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Success in design and application of composite materials to a large extend depends on the use of the adequate
strength and failure criteria. The World‐Wide Failure Exercise (WWFE) is an international effort to establish
recommendations on failure criteria for the composite materials. WWFE uses the macromechanical approach
and considers the effective (averaged) properties of laminae as input in the analysis. Therefore, a prior funda-
mental issue arises on which micromechanical approach is better to apply to calculate the effective properties
of laminae. The objective of this paper is to present a multiscale analysis of influence of different micromechan-
ical models on the damage onset in the notched composite laminates in comparison with the available exper-
imental data. The failure modes of the CFRP and GFRP laminated plates with a circular hole subjected to tensile
and compressive loads are analyzed. The WWFE recommendations are combined with different micromechan-
ical approaches including a VSPK micromechanical model recently proposed by the authors. It is shown that
the VSPK model presents better predictions for a broad range of experimental data compared with the other
models available in the literature.
1. Introduction

Analysis and design of composite materials involves several vari-
ables in different scales, from micro to macro levels, see, e.g., [1,2].
Each composite characteristic requires application of the adequate
micromechanical model. In this regard, there is an international effort
that aims to guide composite design called World‐Wide Failure Exer-
cise (WWFE). This effort is now in the third edition [3] and the main
results of the first and second editions of WWFE are summarized by
Refs. [4] and [5], respectively.

In general, WWFE suggests composite design approaches, establish-
ing a set of recommendations on which failure criterion provides the
best prediction comparing with the experimental data in each case.
The plane stress cases were selected in the first edition of WWFE, while
3D stress cases were included in the second stage. In the third edition
of WWFE, some additional issues were evaluated, like matrix cracking
evolution and notch effects. For all editions, the initial damage and the
final failure modes are established and the matrix, fiber and the effec-
tive properties for each laminate are selected as input. Hence, even
with the great contribution of WWFE guidelines, there is still a lack
of knowledge in the prior fundamental issue: the influence of the ana-
lytical micromechanical model capability to predict effective elastic
properties and macromechanical strengths for the appropriate selec-
tion of fiber and matrix in the structural design. Note that laminae
properties are provided by the WWFE’s organizers, and for another
lamina with the same fiber and matrix, but different fiber volume frac-
tion, a new experimental testing must be carried out. The adequate
micromechanical modeling is especially significant for the design opti-
mization of composite structures, see [6].

Micromechanics is an important part in composite analysis and
design, defining the macromechanical effective (averaged) properties
based on fiber, matrix and interface properties. Literature presents sev-
eral analytical micromechanical models to estimate these effective
properties [1,6–10]. Most of them are restricted to elastic properties
and usually are compared with a very small number of experimental
data.

Considering the models related to three editions of WWFE, just a
few of them consider micromechanics aspects and, usually, they
employ only numerical tools [11]. Carrere et al. [11] suggested that
multiscale finite element model is useful approach to investigate com-
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posite structures, allowing the inclusion of nonlinear effects. An alter-
native numerical approach is proposed by Ref. [12]. Nevertheless, this
approach has high computational costs, especially due to the need of
huge parametric analysis and mesh size. Based on that, the use of ana-
lytical models is an important approach. In this regard, the analytical
approaches should be highlighted, like the Chamis model [13] and
Bridging model [14]. An extensive discussion about the advantage of
analytical modelling is presented by Ref. [15].

Composite structures usually have complex geometries and vari-
able types of loading. And that complicates the failure analysis. Com-
monly, damage is initiated in the vicinity of abrupt variations in
geometry, for example, around notches or holes. There are few analyt-
ical efforts to analyze the influence of macromechanical stress concen-
tration near the notches in composite materials. For stress
concentration problems in anisotropic materials the main contribu-
tions are presented in [16–20]. But all of them are limited to deter-
mine the stress distribution around holes and no investigation is
presented on damage initiation or propagation. In this regard, the ana-
lytical failure model for composite plates with holes proposed by Ref.
[21] should be noted. It assumes that under the uniaxial load, failure is
initiated in the same location as for the isotropic plates. Nevertheless,
experimental work in [22] and theoretical study in [23] demonstrate
that the maximum stress concentration in composites is not always
at the same point as in isotropic homogeneous materials and, in addi-
tion, the failure may not be initiated at the maximum stress
concentration.

Refs. [24,25] employed Moiré interferometric technique to experi-
mentally measure strain fields and to quantify damage around notches.
Ref. [26] discussed the influence of specimen geometry. Ref. [27] pre-
sented a comparative experimental analysis of composites using car-
bon and glass fibers, evaluating the influence of fiber types on the
failure mechanisms. As pointed out by Ref. [28], the conclusions from
the experimental studies are quite limited because there is a large
number of involved variables.

Ref. [29] presented analytical discussion about damage onset in
large laminated plates with elliptical holes subjected to in‐plane loads.
A second part of this investigation is presented in Ref. [23] for circular
holes and uniaxial (tension and compression) loads including damage
propagation using the finite element simulations. The aim of this study
is to proceed with this discussion including multiscale aspects on the
design of notched unidirectional laminates. The novel micromechani-
cal model VSPK is recently developed by the authors, see [30–32]. It is
applied to analyze the influence of fibers on the damage onset in the
CFRP and GFRP laminates. As pointed out in Ref. [15], the analytical
approaches are fundamental tools for optimal design and the multi-
scale procedure proposed in the present paper allows estimating ana-
lytically the onset strength of a notched plate using the properties of
constituent materials.

The adopted multiscale procedure is illustrated in the Fig. 1.
Matrix, fiber and interface properties and volume fractions are the
inputs in this analysis and the proposed micromechanical model is
applied to determine the effective properties of the lamina assuming
perfect bonding between the fibers and matrix. For a discussion about
imperfect bonding see [33]. As consequence of this micromechanical
approach, it is assumed that the heterogeneous plate is macroscopi-
cally equivalent to the homogeneous anisotropic plate for all fiber vol-
ume fractions, as illustrated in step 2. The homogenized plate with
effective properties is considered in steps 2–4.

