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A B S T R A C T   

This paper deals with the first step required for the analysis and design of composite materials and structures: 
estimation of the effective macromechanical properties according to the structure of composite, properties of 
constituent materials and their volume fractions. There exist many micromechanical models proposed in the 
literature to estimate these effective elastic properties. Each one of these models is based on hypotheses that are 
valid for certain types of composite structures. The present paper aims to highlight the main assumptions of these 
models and compare their predictions with a set of 188 experimental data, compiled from 25 references, 
assuming that just the constituents’ properties are available as input. The following nine major micromechanical 
models are evaluated: asymptotic homogenization with hexagonal unit cell; asymptotic homogenization with 
square unit cell; Bridging; Chamis; generalized self-consistent; Halpin-Tsai; modified Halpin-Tsai; Mori-Tanaka; 
and rule of mixture (ROM). Besides, a novel modified version of the rule of mixture allowing better agreement 
with the experimental data is also proposed. It is shown, in particular, that the newly proposed modified rule of 
mixture model provides the best correlation with the experimental data among the ROM-based models, while the 
asymptotic homogenization presents the best predictions among the elasticity-based models.   

1. Introduction 

Composite material design needs to define equivalent effective mac-
romechanic properties based on information about micro constituents. 
Analytical, numerical and experimental approaches can be employed for 
this aim. The recent computational advances have increased the use of 
numerical approaches. Nevertheless, analytical modeling is usually more 
interesting as a first approach, especially in problems with many vari-
ables for optimization [1]. Experimental tests are always important, but 
they are related to very high costs. Besides, uncertainties related to 
composite structures manufacturing and measurements make this kind of 
analysis difficult to be effective [2]. Based on that, experimental tests are 
usually employed for final validations [3,4]. 

An additional issue for composite design is that the macromechanical 
stress and strain distributions are dependent on the elastic mechanical 
properties in anisotropic structures [5]. In other words, the homoge-
nized properties influence the estimation of stress and strain 

distributions, propagating errors for further failure analysis. 
The analysis from micro to macro needs the definition of a repre-

sentative volume element (RVE). This definition is still objective of 
different approaches due to the irregular patterns of the composite 
material. According to Ref. [6]; the RVE “should contain sufficiently 
large number of fibers so that the uniformity in a statistical sense can be 
assumed reasonably” [7]. presented a microscopy of fiber distribution 
indicating that the fiber volume fraction may vary over the lamina if two 
different square regions are selected [8]. proposed a numerical pro-
cedure to evaluate a degree of non-uniform fiber distribution that is not 
possible to be represented by analytical methods [9]. proposed the use 
uncertainties quantification to deal with homogenization. 

Based on that, there is a special motivation for critical reviews of the 
main micromechanics approaches, establishing a comparison with 
available experimental data. In this regard, the choice of the best 
approach depends on several aspects and there is not a definitive 
conclusion. 
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Nowadays, there is an international effort to evaluate the definition 
of macromechanical properties from constituents’ and laminae data: 
World Wide Failure Exercise – WWFE [10–12]. WWFE tests use condi-
tions and lamina properties as an input, together with constituents’ 
properties. Hence, it is not considering micromechanical homogeniza-
tion as a requirement. On the conclusions of the first edition, the orga-
nizers pointed out that even the models that obtained the best 
predictions, presented more than 20% of the cases with error higher 
than 50%. During the second edition, 10% of the cases have error higher 
than 50% [11,13]. Therefore, there is still a considerable lack of 
knowledge about the estimation of different micromechanical models, 
mainly for transversal elastic properties and strengths. 

The present paper provides a critical review of several major 
micromechanical models, comparing results with available experi-
mental data. Micromechanical models are classified in two main groups: 
Rule of Mixture (ROM) and elasticity-based models. Specifically, nine 
models are analyzed: four models are based on the Rule of Mixture 
(ROM) [14] and five elasticity-based models [15–17]. Besides these 
models, a novel version of the rule of mixture is proposed, allowing 
better agreement with the experimental data. The goal of this compar-
ison is to evaluate the best model performances, evaluating the more 
representative assumptions of a real composite structure. This study 
evaluates the reliability of the micromechanical models for the elastic 
properties of a composite structure. The classification proposed in the 
present paper is not the only possibility, see e.g., Refs. [18–20]. 

Recently [21,22], presented review articles related to effective 
properties of unidirectional laminae [21]. compared the models with 6 
experimental data of glass fiber composite. On the other hand [22], 
investigated strength properties with limited experimental data. The 
major contribution of the present study when compared with this other 
two review articles is a broader comparison using more experimental 
data and ten analytical models, including a novel modification of the 
ROM. Note that only unidirectional laminae are considered; for bidi-
rectional composites some additional issues must be evaluated, as dis-
cussed in Refs. [23,24]. 

Curvilinear composite shells with different surface reinforcements 
were considered earlier, see Refs. [16,17,25–27]. The modified asymp-
totic homogenization technique was developed in these works and 
applied for calculating the effective moduli Aij, Bij, Dij of the reinforced 
composite shells. The comparison of the results of asymptotic homoge-
nization model and more simplified approaches was also performed in 
the above studies, and it was demonstrated that asymptotic homogeni-
zation provides more accurate results. 

