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The paper presents analysis of several micromechanical models for estimating transversal strength of compos-
ite laminae and comparing theoretical results with the available experimental data. The tensile, compressive
and shear transversal strengths are analyzed. For a load transversal to the fiber direction, micromechanical
analysis becomes complicated due to stress concentration. In order to deal with it, an elasticity‐based solution
is used to obtain stress around single inclusion in infinite matrix. In addition, the finite element simulations are
carried out to derive approximation functions for actual values of fiber volume fraction. For tensile transversal
strength, the density of dilatational energy is assumed to be the dominant failure mechanism, while for the
compressive transversal strength, the interface failure is modeled. Since the critical dilatational energy and
interface strength are commonly unavailable in literature, average values are obtained based on the experimen-
tal data. Alternatively, a semi‐empirical modification of Chamis model is also proposed. For transversal shear
strength, the results indicate that the matrix shear strength provides a good approximation. It should be noted
that closed‐form expressions are obtained, resulting in simple and efficient implementation for engineering
applications and design optimization. Results are compared with other micromechanical models and with
58 experimental data from the literature. In general, elasticity‐based models and modified Chamis model pre-
sent a considerable advancement in transversal strength estimation with the small average errors.
1. Introduction

Due to the absence of reliance of failure predictions, the interna-
tional effort namely Word Wide Failure Exercise (WWFE) was estab-
lished in order to define proper approaches for composite material
design [1]. WWFE’s participants have been able to present a great
advance about failure criteria for unidirectional composites. However,
to properly predict laminate strengths a previous step must be
regarded that is out of WWFE’s scope: micromechanical modeling.

Numerical modeling of unidirectional laminae [4,5] is a natural
approach to deal with micromechanical analysis. The essential idea
is to define a representative volume element (RVE) that allows the
analysis of the whole structure. Despite some recent contributions,
there are two main drawbacks in this approach: the difficulty of the
RVE definition; and the computational cost. Wongsto & Li [6] pointed
out the influence of RVE on the results of numerical simulations, con-
cluding that it must be large enough to provide an adequate represen-
tation of the structure. The random pattern of distribution is
unavoidable due to manufacturing issues and, based on this, Elnekha-
ily & Talreja [7] established a convergence analysis to define RVE that
must contain 576 fibers.

Composite design optimization considering micromechanical
aspects (fibers, matrices and constituents’ volume fractions), becomes
prohibitive by considering the need to generate RVE with 576 fibers to
simulate each combination. As discussed by Andrianov et al. [8], ana-
lytical formulations have the great advantage of simple implementa-
tion and computation for structural optimization. Tsai & Melo [9]
highlighted that the large number of variables involved in composite
design indicates the advantage of the use of analytical approaches.

This emphasizes significance of micromechanical analytical analy-
sis in composite material design. Vignoli et al. [2] presented a critical
overview of analytical models for the elastic properties. Nevertheless,
very few analytical models are found in the literature for transversal
strengths. The simplest one assumes that transversal strengths are
highly influenced by the perturbation on the stress field around the
fibers [10]. The most popular is the Chamis model [11], which consid-
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ers a simplified RVE assuming a square fiber. The most recent model
for transversal strength is the Bridging model [12] that is based on
the concentric cylinder modeling. It should be pointed out that these
analytical models for transversal strengths of unidirectional laminae
present a poor prediction comparing with the experimental data [3],
which makes the present micromechanical analysis relevant and essen-
tial for composite material design.

This paper deals with micromechanical models to estimate
transversal strength of unidirectional composite laminates. Based on
a macromechanical perspective, six strength properties are required
based on the coordinate system shown in Fig. 1, where the direction
x1 coincides to the direction of fibers and the plane x2 � x3 is transver-
sal to the fibers: longitudinal tension, St11; longitudinal compression,
Sc11; transversal tension, S

t
22; transversal compression, Sc22; longitudinal

shear, Ss12; and transversal shear, Ss23. Note that distribution of fibers is
assumed to be symmetrical in plane x2 � x3, and therefore, the lamina
is transversally isotropic with Ss12 ¼ Ss13, S

t
22 ¼ St33 and Sc22 ¼ Sc33.

The objective of the present investigation is to evaluate transversal
strengths St22, S

c
22 and Ss23. The estimation of these transversal proper-

ties is a big micromechanics challenge due to a number of issues, as
for example: fiber non‐uniform arrangement [8], thickness effect
[13], and interface properties [3]. Consequently, it is expected that
the estimation of these three strengths needs more information than
the ones based only on the properties of constituents.

The developed analysis assumes that the constituent properties are
input information, in agreement with the World Wide Failure Exercise
(WWFE) – see the guidelines in references [14,15]. Based on that, the
following constituents are considered for the estimation of transversal
strength: fiber longitudinal and transversal elastic moduli, Ef

1 and Ef
2;

fiber longitudinal and transversal shear moduli, Gf
12 and Gf

23; fiber lon-

gitudinal Poisson’s ratio, νf12; fiber tensile and compressive strengths,
Sft and Sfc; matrix elastic modulus, Em; matrix Poisson’s ratio, νm; matrix
tensile, compressive and shear strengths, Smt , S

m
c and Sms . However, the

transversal load may require some additional properties, as the critical
dilatational energy and the interface strength. Since these properties
are usually unknowns, an investigation about the reasonable average
values is carried out.