Three different coordinate systems are necessary to deal with the

stress concentration problem: global coordinates, xðgÞ
i , where the

applied loads are defined and for this investigation the uniaxial load

with σðgÞ
11 ¼ σn and σðgÞ

22 ¼ σðgÞ12 ¼ 0 is considered; material coordinates,
xi, where material properties are defined and x1 coincides with the

fiber orientation; and local coordinates, xðlÞ
i , employed to map the bor-

der of the hole. The angle between x1 and xðlÞ
1 is θ and angle between x1
2

and xðgÞ
1 is α. σn denotes the nominal stress applied on the plate in a

region far enough from the hole to disregard border effects and to
be assumed infinity.

In Section 2, the VSPK micromechanical model is presented in full
details. In Section 3, the Stroh formalism is introduced, and the main
equation to compute the stress distribution along the hole border is
highlighted. Section 4 presents the Puck failure criterion to properly
define damage initiation following the WWFE recommendation for
failure of composite plates. Finally, in Section 5 all these steps are cou-
pled to evaluate the influence of fiber volume fraction, fiber‐to‐load
angle and fiber types on damage onset in notched composites. For sim-
plicity, henceforth notched strength is used to denote the applied load
that results on damage onset in a notched composite plate.

2. VSPK micromechanical model

The micromechanical model VSPK used in this study was recently
proposed in [30–32]. For the elastic properties, the rule of mixture
equations for longitudinal elastic modulus, E1, and longitudinal Pois-
son’s ratio, ν12, results in a good estimation when compared with
experimental data. On the other hand, for transversal elastic modulus,
E2, and longitudinal shear modulus, G12, a modification of the rule of
mixture is recommended to improve the model capability. Assuming a
thin ply in plane stress condition, the following equations are used to
estimate the elastic properties of lamina:

E1 ¼ Vf E
f
1 þ ð1� Vf ÞEm ð1Þ

ν12 ¼ Vf ν
f
12 þ ð1� Vf Þνm ð2Þ

E2 ¼ Em 1
1þ ξE2 ½ðEm=Ef

2Þ � 1�Vf

 !
ð3Þ

G12 ¼ Gm 1
1þ ξG12

½ðGm=Gf
12Þ � 1�Vf

 !
ð4Þ

where Vf is the fiber volume fraction, Ef
1 and Ef

2 are the fiber longitudi-

nal and transversal elastic moduli, νf12 is the fiber longitudinal Poisson’s
ratio, Gf

12 the is fiber longitudinal shear modulus, Em is the matrix elas-
tic modulus, νm is the matrix Poisson’s ratio, Gm ¼ Em=2ð1þ νmÞ is the
matrix shear modulus and ξE2 and ξG12

are calibrated functions defined
by

ξE2 ¼ a1 þ a2Vf þ a3ðEm=Ef
2Þ

h i
ð5Þ

ξG12
¼ a4 þ a5Vf þ a6ðGm=Gf

12Þ
h i

ð6Þ

where ai are calibrated according to the experimental data. Note that
ξE2 ¼ 1 and ξG12

¼ 1 for the traditional rule of mixture. Based on a set
of 100 experimental data compiled from literature for CFRP and GFRP,
with 54 data for E2 and 46 data for G12, the calibrated parameters are
listed in the Table 1. Note that defining ξE2 ¼ 1 and ξG12

¼ 1, Eq. (3) and
(4) are the classical rule of mixture equations.

In summary, the following assumption are made for the strength
evaluation:

(i) the rule of mixture estimation for longitudinal strengths has a
good agreement with experimental data, however it can be
improved including fiber in situ strength reduction induced by
imperfections for longitudinal tensile strength, St11;

(ii) for longitudinal compressive strength, Sc11, the misaligned fiber
is assumed to have a cubic polynomial shape and Castigliano’s
theorem is applied to relate the macroscopic load with the effec-
tive load on the fiber that results is crushing/rupture;



Fig. 1. Schematic view of the multiscale approach: the homogenization process is applied in the Step 1; and plate is assumed homogeneous and anisotropic in all
consequent steps.

Table 1
Calibrated parameters to estimate effective elastic properties.

a1 a2 a3
2.2603 −1.4759 −0.2964

a4 a5 a6
2.3145 −1.6043 −0.4199
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(iii) despite high nonlinear response of unidirectional laminae under
longitudinal shear, concentric cylinder model estimation is used
for the prediction of the longitudinal shear strength, Ss12, assum-
ing damage onset (associated with the start of the nonlinear
region in an experimental shear stress–strain curve);
3

(iv) transversal strengths are derived considering elasticity‐based
analytical solution for inclusions in infinite medium and later
calibrated for actual values of fiber volume fractions using finite
element simulation; the transversal tensile strength, St22,
assumes failure by cavitation due to dilatational energy density
while transversal compressive strength, Sc22, considers failure on
the interface.

Based on the above assumptions, the following closed‐form equa-
tions are derived to estimate macromechanical strengths of unidirec-
tional lamina:

St11 ¼ Vf þ ð1� Vf Þ Em

Ef
1

 !" #
ð1� rÞSft ð7Þ
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Sc11 ¼ Vf þ Em