This introduction presents the fundamental definitions for the rest of 
the paper. After this introduction, Section 2 presents the five ROM-based 
models, including the own ROM and the novel modification proposed. 
Sections 3 presents the five elasticity-based models; in this section the 
major assumptions of each models are introduced, but a detailed deri-
vation is omitted. Section 4 presents the calibration of the novel ROM- 
based model as well as comparison of the models estimations with a 

set of experimental data compiled on the literature. At last, in Section 5 
the main conclusions are highlighted, and some recommendations are 
pointed out. 

1.1. Fundamentals 

Before starting the micromechanical model analysis, some general 
considerations are introduced. Fig. 1 presents an isotropic plane of 
lamina and fibers, where direction x1 is parallel to the longitudinal fiber 
direction. 

The composite material is assumed to be a linear elastic unidirec-
tional transversally isotropic lamina. The fibers are assumed to be 
transversally isotropic and the matrix isotropic. Under these assump-
tions, the composite material has five independent properties: longitu-
dinal and transversal elastic modulus (E1 and E2); in-plane and out-of- 
plane shear modulus (G12 and G23); and in-plane Poisson’s ratio (ν12). 
These macromechanical properties are defined from the properties of 
the constituent materials. It is considered that superscript f is used to 
represent fiber property while m is employed to characterize matrix 
property. Therefore, Ef

1, Ef
2, Gf

12, Gf
23, νf

12 are fiber properties (longitu-
dinal elastic modulus, transversal elastic modulus, in-plane shear 
modulus, out-of-plane shear modulus and in-plane Poisson’s ratio, 
respectively); and Em, νm, Gm ¼ Em=2ð1þνmÞ are matrix properties 
(elastic modulus, Poisson’s ratio and shear modulus). Another important 
definition to characterize a composite material is the volume fraction of 
each one of the constituents: Vf is the fiber volume fraction while Vm is 
the matrix volume fraction. Another possibility is the consideration of 
void volume fractions, Vv. In any case, the sum of the volume fractions 
needs to be 1: Vm þ Vf þ Vv ¼ 1. 

It should be pointed out that although five independent elastic 
properties are required for the full characterization of the lamina, some 
models are not able to estimate all of them. 

2. Models based on the rule of mixture 

The rule of mixture is an intuitive homogenization approach that 
becomes popular due to its simplicity. In order to increase the prediction 
capability, some modifications were proposed based on different ap-
proaches. These theories are very convenient due to simplicity and 
practical issues, and the modifications of the ROM are usually based on 
experimental or numerical data to fit the curves. Empirical formulas are 
generally employed in order to obtain better experimental predictions. 
This section presents a general overview of some of the models based on 
the ROM. Besides, a novel model is proposed considering a new 
adjustment based on experimental data. 

2.1. Rule of mixture (ROM) 

The Rule of Mixtures is based on a straight solid mechanics analysis 
assuming that fibers and matrix may be modeled as elements in parallel 

Fig. 1. Definition of coordinate systems used to define the materials properties.  

L.L. Vignoli et al.                                                                                                                                                                                                                                



Composites Part B 174 (2019) 106961

3

or in series, according to the applied load. The equations to estimate the 
in-plane properties by the ROM are given by (see, e.g. Ref. [28], 

E1¼Ef
1Vf þ

�
1 � Vf

�
Em (1)  

ν12¼ νf
12Vf þ

�
1 � Vf

�
νm (2)  

E2 ¼
Ef

2Em

Ef
2
�
1 � Vf

�
þ EmVf

(3)  

G12 ¼
Gf

12Gm

Gf
12
�
1 � Vf

�
þ GmVf

(4) 

The plane strain bulk modulus is an additional property estimated 
considering a biaxial load transversally to the fibers, and therefore, the 
elements may also be assumed in parallel (see, e.g. Ref. [29], 

K23 ¼
Kf

23Km

Kf
23
�
1 � Vf

�
þ KmVf

(5)  

where Kf
23 and Km are the fiber and matrix bulk moduli. The following 

expressions are useful to establish a relation between the plane strain 
bulk modulus and the other properties and also to compute the out-of- 
plane shear modulus 

K23 ¼
E1

4
�
ðE1=E2Þ � ν12

2
�
� ðE1=G23Þ

(6)  

G23 ¼
E1

4
�
ðE1=E2Þ � ν12

2
�
� ðE1=K23Þ

(7) 

Since the predictions of E1 and ν12 are usually close to experimental 
data, most of the models uses the same approach for that. Nevertheless, 
the other property predictions, transversal and shear properties, need to 
be improved and this motivate different descriptions that are presented 
in the sequence. Hence, in the absence of explicit comment, the ROM- 
based models use the same equations, Eq. (1) and Eq. (2), to estimate 
E1 and ν12, respectively. 