After this introduction, the paper is organized as follows. In Sec-
tion 2, the main micromechanical models available in the literature
are reviewed, and a novel model is proposed based on a modification
of the Chamis model. An elasticity‐based set of equations are derived
in the Section 3 using finite element simulation to obtain approximate
functions, establishing the closed‐form equations. Results are pre-
sented and discussed in Section 4. Finally, the conclusions are high-
lighted in Section 5.
Fig. 1. Definition of coordinate systems u

2

2. Classical analytical models

A brief review of the main existing analytical models are presented
in this Section, namely the Rule of Mixture with Stress Concentration
(ROM‐Kt), Chamis (Ch) and Bridging (Br). A novel modified version of
the Chamis model is also proposed.

2.1. Rule of Mixture with stress concentration (ROM-Kt)

When a transversal load is applied in a lamina, stress concentration
effects are induced due to fibers distribution in the matrix. Based on
this observation, many textbooks [10,16,17] suggest the use of the
classical Rule of Mixture as basis, considering that fibers and matrix
work like elements in series when subjected to transversal loads,
which means that all the constituents have the same load. Accounting
for the stress concentration factor, the following equations are
obtained:

St22 ¼
Smt
Kσ

ð1Þ

Sc22 ¼
Smc
Kσ

ð2Þ

where Smt and Smc are the matrix tensile and compressive strengths,
respectively, and Kσ is the stress concentration factor defined by

Kσ ¼ 1� Vf ½1� ðEm=Ef
2Þ�

1� ð4Vf=πÞ0:5½1� ðEm=Ef
2Þ�

ð3Þ

where Em is the matrix elastic modulus, Ef
2 is the fiber transverse elastic

modulus and Vf is the fiber volume fraction.

2.2. Chamis model (Ch)

Devireddy & Biswas [18] presented a numerical study comparing
effective elastic and thermal properties of unidirectional composites
assuming fibers with square cross section. Results indicate very close
effective properties when compared with numerical simulation consid-
ering fibers with circular cross section. Accordingly, the RVE with
square fiber is shown in Fig. 2.

The RVE has Vf ¼ ða=bÞ2, where a and b are the sizes of fiber and
RVE, respectively, and it is divided in 5 parts: the sub‐cells 2i, 2ii and
2iii work in series to build a cell 2, that is parallel to cells 1 and 3. Sub‐
cells 1, 2i, 2iii and 3 are the matrix and 2ii is the fiber. The equilibrium
requirements are defined by

σ22a2 ¼ σð1Þ22 a
a� b
2

� �
þ σð2Þ22 abþ σð3Þ

22 a
a� b
2

� �
ð4Þ
sed to define the materials properties.



Fig. 2. RVE with square fiber subjected to transversal tensile load.
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σð2Þ22 ¼ σð2iÞ
22 ¼ σð2iiÞ

22 ¼ σð2iiiÞ22 ð5Þ
From the geometrical compatibility,

ɛð1Þ22 ¼ ɛð2Þ22 ¼ ɛð3Þ22 ð6Þ

ɛð2Þ22 ¼ ɛð2iÞ22

1� ffiffiffiffiffiffi
Vf

p
2

 !
þ ɛð2iiÞ22

ffiffiffiffiffiffi
Vf

p þ ɛð2iiiÞ22

1� ffiffiffiffiffiffi
Vf

p
2

 !
ð7Þ

Using linear elastic constitutive relation for both constituents, the
relations for stresses in each sub‐cell can be obtained, and the relation
between the applied stress, σ22, and the stress in each component can
be computed using Eq. (4). For tensile load, assuming that the failure is

defined by the conditions σð2iÞ
22 ¼ σð2iiiÞ22 ¼ Smt and σ22 ¼ St22, the transver-

sal tensile strength can be estimated by

St22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf
� �

1� Em

Ef
2

 !" #
Smt ð8Þ

Chamis model [11] used Eq. (9) as the basis, but also included the
effect of voids, suggesting the following equation:

St22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf
� �

1� Em

Ef
2

 !" #
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Vv

πð1� Vf Þ

s" #
Smt ð9Þ

where Vv is the volume fraction of voids.
The same procedure can be carried out for compressive strength,

resulting in the following equation:

Sc22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf
� �

1� Em

Ef
2

 !" #
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Vv

πð1� Vf Þ

s" #
Smc ð10Þ

For transversal shear strength, Chamis model defines

Ss23 ¼
1� ffiffiffiffiffiffi

Vf
p

1� Gm

Gf
23

� �

1� Vf 1� Gm

Gf
23

� �
2
664

3
775Sms ð11Þ

where Sms is the matrix shear strength.
Using Eq.(8) as basis, the following modified version of Chamis

model is proposed to improve the estimations

St22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf
� �

1� Em

Ef
2

 !" #nt
Smt ð12Þ

Sc22 ¼ 1� ffiffiffiffiffiffi
Vf

p � Vf
� �

1� Em

Ef
2

 !" #nc
Smc ð13Þ

where nt and nc are calibrated in the Section 4 according to the com-
piled experimental data.
3

