convenient for energy harvesting purpose.
For NSR > 0.7, the system oscillates without any

(a)

(b)

Fig. 14. System behavior when NSR is increased from 0 to
1.5 by considering the third reference orbit. (a) PSf , PSv and
qualitative response of the system and (b) r.

(a)

(b)

Fig. 15. System behavior when NSR is increased from 0 to
3 by considering the last reference orbit. (a) PSf , PSv and
qualitative response of the system and (b) r.
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pattern, filling all phase space, as occurs in the case
presented in Fig. 11(c).

Figure 15 presents the analysis of the last ref-
erence case. Harmonic forcing parameters are f0 =
0.063 and ω = 0.8. Note that the initial behav-
ior is not appropriate to harvest energy, present-
ing the lowest PSv and r of reference orbits. When
NSR = 0.5, the system response changes, increasing
both the harvested energy and system performance.
For this case, the performance r achieves the best
value when NSR = 1.

7. Conclusions

This paper deals with the random and nonlinear
influence on energy harvesting. A bistable piezo-
magnetoelastic structure is evaluated considering
three distinct excitations: pure harmonic, pure ran-
dom and a combination of harmonic and random
excitations. For the pure harmonic excitation, a rich
dynamical response is observed. Nine cases are cho-
sen to investigate the harvested energy and sys-
tem performance. In this first analysis, one con-
cludes that for energy harvesting purposes the best
response is associated with trajectories presenting
higher amplitudes. When the system is subjected
to a random excitation, two types of responses are
observed: vibrations around only one SEP and oscil-
lations around both SEP. The best situation occurs
for the smaller excitation variance that leads to
oscillations around both SEP. By combining har-
monic and random excitations, four reference orbits
are chosen from the analysis of purely harmonic
excited system (NSR = 0). From these four dif-
ferent behaviors, the system global dynamics is
analyzed when NSR is increased, evaluating the
harvested energy and system performance. The
increase of NSR promotes qualitative changes in
system response and more suitable responses for
energy harvesting purposes are identified. The best
behavior occurs when the tip of the beam oscillates
around both SEP with the largest oscillation ampli-
tude for the largest period. Moreover, proper com-
bination of harmonic forcing parameters and NSR
leads to this desired behavior. Based on that, it is
possible to combine random and nonlinear effects in
order to enhance energy harvesting capacity.
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