2.2. Chamis (Ch) model 

[30] proposed the inclusion of the effect of the voids content on the 
prediction of equivalent properties. Besides, nonlinear influence of the 
fiber volume fraction on the transversal properties is adopted. Based on 
that, the following equations are employed 

E1¼Em þ ð1 � VvÞVf
�
Ef

1 � Em� (8)  

E2 ¼
Em

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � VvÞVf

p �
1 �

�
Em
�

Ef
2
�� (9)  

G12 ¼
Gm

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � VvÞVf

p �
1 �

�
Gm
�

Gf
12
�� (10)  

G23 ¼
Gm

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � VvÞVf

p �
1 �

�
Gm
�

Gf
23
�� (11)  

ν12¼ νm þ ð1 � VvÞVf
�
νf

12 � νm� (12) 

Note that if the microstructural voids are neglected (Vv ¼ 0), the 
Chamis model becomes closer to the Rule of Mixture: the main differ-
ence is the estimation for G23 and to replace Vf by 

ffiffiffiffiffi
Vf

p
for E2 and G12. 

[31] suggested an inverse modeling approach; first the laminate 
properties are measured and then these quantities are used to compute 
the constituents’ properties. This methodology is useful to avoid issues 
on the fibers’ properties measure. On the other hand, it carries error 
from the micromechanical model [32]. also suggested the use of an 

inverse methodology. 

2.3. Halpin-Tsai (HT) and modified Halpin-Tsai (HTm) models 

[33] suggested the following set of equations different of the ROM: 

E2 ¼ Em
�1þ ζE2

ηE2
Vf

1 � ηE2
Vf

�

(13)  

G12 ¼ Gm
�1þ ζG12 ηG12

Vf

1 � ηG12
Vf

�

(14)  

where 

ηE2
¼

�
Ef

2
�

Em
�
� 1

�
Ef

2
�

Em
�
þ ζE2

(15)  

ηG12
¼

�
Gf

12
�

Gm
�
� 1

�
Gf

12
�

Gm
�
þ ζG12

(16) 

Moreover, ζE2 and ζG12 are parameter than can be calibrated using 
experimental data. A general recommendation to be use when there is 
not experimental data for calibration is presented in the sequence [34]. 

ζE2
¼ 2þ 40Vf

10 (17)  

ζG12
¼ 1þ 40Vf

10 (18) 

Recently, a modified Halpin-Tsai (HTm) model is proposed by 
Ref. [35] based in a parametric finite element study considering a broad 
possibility of random fiber arrangement, 

ζE2
¼

8
<

:

4:924 � 35:888Vf þ 125:118Vf
2 � 145:121Vf

3 if Vf < 0:3
1:5þ 5500Vf

18 if Vf � 0:3 (19)  

2.4. Modified rule of mixture (ROMm) 

A novel modified ROM is proposed in the present Section. It is based 
on introduction of adjustable parameters allowing better agreement 
with the experimental data. This adjustment must contain not only the 
fiber volume fraction, as the Halpin-Tsai model, but also the ratio be-
tween matrix and fiber properties. Besides, three main assumptions are 
considered: the ROM is employed for the estimation of E2 and G12; the 
Chamis model is employed to estimate G23, but using Vf instead of 

ffiffiffiffiffi
Vf

p
. 

The basic equations are the following: 

E2 ¼ Em

 
1

1þ ξE2

��
Em
�

Ef
2
�
� 1
�
Vf

!

(20)  

G12 ¼ Gm

 
1

1þ ξG12

��
Gm
�

Gf
12
�
� 1
�
Vf

!

(21)  

G23 ¼ Gm

 
1

1þ ξG23

��
Gm
�

Gf
23
�
� 1
�
Vf

!

(22)  

where ξE2 , ξG12 , ξG23 are the experimental adjustment parameters. Note 
that if ξE2 ¼ 1 and ξG12 ¼ 1, Eqs. 20 and 21 are equals to Eq.(3) and (4). 
These quantities are defined by 

ξE2
¼
�
x1 þ x2Vf þ x3

�
Em�Ef

2
��

(23)  

ξG12
¼
�
x4 þ x5Vf þ x6

�
Gm�Gf

12
��

(24)  

ξG23
¼
�
x7 þ x8Vf þ x9

�
Gm�Gf

23
��

(25)  

where xi are calibrated according to experimental data. 

L.L. Vignoli et al.                                                                                                                                                                                                                                



Composites Part B 174 (2019) 106961

4

Note that, based on Eqs. 20–22, the effective properties (transversal 
elastic modulus, in-plane and out-of-plane shear moduli) are equal to the 
matrix properties multiplied by a function of the fiber volume fraction 
and the ratio between matrix and fiber properties. Based on this obser-
vation, Eqs. 23–25 are proposed where the parameters ξ with different 
subscripts represent a linear combination of the fiber volume fraction 
and the ratio between matrix and fiber properties. 

The calibration of the novel ROMm employs the Levenberg- 
Marquardt algorithm [36] to minimize the error between the model 
estimative and the experimental data. The calibrated parameters and the 
list of references compiled with experimental data are presented in 
Section 4. 

3. Models based on the theory of elasticity 

Several elasticity-based solutions have been proposed to estimate 
macromechanical properties for composite materials. These approaches 
include upper and lower bands from variational approaches [37]. pre-
sented a rigorous discussion about the terminology found in the litera-
ture. These authors highlighted that: “‘constructive solution’ and more 
strong ‘exact formula’ are not acceptable when one writes a formula 
when its entries could be found from an additional numerical proced-
ure”; “closed form solution usually excludes usage of series”; and 
“asymptotic formulae can be considered as analytical approximations”. 
Investigate the source of these misunderstanding terms is not the aim of 
the present investigation, but, in the authors’ opinion, the critical essay 
presented by Ref. [37] should be cited. 