2.3. Bridging model (Br)

For transversal strengths, the Bridging model assumes that the
matrix is associated with the plane strain conditions and proposes
the modeling of the stress concentration effect around the fiber from
the micromechanical point of view. Using the Coulomb‐Mohr criterion
to define the matrix failure, the transversal strengths are estimated by

St22 ¼ Vf
Ef
2

ðβEf
2 þ ð1� βÞEmÞ þ ð1� Vf Þ

" #
Smt
kt22

ð14Þ

Sc22 ¼ Vf
Ef
2

ðβEf
2 þ ð1� βÞEmÞ þ ð1� Vf Þ

" #
Smc
kc22

ð15Þ

Ss23 ¼ Vf
Ef
2

ðβEf
2 þ ð1� βÞEmÞ þ ð1� Vf Þ

" #
kc22
Smc

þ kt22
Smt

� ��1

ð16Þ

where β ¼ 0:4 [12]. Additionally, the stress concentration can be
defined by

k22ðφÞ ¼ Vf E
f
2 þ ð1� Vf Þ½βEf

2 þ ð1� βÞEm�
βEf

2 þ ð1� βÞEm

�
1þ a

2
ffiffiffiffiffiffi
Vf

p
cosð2φÞ

þ b
2ð1� ffiffiffiffiffiffi

Vf
p Þ ½V

2
f cosð4φÞ þ 4ð1� 2cosð2φÞÞVf cos2ðφÞ�

þ ffiffiffiffiffiffi
Vf

p ð2cosð2φÞ þ cosð4φÞ�
�

ð17Þ

kc22 ¼ k22ðϕÞ ð18Þ

kt22 ¼ k22ð0Þ ð19Þ
where

ϕ ¼ π

4
þ 1
2
asin

Sm
c � Sm

t

Sm
c þ Sm

t

� �
ð20Þ

a ¼ ½1� νm � 2ðνmÞ2�Ef
2 � ½1� νf23 � 2ðνf23Þ

2�Em

ð1þ νmÞEf
2 þ ½1� νf23 � 2ðνf23Þ

2�Em
ð21Þ

b ¼ ð1þ νf23ÞEm � ð1þ νmÞEf
2

½νm þ 4ðνmÞ2 � 3�Ef
2 � ð1þ νf23ÞEm

ð22Þ
3. A novel elasticity-based modeling approach

This Section presents a novel elasticity‐based model to obtain ana-
lytical closed‐form expressions for transversal strengths. Some recent
advances from the literature are employed as a guide, considering
two main failure mechanisms: matrix cavitation for tension [7,26]
and fiber–matrix interface debonding for compression [5,29]. The
use of these failure mechanisms requires stress distributions to prop-
erly estimate the strength. First, an analytical solution for stress distri-
bution in a single inclusion is presented [19]. Afterwards, in order to
expand this solution for laminae with a real range of fiber volume frac-
tion, the finite element simulations are carried out to define the adjust-
ment functions. Finally, once the closed expression is derived, the
average values of critical dilatational energy is employed to estimate
transverse tensile strength while the interface strength is employed
to estimate the compressive strengths. The obtained theoretical results
are compared with the available experimental data, see Tables 1–3 for
details.

3.1. Stress distribution and finite element analysis

Stress distribution on the fiber–matrix interface is estimated using
the solution [19] for the stress around a circular elastic inclusion per-
fectly bonded in an infinite elastic medium under plane strain condi-



Table 1
References used for transversal tensile strength experimental data.

References Fiber

Aboudi [34] carbon
Falcó et al. [35] carbon
Gopalakrishnan et al. [36] glass
Hsiao & Daniel [37] carbon
Kaddour & Hinton [38] carbon and glass
Kaddour et al. [39] glass
Kaddour et al. [40] carbon and glass
Namdar & Darendeliler [41] carbon
Soden et al. [42] carbon and glass
Perogamvros & Lampeas [43] carbon
Reddy et al. [44] glass

Table 2
References used for transversal compressive strength experimental data.

References Fiber

Falcó et al. [35] carbon
Kaddour & Hinton [38] carbon and glass
Kaddour et al. [40] carbon and glass
Lee & Soutis [45] carbon
Namdar & Darendeliler [41] carbon
Perogamvros & Lampeas [43] carbon
Soden et al. [42] carbon and glass

Table 3
References used for transversal shear strength experimental data.

References Fiber

Kaddour & Hinton [38] carbon and glass
Kaddour et al. [40] carbon and glass

Fig. 3. Coordinate system to compute the stress distribution in a fiber
embedded in infinite matrix.