Ef
1

 !
ð1� Vf Þ

" #
1þ ð272=315ÞðLϕ=df Þ2

1þ ð8=3ÞðLϕ=df Þ

" #
Sfc ð8Þ

Ss12 ¼
Sms
2

ðGf
12 þ GmÞ þ ðGf

12 � GmÞVf

Gf
12

" #
ð9Þ

St22 ¼
1

ð1þ νmÞð1� 2βÞgtðVf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Em

1� 2νm

� �
ucv

s
ð10Þ

Sc22 ¼
Siffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gicðVf Þ
p 2

1� β

� �
ð11Þ

where Sft and Sfc are the fiber tensile and compressive strengths, Sms is
the matrix shear strength, ucv is the matrix critical dilatation energy den-
sity and Si is the interface strength. r is the fiber strength reduction
parameter, created based in experimental reports that fiber tensile
strength measured in single fibers is smaller than in situ values [34].
For longitudinal compressive strength, a misaligned fiber geometry is
considered with maximum misalignment angle and length ϕ and L,
respectively, and fiber diameter df . For transversal strengths, the former
equations are based on the stress solution of a single fiber embedded in
an infinite matrix; i.e., Vf ! 0 and any interaction between neighbor
fibers is disregarded. To extend this formulation for real laminae,
gtðVf Þ and gicðVf Þ are functions created to include the influence of fiber
volume fraction. These functions are calibrated using finite element
simulations considering carbon and glass fibers in an epoxy matrix with
Vf ¼ 0:3; 0:4;0:5;0:6; 0:7 and the following equations are obtained:

gtðVf Þ ¼ 1� 5:8γVf
3 ð12Þ

gicðVf Þ ¼ �7:71ð0:14þ βÞV3
f þ 6:63ð0:01þ βÞV2

f þ 0:16ð3
þ βÞVf � 0:76ð�0:24þ βÞ ð13Þ

where

α ¼ Gmκf � Gf
23κ

m

Gf
23 þ Gmκf

ð14Þ

β ¼ Gm � Gf
23

Gm þ Gf
23κ

m
ð15Þ

γ ¼ α� β

ð1� βÞ � βð1� αÞ ð16Þ

κm ¼ 3� 4νm ð17Þ

κf ¼ 3� 4νf23 ð18Þ

Here Gf
23 is the fiber transversal shear modulus and

νf23 ¼ ðEf
2=2G

f
23Þ � 1 is the fiber transversal Poisson’s ration.

The following set of experimental data is compiled from literature
for calibration: 27 data for St11, 61 data for Sc11, 31 data for St22, 18 data
for Sc22. The calibrated parameters are: r ¼ 0:08, Lϕ=df ¼ 0:09 or
Lϕ=df ¼ 2:39, ucv ¼ 0:18MPa and Si ¼ 65MPa. Note that these are aver-
age values useful for general carbon and glass laminae, but they also
can be calibrated for any laminae if experimental values are available.
Additionally, for Sc11, Lϕ=df ¼ 0:09 or Lϕ=df ¼ 2:39 have a very close
estimation and replacing in Eq. (8), Sc11 can be estimated using the sim-
ple equation

Sc11 ¼ Vf þ Em

Ef
1

 !
ð1� Vf Þ

" #
0:8Sfc ð19Þ

3. Analysis of stress concentration

Stroh formalism [19,20] is a mathematical formulation that is use-
ful for the anisotropic elasticity due to its powerful capabilities and
4

compact solutions when compared to other analytical approaches,
e.g., Lekhnitskii formalism [17].

Considering linear elasticity, the equilibrium equation in the
absence of body forces is written as follows:

cijkluk;lj ¼ 0 ð20Þ
where cijkl is the elastic tensor and uk is the displacement vector.

The general solution of this set of equations is u ¼ vgðzÞ, or
uk ¼ vkgðzÞ, where v depends on the material properties, namely mate-
rial eigenvectors, and gðzÞ satisfies boundary conditions. In this expres-
sion, z ¼ x1 þ px2, where p is named material eigenvalue. The
essential point of the Stroh formalism is the material eigenvalue
equation:

½ci1k1 þ ðci1k2 þ ci2k1Þpþ ci2k2p2�vk ¼ 0 ð21Þ
By defining 3 × 3 matrices Q, R and T in such a way that

Qik ¼ ci1k1, Rik ¼ ci1k2 and Tik ¼ ci2k2, Eq. (21) can be rewritten in the
matrix notations as follows:

Qþ ðRþ RTÞpþ Tp2
� �

v ¼ 0 ð22Þ
After some algebraic manipulations, Eq. (22) can be redefined as a

classical eigenvalue problem, being the basis of the Stroh formalism.
For a detailed discussion about this derivation, see [19,20].

Since stress concentration problems around holes are related to the

free surface, σðlÞ11 is the only non‐zero stress component along the bor-
der of the hole. Due to that, the local coordinate system is convenient
for the problem solution and the following quantities need to be trans-
formed from material coordinates:

QðlÞ ¼ Qcos2θ þ ðRþ RTÞsinθcosθ þ Tsin2θ ð23Þ

RðlÞ ¼ Rcos2θ þ ðT�QÞsinθcosθ þ RTsin2θ ð24Þ

TðlÞ ¼ Tcos2θ � ðRþ RTÞsinθcosθ þQsin2θ ð25Þ
The Stroh formalism has other additional quantities as the Barnett‐

Lothe second‐order tensors. The non‐zero components of which are
expressed as follows considering orthotropic plates under plane stress:

½SBL�12 ¼ � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν12ν21

pð Þ E1

G12

� �
þ 2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ν12ν21
pð Þ

ffiffiffiffiffi
E1

E2

r� ��1=2

ð26Þ

½SBL�21 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
ν12ν21

pð Þ E2

G12

� �
þ 2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ν12ν21
pð Þ

ffiffiffiffiffi
E2

E1

r� ��1=2

ð27Þ

½LBL�11 ¼ E1
E1

G12

� �
þ 2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ν12ν21
pð Þ

ffiffiffiffiffi
E1

E2

r� ��1=2

ð28Þ

½LBL�22 ¼ E2
E2

G12

� �
þ 2 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

ν12ν21
pð Þ

ffiffiffiffiffi
E2

E1

r� ��1=2

ð29Þ

½LBL�33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G13G23

p
ð30Þ

Using the previously defined quantities, the solution of the normal
stress distribution in local coordinates along the border of the hole can
be written as follows:

σðlÞ11 ¼ i1ðGðlÞ
1 τ2 þGðlÞ

3 τ2Þ � i2ðGðlÞ
1 τ1 �GðlÞ

3 τ2Þ ð31Þ

where i1 ¼ ½1 0 0� and i2 ¼ ½0 1 0�, τ1 ¼ σ1
11 σ112 0

� �T and

τ2 ¼ σ112 σ1
22 0

� �T define the applied load, σ1ij are the stress components

in material coordinates far away from the hole, GðlÞ
1 ¼ ½NðlÞ

1 �T � NðlÞ
3 SL�1

and GðlÞ
3 ¼ �NðlÞ

3 L�1 are defined using a compact expression, where

NðlÞ
1 ¼ �½TðlÞ��1½RðlÞ�T and NðlÞ

3 ¼ �RðlÞ½TðlÞ��1½RðlÞ�T �QðlÞ are the funda-
mental elastic matrices. Using the normal stress in the local coordi-
nates, the stress concentration along the notch border is defined by
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σðlÞ11=σn. Note that stress concentration is used hereafter in a macroscopic
analysis.

Stress components σ1
ij are computed considering uniaxial load (see

Fig. 1) using the following expressions:

σ111 ¼ σn
2
ð1þ cos2αÞ ð32Þ

σ122 ¼ σn
2
ð1� cos2αÞ ð33Þ

σ112 ¼ � σn

2
sin2α ð34Þ
4. Puck failure criterion

Simultaneous damage mechanisms make the prediction of failure
in composite material a hard task. Therefore, WWFE presented several
efforts to improve the failure criteria. Based on WWFE recommenda-
tions [4,5], Puck failure criterion [35] has been selected. This model
has the advantage of the use of closed‐expressions for the plane stress
conditions and it is able to distinguish fiber and matrix failure.

The idea is to define failure functions for both constituents, as two
independent failure mechanisms, and evaluate which one is the most
critical. The failure function rises from zero to one. And it is assumed
that failure takes place when the function is equal to one. In the
sequence, these functions are defined according to the load condition.

Fiber failure is an essential point for composite material design.
Usually, its modeling is based on the maximum stress theory. Never-
theless, there are two additional factors to be considered: the differ-
ence between Poisson’s ratio of the composite constituents and the
shear influence of the fiber instability during compression. Expressions
of fiber failure during tension and compression are given, respectively,
by

f ðf ;tÞP ¼ 1
St11

σ11 þ E1

Ef
1

νf12mf � ν12

 !
σ22

					
					 ð35Þ

f ðf ;cÞP ¼ 1
Sc11

σ11 þ E1

Ef
1

νf12mf � ν12

 !
σ22

					
					þ 10

σ12
G12

� �2

ð36Þ

where mf is a parameter calibrated to fit experimental data.
Concerning matrix failure, critical plane concept from the

Coulomb‐Mohr failure criterion for brittle isotropic materials is
adopted [36]. This concept allows defining the critical load as well
as the failure direction, as illustrated in the Fig. 2. Assuming plane
stress hypothesis, there exist three different failure modes (see
Fig. 2). If σ22 ⩾ 0, mode A is the unique failure mode possible and
the failure mechanism develops in a critical plane perpendicular to
σ22. If σ22 < 0 two different critical planes are possible: mode B is asso-
ciated with a critical plane perpendicular to σ22 and mode C is related
to a critical plane that has an inclination γ with respect to σ22. Note
that mode B takes place for smaller absolute values of σ22 than with
mode C. For pure compression, material fails in mode C.
Fig. 2. Matrix failure mechanisms: (a) m

5

Adding the effect of voids and cracks growth due to σ11–0 in the
Coulomb‐Mohr‐based failure criterion, matrix failure functions associ-
ated to the three failure modes are defined as follows:

f ðm;AÞ
P ¼ σ12

S12

� �2

þ σ22

St22

� �2

þ 2
pt12
S12

σ22 1� σ22

St22

� �
þ σ11

X11

� �n

ð37Þ

f ðm;BÞ
P ¼ σ12

S12

� �2

þ 2
pc12
S12

σ22 þ σ11

X11

� �n

ð38Þ

f ðm;CÞ
P ¼ σ12cosγ

S12

� �2

þ σ22sinγcosγ

Sð23Þ23

 !2

þ 2
pc12
S12

σ22cos2γ þ σ11
X11

� �n

ð39Þ

where pc12 and pt12 are adjustable parameters; X11 ¼ 1:1St11 if σ11 > 0 or
X11 ¼ �1:1Sc11 if σ11 < 0; it is assumed that parameter n = 8 and its
physical meaning is to represent the influence of matrix cracking dam-
age for higher normal stress parallel to the fibers’ direction [35] and

γ ¼ acos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 1þ pc12ð Þ
Sð23Þ23 σ12
S12σ22

 !2

þ 1

" #vuut
8<
:

9=
; ð40Þ

Sð23Þ23 ¼ S12
2pc12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2pc12

Sc22
S12

s
� 1

 !
ð41Þ

Note that the present study is devoted to analysis of notch effects in
unidirectional laminae or a single‐layered laminate, where all the lam-
inae have the same orientation. Therefore, delamination failure is not
a critical mechanism and it is disregarded.

5. Results and discussion

A parametric analysis of fiber influence in notched strength of lam-
inated plates is presented below. Three different conditions are evalu-
ated: fiber type (carbon or glass), fiber volume fraction and fiber
orientation. First, the validation of the micromechanical model and
the Stroh formalism is introduced.

5.1. Micromechanical model influence

The proposed micromechanical VSPK model for the effective elastic
properties is extensively discussed in Ref. [30]. The goal of this Sec-
tion is to present a brief overview of this model. In summary, the ana-
lytical models are compared with a set of 309 experimental data
compiled from literature and the average errors of analytical microme-
chanical models are evaluated. For a comparison with other analytical
models from literature, the Chamis and Bridging models are used. The
equations of Chamis and Bridging models are presented in the Appen-
dices A and B respectively.