The goal of this Section is to present a brief introduction to the 
elasticity-based models, including their main assumptions and equa-
tions. Results of application of these models are compared with the 
experimental data in the next Section. 

3.1. Generalized self consistent model (GSCM) 

The GSCM assumes that a simple unit cell may properly represent the 
microstructure: a fiber embedded in a matrix, forming two concentric 
cylinders, in such way that Vf ffi ðRf=RÞ2, where Rf and R are the radius 
of the fiber and of the external cylinder that represents the matrix, 
respectively. Around the matrix cylinder, there exist an infinite body 
that has the same properties than the assembly fiber-matrix. A detailed 
discussion about this model is presented by Refs. [38,39]. 

The complete set of equations for this model is obtained by assuming 
three different load conditions: a triaxial load with hσ11i ¼ ~σL and 
hσ22i ¼ hσ33i ¼ ~σT ; in-plane and out-of-plane shear loads, where < … >
means the average value. Just the first one is presented here to introduce 
the idea of this model. For the triaxial load, the non-null displacement 
components of the unit cell are 

u1 ¼ ε11x1 (26)  

ur ¼

8
>><

>>:

α1r if 0 � r � Rf

α2r þ
α3

r
if Rf � r � R

(27)  

where αi are constants obtained using the constitutive relations of the 
constituents and the strain definitions for small deformation in cylin-
drical coordinate system satisfying the following boundary conditions 
[40], 

uf
r

�
r¼Rf

�
¼ um

r

�
r¼Rf

�
(28)  

σf
rr

�
r¼Rf

�
¼ σm

rr

�
r¼Rf

�
(29)  

σm
rrðr¼RÞ ¼ ~σT (30) 

For a uniaxial load, hσ22i¼ hσ33i ¼ ~σT ¼ 0 and E1 ¼ hσ11i= he11i. 

Hence, it is possible to obtain 

E1¼Ef
1Vf þ Em� 1 � Vf

�
þ

4Vf
�
1 � Vf

��
νf

12 � νm
�2

ð1� Vf Þ
Kf

23
þ

Vf
Km

23
þ 1

Gm

(31) 

By using the Poisson’s ratio definition, ν12 ¼ � errðr ¼ RÞ=e11, leads 
to the following equation 

ν12 ¼ νf
12Vf þ νm� 1 � Vf

�
þ

Vf
�
1 � Vf

��
νf

12 � νm
�
 

1
Km

23
� 1

Kf
23

!

ð1� Vf Þ
Kf

23
þ

Vf
Km

23
þ 1

Gm

(32) 

Alternatively, for plane-strain (ε11 ¼ 0), with a similar procedure, 
the plane strain bulk modulus is obtained 

K23 ¼Km
23 þ

Vf
1

Kf
23 � Km

23
þ

1� Vf
Km

23þGm

(33) 

The other additional properties are computed by 

G12 ¼ GmGf
12
�
1þ Vf

�
þ Gm

�
1 � Vf

�

Gf
12
�
1 � Vf

�
þ Gm

�
1þ Vf

� (34)  

G23 ¼ Gm

 
� Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A

!

(35)  

where 

A¼ a0 þ a1Vf þ a2V2
f þ a3V3

f þ a4V4
f (36)  

B¼ b0 þ b1Vf þ b2V2
f þ b3V3

f þ b4V4
f (37)  

C¼ c0 þ c1Vf þ c2V2
f þ c3V3

f þ c4V4
f (38)  

a0 ¼ � 2ðGmÞ
2
ð2GmþKmÞ½2Gf

23GmþKf
23ðG

f
23þGmÞ�½2Gf

23GmþKmðGf
23þGmÞ�

(39)  

a1 ¼ 8ðGmÞ
2
ðGf

23 � GmÞ½2Gf
23Gm þ Kf

23ðG
f
23 þ GmÞ�½ðGmÞ

2
þ GmKm þ ðKmÞ

2
�

(40)  

¼ � 12ðGmÞ
2
ðKmÞ

2�Gf
23 � Gm��2Gf

23GmþKf
23
�
Gf

23 þGm�� (41)  

¼ 8ðGmÞ
2
n�

Gf
23Gm�2

Kf
23þ

�
Gf

23
�
GmKm�Kf

23 � Gm�

þðKmÞ
2�Gf

23Gm�Gf
23 � 2Gm�þKf

23
�
Gf

23 � Gm��Gf
23þGm��

o (42)  

a4¼2ðGmÞ
2�Gf

23 � Gm�ð2GmþKmÞ
�
Kf

23GmKm � Gf
23
�
2Gm�Kf

23 � Km�þKf
23Km��

(43)  

b0 ¼ 4ðGmÞ
3�2Gf

23GmþKf
23
�
Gf

23 þGm���2Gf
23Gm þKm�Gf

23 þGm�� (44)  

b1 ¼ 8ðGmÞ
2Km�Gf

23 � Gm��2Gf
23Gmþ

�
Gf

23 þGm�Kf
23
�
ðGm � KmÞ (45)  

b2¼ � 2a2 (46)  

b3¼ � 2a3 (47)  

b4 ¼ � 4ðGmÞ
3�Gf

23 � Gm��Kf
23GmKm � Gf

23
�
2Gm�Kf

23 � Km�þKf
23Km��

(48)  

c1 ¼ 8ðGmKmÞ
2�Gf

23 � Gm��2Gf
23GmþKf

23
�
Gf

23 þGm�� (49)  

c2 ¼ a2 (50)  

c3 ¼ a3 (51) 
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c4 ¼ � 2ðGmÞ
2Km�Gf