Fig. 4. RVE indicating the faces where the displacements are imposed to
define symmetrical conditions.
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tion. Fig. 3 shows an idealized arrangement of fiber embedded in
matrix and the coordinate system to compute the stress distribution.
Note that this representation does not consider any interaction
between neighboring fibers; in other words, it assumes Vf ! 0. Con-
sidering a uniaxial transversal load in a region far from the fiber, the
non‐zero stress components on the interface are

σmrrðσ22; θÞ ¼ σ22
2

½ð1� γÞ þ ð1� βÞcosð2θÞ� ð23Þ

σmθθðσ22; θÞ ¼ σ22

2
½ð1þ γÞ � ð1þ 3βÞcosð2θÞ� ð24Þ

σmrθðσ22; θÞ ¼ � σ22
2

½ð1� βÞsinð2θÞ� ð25Þ
4

σmzzðσ22; θÞ ¼ νm½σmrrðσ22; θÞ þ σmθθðσ22; θÞ� ð26Þ
where

κf ¼ 3� 4νf23 ð27Þ

κm ¼ 3� 4νm ð28Þ

α ¼ Gmκf � Gf
23κ

m

Gf
23 þ Gmκf

ð29Þ

β ¼ Gm � Gf
23

Gm þ Gf
23κ

m
ð30Þ

γ ¼ α� β

ð1� βÞ � βð1� αÞ ð31Þ

where νm is the matrix Poisson's ratio, νf23 is the fiber transversal Pois-
son’s ratio, Gm is the matrix shear modulus and Gf

23 is the fiber transver-
sal shear modulus.

The solution proposed by Honein & Herrman [19] evaluated the
stress distribution for isotropic materials, that can be also applied for
transversally isotropic material if the isotropic plane coincides with
the transversal inclusion plane, such as carbon fibers [20]. Finite ele-
ment method is employed to evaluate the stress distribution for a finite
medium (Vf–0), defining adjustment functions. The general finite ele-
ment procedure is introduced in the sequence.

The first step is to compute the effective elastic properties of unidi-
rectional lamina considering a procedure based on [21,22]. The RVE is
presented in Fig. 4 assuming that fiber distribution has a square pat-
tern. Capital letters are used to denote six faces, while the lower index
coincides with the coordinate system and the top index indicates the
orientation. Each edge length is Li in the direction xi. The displacement
between two parallel faces must be constant along all the faces due to
symmetry. Mathematically, this condition is defined by

uðJþÞ
i � uðJ�Þ

i ¼ λðJÞi ð32Þ

where λðJÞi is the constant displacement between faces J+ and J− on

the direction i, uðJþÞ
i and uðJ�Þ

i , respectively.
The computation of the effective elastic properties has three steps

allowing estimation of all five independent properties, see Fig. 5a. This
is done by considering a displacement driven condition, and the reac-
tion forces are computed from the equilibrium conditions. Strains are
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computed from the displacements using geometrical definitions while
stresses are evaluated from the forces. Stress distribution is not uni-
formly distributed in the RVE, but the homogenization procedure uses
this hypothesis to compute effective properties.

The first step is to compute c1111 and c1122. A uniformly distributed
displacement δ11 is applied at face Xþ

1 in the direction x1, denoted by

uð1þÞ
1 ¼ δ11. The boundary conditions are defined by uð1�Þ

1 ¼ uð2þÞ
2 ¼

uð2�Þ
2 ¼ uð3þÞ

3 ¼ uð3�Þ
3 ¼ 0. The normal strain in x1 direction is computed

by ɛ11h i ¼ δ11=L1. Using the reactions forces from the finite element
solution on face Xþ

1 in x1 direction, F11, and on face Xþ
2 in x2 direction,

F22, the normal stress components are computed by σ11h i ¼ F11=L2L3
and σ22h i ¼ F22=L1L3. Finally, the effective properties are computed
by c1111 ¼ σ22h i= ɛ11h i and c1122 ¼ σ22h i= ɛ11h i.

Similar steps are carried out for the other effective elastic proper-
ties. The estimation of c2222 and c2233, considers the displacement

uð2þÞ
2 ¼ δ22 and the boundary conditions uð1þÞ

1 ¼ uð1�Þ
1 ¼ uð2�Þ

2 ¼
uð3þÞ
3 ¼ uð3�Þ

3 ¼ 0. The transversal strain is given by ɛ22h i ¼ δ22=L2,
and stresses are σ22h i ¼ F22=L1L3 and σ33h i ¼ F33=L1L2. Therefore, the
effective properties are c2222 ¼ σ22h i= ɛ22h i and c2233 ¼ σ33h i= ɛ22h i.