Fig. 3 shows the average error of each model for all properties of
lamina. Note that two different shear strengths are used: onset shear
strength, Ss;o12, that is the first damage event, which is assumed to coin-
cide with the initial nonlinear behavior in experimental stress–strain
ode A, (b) mode B and (c) mode C.



Fig. 3. Average error of micromechanical models compared with 309
experimental data.
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curves and offset shear strength, Ss;0:2%12 , that is similar to yield strength
for metals, being defined by the point where a line parallel to the shear
modulus, but offset 0.2% on the strain axis, cross the stress–strain
Fig. 4. Comparison of damage onset for notched plates with α ¼ 90�, Stoð90�;

Fig. 5. Comparison of transversal strengths for unnotched, St22 a

6

curve. The first one is defined based on damage‐free design and the
second is defined by ASTM [37].

The application of the proposed VSPK model on the experimental
data compiled from literature results on a smaller average error for
almost all properties than Chamis and Bridging models. The exceptions
are G12 and Ss;0:2%12 , where Chamis model obtained the smallest average
error but the difference between Chamis and VSPK is smaller than 1%.
Regarding VSPK model, just Ss;o12 estimation has an average error higher
than 30%. On the other hand, estimations by Chamis and Bridging
models have errors higher than 60%.

The micromechanical model influence on the predicted parame-
ters, for notched strength for tensile, Stoðα;Vf Þ, and compressive loads,
Scoðα;Vf Þ, are presented in the Fig. 4 considering the fiber‐to‐load angle
α ¼ 90� and 0:3 ⩽ Vf ⩽ 0:7. α ¼ 90� is selected to illustrate this com-
parison, as for this condition Stoð90�;Vf Þ and Scoð90�;Vf Þ are directly
influenced by lamina transversal strengths, St22 and Sc22, which are pre-
sented in the Fig. 5.

Fig. 4 demonstrates that Chamis and Bridging models estimate
higher values for Stoðα;Vf Þ than the VSPK model for the evaluated fiber
volume fraction range. On the other hand, for Scoð90�;Vf Þ there exist an
oposite tendency; Chamis and Bridging models underestimate
Scoð90�;Vf Þ when compared with the VSPK model. Fig. 5 shows the
results for St22 and Sc22, where the same behvior is observed. A compar-
ison between Figs. 4 and 5, shows that Stoð90�;Vf Þ and St22 present sim-
ilar behavior. The same is also observed for Scoð90�;Vf Þ and Sc22.
Vf Þ and Scoð90�;Vf Þ, using Bridging (Br), Chamis (Ch) and VSPK models.

nd Sc22, using Bridging (Br), Chamis (Ch) and VSPK models.
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Based on the comparison of all three models with the compiled
experimental data shown in the Fig. 3, the proposed VSPK model gives
the best estimations for St22 and Sc22. Due to the similarity between the
transversal nocthed and unnotched strengths presented in Figs. 4 and
5, it is possible to conclude that Chamis and Bridging models may also
overestimate Stoð90�;Vf Þ and underestimate Scoð90�;Vf Þ.

5.2. Influence of plate dimensions

The objective of this Section is to evaluate the error associated with
the assumption of an infinite plate in the analytical model based on the
Stroh formalism. For a finite plate, the stress distribution is calculated
by the finite element simulation using the commercial software
ANSYS.

The constituents’ properties are listed in Table 2. Vf ¼ 0:3 and
Vf ¼ 0:7 are adopted as they are limiting values for the practical appli-
cations; and the fiber‐to‐load angles of
α ¼ 0�; 15�; 30�; 45�; 60�; 75�; 90� are considered. The VSPK
micromechanical model is used to compute effective elastic properties
for a CFRP and GFRP that are used as input in the finite element
model.

Longitudinal dimension of plate is assumed to be 60 times larger
than the hole diameter to avoid the border effects [39]; and transversal
dimension of plate is assumed to be 6 times larger than the hole diam-
eter to reproduce standard recommendations for the open‐hole tests
[40,41]. Assuming also that the laminate is under plane stress condi-
tion, the higher order element PLANE183 is used and an element dis-
cretization of 120 division around the hole border is adopted. Plate
mesh is shown in the Fig. 6.

The maximum stress concentration variation vs. fiber‐to‐load angle
α is shown in the Fig. 7 for both types of fibers and fiber volume frac-
tions. The absolute error for the maximum stress concentration from
the infinite plate assumption in the analytical solution is presented
in the Fig. 8. These results indicate that Stroh formalism can be used
with an error smaller than 10% for CFRP and smaller than 5% for
GFRP.
Table 2
Matrix and fibers properties [38].

Matrix Fiber

Epoxy
(MY750)

Em [GPa] 3.35 Ef
1 [GP

νm 0.35 Ef
2 [GP

Smt [MPa] 80 Gf
12 [G

Smc [MPa] 120 νf12

Sft [MP
Sfc [MP

Fig. 6. Finite element mesh for a finite plate with a cir
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5.3. Parametric study

The influence of three main factors are investigated below: the
fiber type, volume fraction of constituents and fiber orientation.
Among these parameters, only the fiber type is a discrete variable.
Therefore, the analyses of CFRP and GFRP are carried out in parallel
for comparison.

First, the stress concentration is analyzed. The influence of fiber
volume fraction Vf is studied for α ¼ 0�; 45�; 90�, due to the common
engineering application of the 10% rule [42], suggesting that a lami-
nate is designed using only laminae with fiber orientations of 0°,
+45°, −45° and 90°; and that each lamina orientation should have
at least 10% of the entire thickness of a laminate. Figs. 9 and 10 show

the variation of stress concentration σðlÞ11=σn along the circular hole bor-
der θ for CFRP and GFRP, respectively. These results indicate that:

(i) the stress concentration is more severe for CFRP than for GFRP
due to carbon fiber anisotropy;

(ii) the stress concentration is almost insensitive to the fiber volume
fraction for 0:3 ⩽ Vf ⩽ 0:7;

(iii) for CFRP the stress concentration ranges between −4.5 and 7.5
and for GFRP it ranges between −2.5 and 4. In comparison, for
a large isotropic homogeneous plate with a circular hole sub-
jected to uniaxial load the stress concentration ranges between
−1 and 3, see Castro and Meggiolaro (2016).