23 � Gm��Kf
23GmKm � Gf

23
�
2Gm�Kf

23 � Km�þKf
23Km��

(52)  

3.2. Mori-Tanaka model (MT) 

The Mori-Tanaka model [41,42] is based on the Eshelby inclusion 
theory using the eigenstrain concept [43]. The idea is to establish an 
average behavior defined from fiber and matrix behaviors. Hence, the 
stress, σij, and strain, εij, tensors can be defined from their average 
values, evaluated on matrix and fibers [44], 

�
σij
�
¼

1
V

Z

σijdv ¼ Vf

D
σðf Þij

E
þ
�
1 � Vf

�D
σðmÞij

E
(53)  

�
eij
�
¼

1
V

Z

eijdv ¼ Vf

D
eðf Þij

E
þ
�
1 � Vf

�D
eðmÞij

E
(54) 

The essential assumption for macroscopic homogenization is to 
establish a relationship between the average stress and the average strain 
tensors by effective elastic tensor ~cijkl, allowing one to write equivalent 
constitutive relation hσiji ¼ ~cijklhekli. Considering that constituents are 
linear and elastic, it is possible to write average equations for fibers and 
matrix, hσðfÞij i ¼ cðfÞijklhe

ðfÞ
kl i and hσðmÞij i ¼ cðmÞijkl he

ðmÞ
kl i, where the elastic tensors 

of both phases are known. By assuming that there exist a fourth-order 
tensor Tijkl, which relates fiber and matrix strains, heðfÞij i ¼ TijklheðmÞkl i, the 
following expression are obtained with tensor manipulation 

~cijkl ¼ cðmÞijkl þ Vf

�
cðf Þijpq � cðmÞijpq

�
Tpqmn

��
1 � Vf

�
Imnkl þ Vf Tmnkl

�� 1
(55) 

Tensor Tijkl can be calculated using the Eshelby inclusion principle 
that leads to, 

Tijkl¼

�

Iijkl � Sijmn

�
cðmÞmnpq

� 1�
cðmÞpqkl � cðf Þpqkl

��� 1

(56)  

where Sijkl is the fourth-order Eshelby tensor that depends on the matrix 
properties and inclusion geometry shape. A set of generic solutions for 
isotropic and anisotropic matrix is found in Ref. [43]. 

According to Ref. [45]; the longitudinal and transverse elastic 
moduli, in-plane Poisson’s ratio, in-plane and out-of-plane shear moduli 
are computed with the following equations, 

E1 ¼ Vf Ef
1 þ

�
1 � Vf

�
Em þ 2Vf

�
1 � Vf

�
Z1
�
νf

12 � νm�2 (57)  

E2 ¼
E1

½1 � ðνmÞ
2
i
ðY1 þ Y2Þ

(58)  

ν12 ¼ νm þ 2Vf
Z1

Em

�
νf

12 � νm
�
½1 � ðνmÞ

2�

(59)  

G12 ¼
Em

2
�
1 � Vf

�
ð1þ νmÞ

2

6
6
41þ Vf �

4Vf

1þ Vf þ 2
�
1 � Vf

� Gf
12

Em ð1þ νmÞ

3

7
7
5 (60)  

G23 ¼ Em

8
>>>>><

>>>>>:

2ð1þ νmÞ þ
Vf

1� Vf

8½1� ðνmÞ2�
þ

Gf
23

Em � 2Gf
23ð1þνmÞ

9
>>>>>=

>>>>>;

� 1

(61)  

where 

Y1 ¼ Vf Z1

 
Ef

1

Em

!"
1þ νm

Em �
2

Ef
1
þ

1þ νf
23

Ef
2

#

(62)  

Y2¼
1

1 � ðνmÞ
2 þ 2Vf

�
E1

Z2

�"

1þ νf
23 �

Ef
2

Em ð1 � νmÞ

#

(63)  

Z1 ¼

(

� 2
�
1 � Vf

�
�
νf

23
�2

Ef
1
þ
�
1 � Vf

�1 � νf
23

Ef
2
þ
ð1þ νmÞ

�
1þ Vf ð1 � 2νmÞ

�

Em

)� 1

(64)  

Z2¼Ef
2
�
3þVf � 4νm�ð1þ νmÞ þ

�
1 � Vf

�
Em� 1þ νf

23
�

(65)  

3.3. Bridging model (Br) 

Bridging model defines a relation between matrix and fiber stress 
tensors using a fourth-order bridging tensor Aijkl, written as follows [46]: 
D

σðmÞij

E
¼ Aijkl

D
σðf Þkl

E
(66) 

Using Mori-Tanaka model as basis, the effective elastic tensor of the 
composite is computed by 