The third and last step evaluates elastic property c1212 by assuming

the displacement uð2þÞ
1 ¼ δ21 and the boundary conditions uð1þÞ

2 ¼
uð1�Þ
2 ¼ uð1þÞ

3 ¼ uð1�Þ
3 ¼ uð2�Þ

1 ¼ uð2þÞ
2 ¼ uð2�Þ

2 ¼ uð2þÞ
3 ¼ uð2�Þ

3 ¼ uð3þÞ
2 ¼ uð3�Þ

2 ¼
uð3þÞ
3 ¼ uð3�Þ

3 ¼ 0. The in‐plane shear strain and stress are computed by
ɛ12h i ¼ δ21=2L2 and σ12h i ¼ F21=L1L3, which results in the effective
property c1212 ¼ σ12h i=2 ɛ12h i.

Once all the independent components of the elasticity tensor are
computed, the effective engineering constants of the lamina are com-
puted using the following relations:

E1 ¼ c1111ðc2222 þ c2233Þ � 2c21122
c2222 þ c2233

ð33Þ

E2 ¼ c1111ðc22222 � c22233Þ � 2c21122ðc2222 � c2233Þ
c1111c2222 � c21122

ð34Þ

ν12 ¼ � c1122
c2222 þ c2233

ð35Þ
Fig. 5. Finite element model for the representative volume elem

5

G12 ¼ c1212 ð36Þ

G23 ¼ c2222 � c2233
2

ð37Þ

Finite element package ANSYS is applied for the calculations using
a higher order element SOLID 186. After a convergence analysis, a
mesh with two elements through direction x1; between 80 and 120 ele-
ments along the fiber diameter perimeter, depending of Vf ; and
between 7 and 10 along the fiber in radial direction from as inner
square created just to improve the mesh generation. Fig. 5b shows a
mesh employed for Vf ¼ 0:6 and the boundary conditions. The contact
between fiber and matrix is assumed as perfectly bonded, with no sep-
aration or slippage, with the formulation MPC (Multi Point Con-
straints). This type of contact improves the model computational
performance [23].

The adjustment function is defined after the determination of elas-
tic properties. This is done by considering uniaxial transversal load
treated in the sequence: transversal tensile strength and transversal
compressive strength.

3.2. Transversal tensile strength

According to Elnekhaily & Talreja [7], damage onset in unidirec-
tional laminae subjected to tensile transversal load is characterized
by matrix cavitation around the fiber with θ ¼ 0� with the dilatational
energy density as the driving effect, since it is under triaxial stress state
on the matrix. The dilatational energy density is computed by

uv ¼ 1� 2νm

6Em

� �
ðσmii Þ2 ð38Þ

The critical point for cavitation occurs for θ ¼ 0�, which has the fol-
lowing stress components according to the stress distribution pre-
sented in the previous Section:

σmrrðσ22;0Þ ¼ σ22

2
½ð1� γÞ þ ð1� βÞ� ð39Þ

σmθθðσ22; 0Þ ¼ σ22
2

½ð1þ γÞ � ð1þ 3βÞ� ð40Þ
ent. (a) Meshed RVE for Vf ¼ 0:6; (b) boundary conditions.
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σmrθðσ22;0Þ ¼ 0 ð41Þ

σmzzðσ22;0Þ ¼ νm½σmrrðσ22;0Þ þ σmθθðσ22;0Þ� ¼ νmσ22ð1� 2βÞ ð42Þ
Substituting Eqs. (39)–(42) into Eq. (38),

uvðVf ! 0Þ ¼ 1� 2νm

6Em

� �
½ð1þ νmÞðσ22Þð1� 2βÞ�2 ð43Þ

Eq. (43) is the dilatational energy density for a single fiber embed-
ded in an infinite matrix. In order to represent a general case for any
fiber volume fraction, an adjustment function gtðVf Þ is introduced to
relate the stress σm

ii for Vf ! 0 with the stress components σmii for actual
values of Vf . In other words, uvðVf Þ ¼ uvðVf ! 0ÞgtðVf Þ. Hence, Eq.
(43) can be adapted for Vf–0 using the following expression:

uv ¼ 1� 2νm

6Em

� �
½ð1þ νmÞðσ22Þð1� 2βÞgtðVf Þ�2 ð44Þ

The definition of the adjustment function gtðVf Þ is carried out with
finite element simulations, considering a uniaxial load applied on the
RVE where the unique non‐zero stress component is σ22h i. As previ-
ously presented, a uniform displacement must be applied on the faces

of the RVE. For simplicity, fixing uð1�Þ
1 ¼ uð2�Þ

2 ¼ uð3�Þ
3 ¼ 0, the normal

strains are computed by ɛ11h i ¼ δ11=L1, ɛ22h i ¼ δ22=L2 and

ɛ33h i ¼ δ33=L3, where uð1þÞ
1 ¼ δ11, uð2þÞ

2 ¼ δ22 and uð3þÞ
3 ¼ δ33. Using

these definitions, considering normal stresses and strains, displace-

ment applied on the positive faces are uð1þÞ
1 ¼ δ11 ¼ ð�ν12=E1ÞL1 σ22h i,

uð2þÞ
2 ¼ δ22 ¼ ð1=E2ÞL2 σ22h i and uð3þÞ

3 ¼ δ33 ¼ ð�ν12=E1ÞL3 σ22h i.
A set of finite element numerical simulations is carried out applying