Note that the negative values indicate that even for the applied ten-
sile load there are some regions around the hole border under com-
pression and vice‐versa.

The influence of fiber‐to‐load angle on stress concentration along
the hole border is shown in the Fig. 11 for
α ¼ 0�; 15�; 30�; 45�; 60�; 75�; 90� with a fixed fiber volume fraction
Vf ¼ 0:5. Thick black line in Fig. 11 indicates the circular hole border,
the dashed black lines show the magnitudes of stress concentration
and the color lines indicate the stress distribution for different values
of α. Note that CFRP and GFRP have the same scale. It is possible to
Carbon
(IM7)

Glass
(E-glass)

a] 276 74

a] 19 74

Pa] 27 30.8

0.2 0.2

a] 5180 2150

a] 3200 1450

cular hole, and a zoom of the mesh near the hole.



Fig. 7. Comparison between maximum stress concentration for infinite plates
(analytical solution) and finite plates (finite element simulation).

Fig. 8. Error on the maximum stress concentration from the infinite plate
assumption.
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conclude that the maximum stress concentration tends to occur in the
point where the fiber orientation is tangent to the hole border.

Despite the stress concentration insensitivity in relation to Vf

observed in Figs. 9 and 10, it is not possible to affirm that notch effects
are insensitive to Vf in composite plates. The analysis of notch sensibil-
ity to Vf must also address the notch strength besides the stress con-
centration. Fig. 12 shows the notched tensile and compressive
strengths vs. Vf for α ¼ 0�; 45�;90� using Puck parameters listed in
the Table 3. Due to the absence of experimental data to calibrate these
parameters, they are assumed to be independent of the fiber volume
fraction. For a discussion on experimental issues related to the calibra-
tion of these parameters, see [36]. These results indicate that:

(i) despite that carbon fibers are twice stronger than glass fibers,
the laminate notched strengths do not demonstrate this
discrepancy;

(ii) all laminates indicate smooth variation of notched tensile
strength, Sto vs. Vf . It increases for α ¼ 0� and decreases for
α ¼ 45�;90� with the increase of Vf ;
8

(iii) for notched compressive strength, Sco, GFRP has an abrupt vari-
ation for α ¼ 0�;

(iv) for CFRP subjected to compressive load, notched strengths for
α ¼ 0� and α ¼ 90� are virtually equal for Vf > 0:5;

(v) fiber orientation α ¼ 45� has the smallest notched compressive
strength for both fiber types;

(vi) in some cases increase of Vf results in decrease of strength for
both fiber types, see, e.g., Scoðα ¼ 0�;Vf Þ for GFRP with
Vf > 0:5.

Figs. 13 and 14 show Puck’s failure functions variation along the
hole border for notched tensile strength, Sto, for the fiber‐to‐load angles
α ¼ 0�; 45�; 90� and fiber volume fraction Vf ¼ 0:5. The matrix mode
A failure under tension is observed for both, CFRP and GFRP. Despite
that carbon fibers are twice stronger than glass fibers, the failure is
determined by the matrix failure mechanism. Hence, despite the differ-
ence between tensile strengths of carbon and glass fibers, the differ-
ence between CFRP and GFRP tensile nocthed strengths is not so
pronounced.

In order to analyze the notched compressive strength Sco, two criti-
cal cases are selected: CFRP with α ¼ 90� (see Fig. 15) and GFRP with
α ¼ 0� (see Fig. 16).

Fig. 15 shows the failure mechanism change for CFRP. For small
values of Vf , failure takes place in mode C and failure mechanism
tends to change to mode B when Vf ! 0:7. The matrix is under com-
pression for both failure modes, but the critical plane is different (see
Fig. 2). On the other hand, for GFRP, Fig. 16 shows that there is a dras-
tic change in the failure mode: for small values of Vf matrix fails in
mode B (compression) and when Vf increases matrix tends to fail in
mode A (tension). In other words, even under compressive load,
matrix can fail under tension. This failure mechanism change is
responsible for abrupt variation of Scoðα ¼ 0�;Vf Þ presented in Fig. 12.

An alternative way to evaluate the failure modes is based on failure
envelopes. Fig. 17 presents matrix failure envelopes in plane σ12 � σ22

at the failure onset for CFRP with σn ¼ �Scoðα ¼ 90�;Vf Þ and GFRP
with σn ¼ �Scoðα ¼ 90�;Vf Þ. In the Fig. 17, green, blue and cyan lines
indicate matrix failure modes A, B and C, respectively; and red trian-
gles show the stress states along the hole border. On damage onset,
one triangle must coincide with the failure envelope, what means that
this stress state is resulting in matrix failure. Modes C and B are
observed for CFRP and modes B and A for GFRP.

The parameters pc12 and pt12 are related to the tangent of the failure
surface when σ22 ¼ 0. As previously discussed, they are assumed inde-
pendent of the fiber volume fraction. Despite this limitation of the pre-
sent analysis, there is no experimental data to verify if these
parameters are functions of Vf or not. Additionally, it is expected that
even if pc12 and pt12 are dependent on Vf , they are limited in a small
range and the estimated notched strength will not have significant
variation.

Despite the practical advantage of discrete values of α, a consider-
able effort has been carried out recently to improve manufacturing
processes to fabricate composites with any α, regarding a continuous
range, based on optimum analysis [43]. Hence, α is assumed also a
continuous variable as well as Vf . Figs. 18 and 19 show influences
of α and Vf on Sto and Sco, in the range of 0� ⩽ α ⩽ 90� and
0:3 ⩽ Vf ⩽ 0:7.