~cijkl ¼
�

1 � Vf
�
AijpqþVf Iijpq

�
D� 1

pqkl

�
(67)  

where Dijkl¼ ð1 � Vf Þs
ðmÞ
ijpqApqkl þ Vf s

ðfÞ
ijkl and sðmÞijkl and sðfÞijkl are the compli-

ance tensors. 
Therefore, Eq. (70) can be employed to estimate effective elastic 

tensor after the determination of the bridging tensor [47]. proposed an 
alternative solution based on the concentric cylinders model. Using the 
contracted notation to represent a fourth-order tensor as a 6 � 6 matrix, 
the bridging tensor non-null components are given by 

½A�11 ¼
Em

Ef
1

"

1þ
νm
�
νm � νf

12
�

ð1þ νmÞð1 � νmÞ

#

(68)  

½A�12 ¼ ½A�13 ¼
1

ð1 � νmÞ

(
Em

ð1þ νmÞ

"
νm
�
1 � νf

23
�

2Ef
2

�
νf

12

Ef
1

#

þ
νm

2

)

(69)  

½A�21 ¼ ½A�31 ¼
Em

2Ef
1

�
νm � νf

12
�

ð1þ νmÞð1 � νmÞ
(70)  

½A�22 ¼ ½A�33 ¼
1

ðνm � 1Þðνm þ 1Þ

(

Em

"�
νf

23 � 3
�

8Ef
2
þ

νmνf
12

2Ef
1

#

þ
ðνm þ 1Þð4νm � 5Þ

8

)

(71)  

½A�32 ¼ ½A�23 ¼
1

ð1 � νmÞð1þ νmÞ

(

Em

"�
3νf

23 � 1
�

8Ef
2
þ

νmνf
12

2Ef
1

#

þ
ðνm þ 1Þð1 � 4νmÞ

8

)

(72)  

½A�44 ¼
Gm

4Gf
23ð1 � νmÞ

þ
ð3 � 4νmÞ

4ð1 � νmÞ
(73)  

½A�55 ¼ ½A�66 ¼
Gm þ Gf

12

2Gf
12

(74) 

Despite Eq.68–74 are the elasticity solution of the Bridging tensor 
[47], presented some results indicating that the simplified version pre-
sented by Ref. [48] is able to obtain a better fit with experimental data 

E1¼Ef
1Vf þ

�
1 � Vf

�
Em (75)  

ν12 ¼ νf
12Vf þ

�
1 � Vf

�
νm (76) 
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E2¼

�
Vf þ

�
1 � Vf

�
a11
��

Vf þ
�
1 � Vf

�
a22
�

�
Vf þ

�
1 � Vf

�
a11
�
" 

Vf

Ef
2

!

þ

�
1� Vf

Em

�

a22

#

þVf
�
1 � Vf

�
" 

νf
12

Ef
1

!

þ

�
νm

Em

�#

a12

(77)  

G12 ¼
Vf þ

�
1 � Vf

�
a66

�
Vf
�

Gf
12
�
þ
��

1 � Vf
�
a66=Gm

� (78)  

G23 ¼
Vf þ

�
1 � Vf

�
a22

�
Vf
�

Gf
23
�
þ
��

1 � Vf
�
a22=Gm

� (79)  

where 

a11 ¼ Em�Ef
1 (80)  

a22¼ 0:3þ 0:7
�
Em�Ef

2
�

(81)  

a66¼ 0:3þ 0:7
�
Gm�Gf

12
�

(82)  

a12 ¼

 
Ef

1νm � Emνf
12

Ef
1 � Em

!

ða11 � a22Þ (83) 

[49] also used the simplified version of the Bridging model. Here, the 
Bridging model is named as the one represented by Eq.75–83. 

Table 1 
References used for the experimental data.  

# Reference Fiber Matrix 

1 [59,73] Carbon Epoxy 
2 [60] Glass Epoxy 
3 [60] a Glass Epoxy 
4 [74] Polyethylene Epoxy 
5 [61] Carbon Epoxy 
6 [61] Carbon Epoxy 
7 [61] Glass Epoxy 
8 [61] Glass Epoxy 
9 [62] b Glass Epoxy 
10 [63] c Carbon Epoxy 
11 [64] Carbon Epoxy 
12 [65] d Carbon Epoxy 
13 [66] d Carbon Epoxy 
14 [67] Glass Epoxy 
15 [68] Carbon Epoxy 
16 [68] Carbon Epoxy 
17 [68] Carbon Epoxy 
18 [68] Glass Epoxy 
19 [68] Glass Epoxy 
20 [12] Carbon Epoxy 
21 [12] Carbon Epoxy 
22 [12] Carbon Epoxy 
23 [12] Glass Epoxy 
24 [69] Carbon Epoxy 
25 [70] d Carbon Epoxy  

a Supplementary data for fiber and matrix are obtained from #7 and #2, 
respectively. 

b Fiber properties are from #19. 
c Supplementary data for fiber is obtained from #22. 
d Fiber and matrix properties are from #20. 

Table 2 
Calibrated parameters for the ROMm.  

x1  x2  x3  

2.0930 � 1.4359 0.0059 

x4  x5  x6  

2.3145 � 1.6043 � 0.4199 

x7  x8  x9  

1.7906 � 0.9657 0.0065  

Fig. 2. Example of the most traditional approach in micromechanics to 
compare models’ predictions with experimental data from Ref. [60]. 