this displacement field with 0:3 ⩽ Vf ⩽ 0:7 for CFRP and GFRP in
order to define the adjustment function. The maximum value σmii on
the interface is obtained, and results, normalized by the applied load
σ22, maxðσmii Þ=σ22, are shown in Fig. 6, where the triangles and circles
are the FE results and the lines are the calibrated adjustment functions.
The numerical calibration employs the Levenberg‐Marquardt algo-
rithm [24] and the following expression is obtained:

gtðVf Þ ¼ 1� 5:8γV3
f ð45Þ

The idea to use finite element solutions to obtain expressions for
stress and strain distributions is also presented in [25], but using Four-
ier series. Nevertheless, closed expressions are not presented. The
main advantage of the novel proposed approach is that only the
maxðσmii Þ=σ22 should be obtained instead of the whole distribution,
resulting in a simple equation.
Fig. 6. Numerical calibration of the transversal tensile strength model for
Vf–0.
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Damage onset due to the matrix cavitation is defined by uv ¼ ucv [7].
Lamina rupture does not coincide exactly with the damage onset,
which means that there is a difference between the damage onset
and rupture due to damage propagation. For the sake of simplicity, this
study assumes a perfectly brittle matrix behavior. Despite that some
matrix materials are not perfectly brittle, the usual experimental
stress–strain curves for unidirectional laminae subjected to transversal
loads is almost linear up to rupture, see [38,40,42], indicating a brittle
behavior, mainly for transverse tensile load. Mathematically, that
means that uv ¼ ucv coincides with σ22 ¼ St22. Hence, manipulating Eq.
(44), transversal tensile strength of lamina is estimated by

St22 ¼
1

ð1þ νmÞð1� 2βÞð1� 5:8γV3
f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Em

1� 2νm

� �
ucv

s
ð46Þ

The main difficulty for the use of Eq. (46) is that ucv must be mea-
sured in a triaxial tensile test [26]. Two different approaches are sug-
gested here, and a further verification is discussed in the Section 4. The
first one considers a set of experimental data, defining an average
value of ucv for epoxy matrices. Alternatively, ucv is assumed propor-
tional to Smt , u

c
v ¼ ξSmt , where ξ is calibrated according to experimental

data. The first approach uses Eq. (46), while the second is using the fol-
lowing equation:

St22 ¼
ξ

ð1þ νmÞð1� 2βÞð1� 5:8γV3
f Þ
Smt ð47Þ

Note that ξ ¼ 1 is equivalent to uniaxial tensile test. According to
Elnekhaily & Talreja [26], 0:13 MPa < ucv < 0:20 MPa. Eq. (46) also
allows an application of inverse problem: ucv can be obtained for any
matrix with one experimental measured value of St22.

3.3. Transversal compressive strength

The compressive load is assumed to have a failure driven by the
interface. Therefore, the following failure function [5] can be
employed to establish the transversal compressive strength:

f i ¼
maxð0; trrÞ

Sin

 !2

þ trθ
Sis

 !2

þ trz
Sis

 !2

ð48Þ

where trr , trθ and trz are the interface tractions and Sin and Sis are the nor-
mal and shear interface strengths, respectively. Interface failure is
defined by f i ¼ 1. For the sake of simplicity, normal and shear strengths
are assumed to have the same values, i.e., Sis ¼ Sin ¼ Si. It is difficult to
Fig. 7. Numerical calibration of the transversal compressive strength model
for Vf–0.



Fig. 10. Calibration of the novel elasticity-based model for transversal tensi

Fig. 9. Calibration of the exponents of the modified Chamis model.

Fig. 8. Calibration of the void volume fraction, V v, of the Chamis model.
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measure the interface strength. Assumption of Sis ¼ Sin ¼ Si and other
simplification are also adopted in [27–29].

Using the stress distribution discussed in the previous section, the
failure condition for Vf ! 0 is

fmax
i ðVf ! 0Þ ¼ σ22

Si

� �2 1� β

2

� �2

¼ 1 ð49Þ

In order to generalize this criterion, an adjustment function gicðVf Þ
is employed, defining the failure criterion as follows:

fmax
i ðVf Þ ¼ fmax

i ðVf ! 0ÞgicðVf Þ ¼ σ22
Si

� �2 1� β

2

� �2

gicðVf Þ ð50Þ

A similar calibration procedure is carried out in order to define the
adjustment function, gicðVf Þ, using results of finite element simulations
(see Fig. 7) and the following expression is obtained:

gicðVf Þ ¼ �7:71ð0:14þ βÞV3
f þ 6:63ð0:01þ βÞV2

f þ 0:16ð3þ βÞVf

� 0:76ð�0:24þ βÞ ð51Þ
Under these assumptions, the failure occurs with σ22 ¼ �Sc22 and

fmax
i ðVf Þ ¼ 1, which defines the transversal compressive strength of
lamina as follows

Sc22 ¼
Siffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gicðVf Þ
p 2

1� β

� �
ð52Þ
3.4. Transversal shear strength

Transversal shear strength can be defined by different ways. Fenner
& Daniel [30] suggested that it is equal to the transversal tensile
strength, Ss23 ¼ St22. Dávila et al. [31] suggested use of the Mohr‐
Coulomb failure criterion in order to associate transversal shear
strength with the transversal compressive strength. A generalization
of both ideas can be defined with the following equations:

Ss23 ¼ αtSt22 ð53Þ

Ss23 ¼ αcSc22 ð54Þ
where αt and αc are constants.