Fig. 18 shows that Sto has a smooth variation, and CFRP has higher
tensile strength than GFRP for any combination of α and Vf . Addition-
ally, Sto is always maximized for α ¼ 0�; i.e., notched tensile strength is
maximum for the maximum stress concentration condition (see
Figs. 9–11). CFRP and GFRP also present similar results for Sco, as
shown in Fig. 19, with the smallest strength close to α ≅ 45�.

Figs. 20 and 21 show the failure mechanism variation vs. α and Vf

for tensile (σn ¼ Sto) and compression (σn ¼ �Sco) loadings applied to
the notched plate, respectively.



Fig. 9. Variation of stress concentration σðlÞ11=σn along the hole border for a large CFRP plate with a circular hole vs. Vf for α ¼ 0�; 45�; 90�.

Fig. 10. Variation of stress concentration σðlÞ11=σn along the hole border for a large GFRP plate with a circular hole vs. Vf for α ¼ 0�; 45�; 90�.
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In extension to the above discussion based on Figs. 13–16, the fol-
lowing conclusions can be made on the basis of results presented in the
Figs. 18–21:

(i) for σn ¼ Sto, there exists only one failure mode, namely mode A,
where the matrix is under tension for both types of laminates;

(ii) for σn ¼ �Sco, CFRP presents both matrix failure modes B and C
under compression;

(iii) for σn ¼ �Sco, GFRP presents both matrix failure modes under
compression, namely modes B and C, as well as failure mode
A, where the matrix is under tension.

Failure under tension of a plate subjected to compressive load has
an important role for brittle isotropic materials. Griffith’s classical
study on micro‐defects in brittle isotropic materials has estimated com-
pressive strength to be 8 times higher than tensile strength [44,45].
9

However, for the composite materials this point is not yet analyzed
and discussed as it deserves.

In a general sense, results show that the proposed by the authors
VSPK micromechanical model can be efficiently implemented in the
multiscale procedure, providing appropriate calculation of the effec-
tive properties required as input for the macromechanical analysis.
In macromechanical modeling, the classical stress analysis formalism
can be applied together with the WWFE’s guidelines for failure defini-
tion. The proposal for the further development of multiscale analytical
modeling is to evaluate the influence of Vf on the parameters pc12 and
pt12 of the Puck failure criterion.

6. Conclusions

A multiscale analytical study is presented to evaluate the influ-
ence of the constituent properties of the composite laminates and



Fig. 11. Stress concentration for CFRP and GFRP for Vf ¼ 0:5 and α ¼ 0�; 15�; 30�; 45�; 60�; 75�; 90�.

Fig. 12. Tensile, Sto, and compressive, Sco, notched strengths vs. Vf for α ¼ 0�; 45�; 90�.

Table 3
Puck criterion parameters [35].

pc12 pt12 mf

CFRP 0.3 0.35 1.1
GFRP 0.25 0.3 1.3
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the micromechanical models used to calculate their effective proper-
ties on the estimation of strength of notched unidirectional lami-
nated plates. The CFRP and GFRP laminated plates with a circular
10
hole were considered in the analysis. The Chamis, Bridging equa-
tions and VSPK micromechanical model recently proposed by the
authors [30–32] have been used to calculate the effective proper-
ties, estimate the notched strength and determine the failure modes
of laminates. It is shown that the VSPK model provides better
results compared with the other micromechanical models for a
broad range of experimental data. Stress distribution along the hole
border is obtained analytically using Stroh formalism and a compar-
ison with finite element simulations for the finite plates indicates an
error smaller than 10% due to assumption of an infinite plate in



Fig. 13. Influences of fiber-to-load angle α on failure mode for CFRP with tensile load σn ¼ Stoðα;Vf ¼ 0:5Þ.

Fig. 14. Influences of fiber-to-load angle α on failure mode for GFRP with tensile load σn ¼ Stoðα;Vf ¼ 0:5Þ.
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analytical solution. Based on the WWFE recommendations the Puck
failure criterion is selected for the damage analysis. The matrix fail-
ure was observed for the tensile and compressive loads. For tensile
load, matrix fails under tension (mode A) around the hole border.
For compressive load, matrix fails under compression in modes B
and C for CFRP around the notch while for GFRP the matrix also
fails in mode A. Therefore, even for the compressive load the matrix
may fail under tension. The presence of this failure mode in GFRP
is associated with an abrupt variation in notched compressive
strength Scoðα;Vf Þ for fiber‐to‐load angle α ¼ 0� with fiber volume
fraction Vf larger than 0.5.
11
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Fig. 15. Influence of Vf on failure mode for CFRP with compressive load σn ¼ �Scoðα ¼ 90�;Vf Þ.

Fig. 16. Influence of Vf on failure mode for GFRP with compressive load σn ¼ �Scoðα ¼ 0�;Vf Þ.
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Appendix A. Chamis model

Chamis model [13,46] estimates elastic properties based on the
rule of mixtures. Essentially, the model alters the rule of mixtures by
considering nonlinear influence of fiber volume fraction Vf . Changes
are related to the transversal properties, replacing fiber volume frac-
tion by

ffiffiffiffiffiffi
Vf

p
. Hence, equations for the equivalent properties are given

by

E1 ¼ Ef
1Vf þ 1� Vf


 �
Em ðA:1Þ
12
ν12 ¼ νf12Vf þ 1� Vf

 �

νm ðA:2Þ

E2 ¼ Ef
2E

m

Ef
2 1� ffiffiffiffiffiffi

Vf
p
 �þ Em ffiffiffiffiffiffi

Vf
p ðA:3Þ

G12 ¼ Gf
12G

m

Gf
12 1� ffiffiffiffiffiffi

Vf
p
 �þ Gm ffiffiffiffiffiffi

Vf
p ðA:4Þ

Tensile longitudinal strength is modeled based on the fiber maxi-
mum normal stress. On the other hand, compression strength is based
on the fiber crushing, inter‐ply delamination and fiber micro‐buckling.



Fig. 17. Matrix failure envelopes in plane σ12 � σ22 for CFRP with σn ¼ �Scoðα ¼ 90�;Vf Þ and GFRP with σn ¼ �Scoðα ¼ 90�;Vf Þ.