Fig. 3. Results for the longitudinal elastic modulus, E1: (a) average error; (b) 
ranges of error. 
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3.4. Asymptotic homogenization – square (AHs) and hexagonal (AHh) 
symmetries 

The asymptotic homogenization technique is very popular in com-
posite modeling due to its rigorous mathematical basis [16,17,27]. For 
the effective elastic properties [16], presented an analytical solution 
considering square symmetry and isotropic constituents [50]. extended 
this approach for transversally isotropic fibers using analytical solutions 
that are not in a closed-form [51]. also considered transversally isotropic 
fiber but with hexagonal symmetry pattern. A brief introduction about 
the asymptotic homogenization technique is presented in the sequence 
based on [16]. 

The homogenization modeling procedure assumes a two scale 
approach with macroscopic and microscopic variables, xi and yi ¼ xi= ε, 
respectively, with ε→0. Hence, ∂ =∂xi→½ð∂=∂xiÞ þ ð1=εÞð∂=∂yiÞ�. The 
essential assumption is that displacement, strain and stress fields may be 
defined as an asymptotical series in powers of small parameter ε 

uðεÞi ¼ uðεÞ0 ðxÞ þ εuðεÞ1 ðx; yÞ þ ::: (84)  

eðεÞij ¼ eð0Þij ðx; yÞ þ εeð1Þij ðx; yÞ þ ::: (85)  

σðεÞij ¼ σð0Þij ðx; yÞ þ εσð1Þij ðx; yÞ þ ::: (86) 

Based on that, the following expressions can be written for each 
power of ε 

eð0Þij ðx; yÞ¼
1
2

 
∂uð0Þi

∂xj
þ

∂uð0Þj

∂xi

!

þ
1
2

 
∂uð1Þi

∂yj
þ

∂uð1Þj

∂yi

!

(87)  

eð1Þij ðx; yÞ¼
1
2

 
∂uð1Þi

∂xj
þ

∂uð1Þj

∂xi

!

þ
1
2

 
∂uð2Þi

∂yj
þ

∂uð2Þj

∂yi

!

(88)  

σð0Þij ðx; yÞ¼ cijklðyÞ
∂uð0Þk

∂xj
þ cijklðyÞ

∂uð1Þk

∂yj  

σð1Þij ðx; yÞ¼ cijklðyÞ
∂uð1Þk

∂xj
þ cijklðyÞ

∂uð2Þk

∂yj
(89) 

Applying on the equilibrium equation, the term of Oðε� 1Þ is 

∂σð0Þij

∂yj
¼

∂cijkl

∂yj

∂uð0Þk

∂xj
þ

∂
∂yj

 

cijklðyÞ
∂uð1Þk

∂yj

!

¼ 0 (90)  

since uð0Þk ¼ uð0Þk ðxÞ. From this equation, it possible to write that 

uð1Þi ðx; yÞ ¼ NiklðyÞ
∂uð0Þk ðxÞ

∂xl
(91)  

where NijkðyÞ is a third order tensor where the components are Y-peri-
odic functions. 

Substituting Eq. (91) into Eq. (90) yields the following unit cell 
problems for determining Y-periodic functions NiklðyÞ: 

Fig. 4. Results for the in-plane Poisson’ ratio, ν12: (a) average error; (b) ranges 
of error. 

Fig. 5. Results for the transversal elastic modulus, E2: (a) average error; (b) 
ranges of error. 
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∂
∂yj

�

cijmnðyÞ
∂NmklðyÞ

∂yn

�

¼ �
∂cijkl

∂yj
(92) 

Using the terms of Oðε0Þ and integrating over the unit cell domain, 
the effective elastic tensor is defined by 

~cijkl ¼
1
jYj

Z �

cijklðyÞ þ cijmnðyÞ
∂NmklðyÞ

∂yn

�

dy (93) 

By analyzing Eq. (92), it is evident that the problem is to obtain 
NmklðyÞ. These functions are obtained solving six independent problems: 
two anti-plane strain problems, for the cases of shear with the longitu-
dinal direction and one of the transversal ones; and four plane strain 
problems, for the other cases. 

According to Ref. [52]; the infinite series may be properly truncated 
on the second term with sufficient accuracy and just one set of equations 
is required for both symmetries, square and hexagonal; what define the 
symmetry adopted is the parameter a. The following equations are used 
to compute the elastic properties for the asymptotic homogenization 
model 

k¼ kf Vf þ km
�
1 � Vf

�
�

Vf
�
km � kf

�2K
m1

(94)  

l¼ lf Vf þ lm
�
1 � Vf

�
�

Vf
�
km � kf

��
lm � lf

�
K

m1
(95)  

n¼ nf Vf þ nm
�
1 � Vf

�
�

Vf
�
lm � lf

�2K
m1

(96)  

p¼ pm � 2Vf pmP (97)  

m¼mm � Vf
�
mm � mf

�
M (98)  

m’¼mm � Vf
�
mm � mf

�
M’ (99)  

where 

K ¼ C

8
<

:
Vm þ

ð2a � 1Þð1þ κmÞCR4aðS2aÞ
2

B� 1 þ R4a� 2
�
AB� 1r þ gþ ð2a � 1ÞDR2ðS2aÞ

2
i

9
=

;
(100)  

P ¼
χp

�
1þ Vf χp � ð2a � 1Þχp

2R4aðS2aÞ
2
i (101)  

M ¼
1þ κm�

1þ κm
�
mf
�

mm
���

1þ R2H� � I
� (102)  

M’ ¼
1þ κm�

1þ κm
�
mf
�

mm
���

1þ R2Hþ � I’
� (103)  

κf ;m¼ 1þ 2
�
mf ;m

�
kf ;m
�

(104)  

χp ¼
pm � pf

pm þ pf
(105)  

Hþ ¼Ar1 þ Bκm
π

sinðπ=aÞ
þ ð3 � aÞB

��
5S4

π

�

þ g1

�

(106) 

Fig. 6. Results for the in-plane shear modulus, G12: (a) average error; (b) 
ranges of error. 