Alternatively, the transversal shear strength is estimated using only
the matrix shear strength by the following equation:

Ss23 ¼ αsSms ð55Þ
where αs is a constant to be calibrated.
le strength: (a) assuming ucv ¼ ξSmt ; (b) assuming an average value of ucv.



Fig. 12. Calibration of the proportionality constants α of the novel elasticity-
based model for transversal shear strength.

Fig. 11. Calibration of the average interfacial strength for the novel elasticity-
based model for transversal compressive strength.

Fig. 13. Results for the transversal tensile streng
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4. Results

This Section applies different micromechanical models to obtain
the macroscopic transversal strength of unidirectional laminae. The
models discussed in the preceding sections are employed for this pur-
pose and compared with experimental data. In this regard, it should be
noted that the experimental data for the composite materials com-
monly have high uncertainty due to irregular arrangement of fibers.
For example, the fabrication and cure process can induce significant
fiber misalignment, voids, residual stresses and shape distortion
[32]. An extensive discussion about the modeling of manufacturing
process of the composite materials is given in [33].

The experimental data employed as reference consider a set of
experiments compiled from the literature: 31 data for St22, 18 data
for Sc22 and 9 data for Ss23. The references for these data and the types
of fibers are given in Tables 1–3. A calibration of the following param-
eters must be carried out: void volume fraction for the Chamis model;
exponents of the modified Chamis model; critical dilatational energy,
interface strength, and proportionality constants for transverse tensile,
compressive and shear strengths for the proposed models. These
parameters are not usual input based on WWFE guidelines that employ
only the constituents’ properties. The calibration is based on the anal-
ysis of the average error, being estimated by the sum of the absolute
error of each estimation divided by the amount of experimental data.
The idea is to choose parameters that minimize the error. It should be
highlighted that the goal is to obtain an estimation of average values of
these parameters assuming that just the constituents’ properties as
input.

Initially, the classical Chamis model is employed to evaluate tensile
and compressive transversal strengths. The influence of the volume
fraction of voids, V v, is presented in Fig. 8. Results indicate that
Vv ¼ 0:09 leads to the minimum error for tensile load, while V v ¼ 0
leads to the best prediction in compression. Note that Vv ¼ 0:09 is con-
siderably higher than the actual values for the laminae. The differences
between both curves point to inconsistent results due to semi‐
empirical nature of this model.

The modification of the Chamis model, proposed in Section 3, pro-
vides a considerable improvement when compared with the classical
Chamis model. Fig. 9 presents results of the error analysis indicating
that the parameters nt ¼ 5 and nc ¼ �1 have result in a minimum
analysis.

The novel elasticity‐based model is now addressed and Fig. 10 indi-
cates that both approaches for tensile strength, assuming ucv / ξ or
obtaining an average value for ucv, have close estimations, with an aver-
age error around 28%. By using the minimum value of both curves, it
is obtained ξ ¼ 1:35 and ucv ¼ 0:18 MPa.
th St22:(a) average error; (b) ranges of errors.
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The analysis of transversal shear strength presented in Fig. 11
shows the value of Si ¼ 65MPa obtained for the best estimation, which
is the one associated with an average error of 22%, the minimum value
of the curve. This value is in agreement with many reports in the liter-
ature: Totry et al. [27] employed 57.55 MPa, Tang et al. [28] suggested
69 MPa for usual interfaces and Varandas et al. [46] and Chevalier
et al. [47] used 50 MPa for normal strength and 75 MPa for shear
strength.

Finally, the analysis of transversal shear strength is evaluated in
Fig. 12 showing the influence of the proportionality constants assumed
in Section 3. The minimum error points are associated with the follow-
ing values:αt ¼ 1:43, αc ¼ 0:28 and αs ¼ 1.

After the calibration, the strength properties of the different
approaches are compared. The procedure proposed in Vignoli et al.
[2] is applied to calculate the absolute values of the average errors
and the ranges of errors are evaluated. Fig. 13 shows the average error
and the error ranges for transversal tensile strength, St22, considering a
set of 31 experimental data compiled from the references listed in the
Table 1. The average error represents the easiest comparison but, due
to high dispersion of experimental data, one critical value may distort
the conclusion. The range of errors is calculated by considering the
absolute error of each estimation, classifying the error prediction smal-
ler than 10%, between 10% and 20%, between 20% and 30%, between
30% and 40%, between 40% and 50% and higher than 50%. There-
fore, average errors and ranges of errors are helpful for uncertainty
quantification process, indicating in a quantitative way the most prob-
Fig. 14. Results for the transversal compressive stre

Fig. 15. Results for the transversal shear strengt
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able error from each prediction. Note that the closest predictions are
obtained using the proposed model with ucv ¼ 0:18 MPa, while the tra-
ditional Chamis model with Vv ¼ 0 leads to the worst one.