Fig. 18. Notched tensile strength, Sto, vs. α and Vf .
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Concerning transversal and shear strengths, matrix failure is assumed
to be preponderant. Under these assumptions, strengths are expressed
by the following expressions:

St11 ¼ Vf þ ð1� Vf Þ Em

Ef
1

 !" #
Sft ðA:5Þ
13
Sc11 ¼ min Vf þ ð1� Vf Þ Em

Ef
1

 !" #
Sfc;10S

s
12 þ 2:5Sms ;

Gm

1� Vf 1� Gm

Gf
12

� �
8>><
>>:

9>>=
>>;

ðA:6Þ



Fig. 19. Notched compressive strength, Sco, vs. α and Vf .

Fig. 20. Change of failure mechanism for σn ¼ Sto, vs. α and Vf .
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St22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf

 �

1� Em

Ef
2

 !" #
Smt ðA:7Þ

Sc22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf

 �

1� Em

Ef
2

 !" #
Smc ðA:8Þ

Ss12 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf

 �

1� Gm

Gf
12

 !" #
Sms ðA:9Þ
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Appendix B. Bridging model

Bridging model [47] was first developed using the Mori‐Tanaka
model [48,49] and later was advanced using the concentric cylinders
model [50]. Bridging model defines a correlation between matrix
and fiber stress tensors using a fourth‐order bridging tensor Aijkl, writ-
ten as follows:

σmij ¼ Aijklσ
f
kl ðB:1Þ



Fig. 21. Change of failure mechanism for σn ¼ �Sco vs. α and Vf .
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The composite effective constitutive relation, σij ¼ cijklɛkl, can be
obtained defining the stiffness tensor as

cijkl ¼ ½ð1� Vf ÞAijpq þ Vf Iijpq�D�1
pqkl ðB:2Þ

where Dijkl ¼ ð1� Vf ÞsmijpqApqkl þ Vf s
f
ijkl and the matrix and fibers compli-

ance tensors smijkl and sfijkl are the inverse to the stiffness tensors cmijkl and

cfijkl, respectively.
Using the contracted notation to represent a fourth‐order tensor as

a 6 × 6 matrix, the bridging tensor non‐zero components are given by
[50]

½A�11 ¼ Em

Ef
1

1þ νmðνm � νf12Þ
ð1þ νmÞð1� νmÞ

" #
ðB:3Þ

½A�12 ¼ ½A�13 ¼
1

ð1� νmÞ
Em

ð1þ νmÞ
νmð1� νf23Þ

2Ef
2

� νf12
Ef
1

" #
þ νm

2

( )
ðB:4Þ

½A�21 ¼ ½A�31 ¼
Em

2Ef
1

ðνm � νf12Þ
ð1þ νmÞð1� νmÞ ðB:5Þ

½A�22 ¼ ½A�33

¼ 1
ðνm � 1Þðνm þ 1Þ Em ðνf23 � 3Þ

8Ef
2

þ νmνf12
2Ef

1

" #
þ ðνm þ 1Þð4νm � 5Þ

8

( )

ðB:6Þ

½A�32 ¼ ½A�23

¼ 1
ð1� νmÞð1þ νmÞ Em ð3νf23 � 1Þ

8Ef
2

þ νmνf12
2Ef

1

" #
þ ðνm þ 1Þð1� 4νmÞ

8

( )

ðB:7Þ

½A�44 ¼
Gm

4Gf
23ð1� νmÞ þ

ð3� 4νmÞ
4ð1� νmÞ ðB:8Þ

½A�55 ¼ ½A�66 ¼
Gm þ Gf

12

2Gf
12

ðB:9Þ
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Composite strength properties according to the Bridging model are
expressed as follows [51,52]:

St11 ¼ Vf þ ð1� Vf Þ Em

Ef
1

 !" #
Sft ðB:10Þ

Sc11 ¼ Vf þ ð1� Vf Þ Em

Ef
1

 !" #
Sfc ðB:11Þ

St22 ¼ Vf
Ef
22

ðβEf
2 þ ð1� βÞEmÞ þ ð1� Vf Þ

" #
Smt
Kt

22
ðB:12Þ

Sc22 ¼ Vf
Ef
22

ðβEf
2 þ ð1� βÞEmÞ þ ð1� Vf Þ

" #
Smc
Kc

22
ðB:13Þ

Ss12 ¼
Sms

K12λ4
ðB:14Þ

where β ¼ 0:4 is defined to fit the model with experimental results and

K22ðφÞ¼ f1þ a
2

ffiffiffiffiffiffi
Vf

p
cosð2φÞþ b

2ð1�
ffiffiffiffi
Vf

p
Þ½Vf

2cosð4φÞþ4ð1�2cosð2φÞÞVf cos2ðφÞ�

þ ffiffiffiffiffiffi
Vf

p ð2cosð2φÞþ cosð4φÞ�gVf E
f
2þð1�Vf Þ½βEf2þð1�βÞEm �

βEf2þð1�βÞEm

ðB:15Þ

Kt
22 ¼ K22ð0Þ ðB:16Þ

Kc
22 ¼ k22ðϕÞ ðB:17Þ

ϕ ¼ π

4
þ 1
2
asin

Smc � Smt
Smc þ Smt

� �
ðB:18Þ

a ¼ ½1� νm � 2ðνmÞ2�Ef
2 � ½1� νf23 � 2ðνf23Þ

2�Em

ð1þ νmÞEf
2 þ ½1� νf23 � 2ðνf23Þ

2�Em
ðB:19Þ

b ¼ ð1þ νf23ÞEm � ð1þ νmÞEf
2

½νm þ 4ðνmÞ2 � 3�Ef
2 � ð1þ νf23ÞEm

ðB:20Þ
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K12 ¼ 1� Vf
Gf

12 � Gm

Gf
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3
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½Vf þ a66ð1� Vf Þ�
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W ¼ π
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4Vf
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