Based on these results, the following conclusions are made:

(i) Bridging and Chamis models with Vv ¼ 0 lead to the average
error higher than the simple ROM modified to include stress
concentration effect (ROM‐Kt);

(ii) Chamis model with V v ¼ 0:09 presents the average error of
31.5%, while for Vv ¼ 0 it is 90.1%, but V v ¼ 0:09 is not repre-
sentative of real laminae;

(iii) by comparing both approaches based on the dilatational energy
density, assuming ucv ¼ ξSmt with ξ ¼ 1:35 the average error is
28.1% while considering an average value ucv ¼ 0:18 MPa the
average error is 27.4%;

(iv) despite the difficulty to measure ucv, u
c
v ¼ 0:18 MPa is recom-

mended as an average value suitable for epoxy matrix;
(v) the proposed modified Chamis model and the elasticity‐based

model using ucv ¼ 0:18 MPa lead to the smallest average errors:
23.8% and 27.4%, and the highest amount of cases with errors
smaller than 30%, 74.2% and 67.7%.

The analysis of transversal compressive strength, Sc22 is performed
considering a set of 18 experimental data compiled from the references
listed in the Table 2. Fig. 14 shows the average error and the error
ranges. The closest predictions are obtained using the proposed model
ngth Sc22: (a) average error; (b) ranges of errors.

h Ss23: (a) average error; (b) ranges of errors.
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for interface failure, while ROM‐Kt leads to the worst one. Based on
these results the following conclusions are made:

(i) Bridging and Chamis models lead to the average errors higher
than 35%;

(ii) for ROM‐Kt, the average error increases considerable for com-
pressive strength comparing with the tensile strength;

(iii) the modified Chamis model leads to an average error of 26.9%,
and 66.7% of the cases lead to an error smaller than 30%;

(iv) the proposed elasticity‐based model that assumes interface fail-
ure with Si ¼ 65 MPa leads to an average error of 22.1%, and
38.9% of the cases lead to an error smaller than 30%;

(v) the proposed elasticity‐based models for St22 and Sc22 do not
require the matrix strengths as input, and the average values
ucv ¼ 0:18 MPa and Si ¼ 65 MPa can be set with the reasonable
estimations.

The analysis of the transversal shear strength, Ss23, is performed
considering a set of 9 experimental data compiled from the references
listed in the Table 3. Fig. 15 shows the average error and the error
ranges. It is observed that the closest predictions are obtained estimat-
ing transversal shear strength equal to matrix strength, while the esti-
mation of transversal shear strength equal to transversal tensile
strength leads to the worst prediction. Based on these results, the fol-
lowing conclusions are made:

(i) Bridging and Chamis models lead to the better predictions for
Ss23 than for other transversal strengths, with average errors
equal to 22.3% and 30.8%, respectively;

(ii) the estimation of Ss23 ¼ St22, as suggested by Fenner & Daniel
[30], results in an average error equal to 37%, while the gener-
alized approach Ss23 ¼ αtSt22, with αt ¼ 1:43 and St22 computed
using Eq. (46), leads to an average error equal to 14.7%;

(iii) the estimation of Ss23 ¼ 0:37Sc22, as suggested by Dávila et al.
[31], results in an average error equal to 31.4%, while the gen-
eralized approach Ss23 ¼ αcSc22, with αc ¼ 0:29 and Sc22 computed
using Eq. (52), leads to an average error equal to 7.6%;

(iv) the estimation of Ss23 ¼ Sms is the simplest approach and it leads
to the best prediction with average error equal to 7%;

(v) by considering the error range evaluation, estimations
Ss23 ¼ 0:29Sc22 and Ss23 ¼ Sms lead to the errors smaller than
10% for 77.8% and 88.9% of the cases, respectively.

5. Conclusions

A novel micromechanical analysis approach based on transversal
tension, compression and shear strengths is proposed to deal with
the composite material design. An overview of analytical models
is presented for unidirectional laminae. The first approach is based
on the Chamis model adding a calibrated parameter according to
the experimental data. The second one uses an elastic solution
together with a calibration approach based on finite element simu-
lations. The estimation of the tensile strengths is based on the
dilatational energy density while the estimation of the compressive
strength is based on the interface strength. The transversal shear
strength of lamina is estimated on the basis of the matrix shear
strength. A set of 58 experimental data is compiled and compared
with predictions of the analytical models, including 31 experimental
data for transversal tensile strength St22, 18 experimental data for
transversal compressive strength Sc22 and 9 experimental data for
transversal shear strength Ss23. It is shown that the newly proposed
models lead to considerable improvements in the estimation of the
transversal strength in comparison with the previously formulated
analytical models.
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