Fig. 7. Results for the out-of-plane shear modulus, G23: (a) average error; (b) 
ranges of error. 
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H� ¼Ar1 þ Bκm
π

sinðπ=aÞ
� ð3 � aÞB

��
5S4

π

�

þ g1

�

(107)  

I ¼

8
>>>>>><

>>>>>>:

R12ðAr2 � Bg2ÞðAr3 � Bg3Þ

1þ R10ðAr4 � Bg4Þ
if a ¼ 2

3R8B2� 15R2S6 � 4T5
�2

1þ 100R12AðS6Þ
2 if a ¼ 3

(108)  

I’ ¼
R12ðAr2 þ Bg2ÞðAr3 þ Bg3Þ

1þ R10ðAr4 þ Bg4Þ
(109)  

r ¼ β2a� 1
4a� 1β2aþ1

4a� 1R4aþ2ðS4aÞ
2 (110)  

r1 ¼ ð2a � 1ÞðS2aÞ
2R4a� 2 (111)  

r2 ¼ β3
3β5

7R6S4S8 (112)  

r3 ¼ β1
3β3

7R6S4S8 (113)  

r4 ¼ β3
7β5

7R6ðS8Þ
2 (114)  

g¼ � ð2a � 1Þ
�
R2β2a

4aS4a � β2a� 1
4a� 2T4a� 1

�
(115)  

g1¼ � 6S4R2 (116)  

g2¼ � R2β2
8S8 þ β5

6T7 (117)  

g3¼ � 5R2β6
8S8 þ 5β5

6T7 (118)  

g4¼ � 5R2β6
12S12 þ 5β5

10T11 (119)  

A ¼
�
κm
�
mf
�

mm
�
� κf

�

��
mf
�

mm
�
þ κf

� B (120)  

B ¼
�
1 �

�
mf
�

mm
��

�
1þ κm

�
mf
�

mm
�� (121)  

C ¼
mm

�
mm þ kmVf þ kf

�
1 � Vf

�� (122)  

D ¼ 2½ðk2=k1Þ � 1�C (123)  

βl
k ¼

k!

l!ðk � lÞ!
(124)  

S4 ¼

8
<

:

3:1512120 if a ¼ 2
0 if a ¼ 3 (125)  

S6 ¼

8
<

:

0 if a ¼ 2
5:8630316 if a ¼ 3 (126)  

S8 ¼

8
<

:

4:2557731 if a ¼ 2
0 if a ¼ 3 (127)  

S12 ¼

8
<

:

3:9388490 if a ¼ 2
6:00096399 if a ¼ 3 (128)  

T5 ¼

8
<

:

0 if a ¼ 2
5:6568027 if a ¼ 3 (129)  

T7 ¼

8
<

:

4:5155155 if a ¼ 2
0 if a ¼ 3 (130)  

T11 ¼

8
<

:

3:8807309 if a ¼ 2
6:0301854 if a ¼ 3 (131)  

with a ¼ 2 for square symmetry and a ¼ 3 for hexagonal symmetry. 
The non-null components of the elastic tensor are computed by 

c1122¼ c2211 ¼ c1133 ¼ c3311 ¼ l (132)  

c1111 ¼ n (133)  

c2222¼ c3333 ¼ k þ m’ (134)  

c2233¼ c3322 ¼ k � m’ (135)  

c2323¼ c2332 ¼ c3223 ¼ c3232 ¼ m (136)  

c1212¼ c1221 ¼ c2112 ¼ c2121 ¼ c1313 ¼ c1331 ¼ c3113 ¼ c3131 ¼ p (137) 

Some additional examples of application of asymptotic homogeni-
zation to obtain effective properties are presented by Refs. [53,54]; 
where the interphase influence is included, [55]; which studied thermal 
properties, and [56] that presented a numerical procedure for 
displacement field computation. 

4. Results 

This Section applies different micromechanics models to obtain 
equivalent effective macroscopic properties. The models discussed on 
the preceding section are employed for this aim. The main objective is to 
establish a comparison with experimental data. In this regard, it should 
be pointed out that experimental data of composite materials have high 
uncertainty values due to irregular fiber arrangement. For instance, the 
fiber and matrix storage may have significantly influence on the cure 
process, inducing fiber misalignment, voids, residual stress and shape 
distortion [57]. An extensive discussion about modeling manufacture 
process of composite materials, not restrict just for unidirectional lam-
inates, is presented by Ref. [58]. 

The comparison with experimental data considers the following set 
of experiments compiled from the literature: 33 data for E1, 54 data for 
E2, 46 data for G12, 26 data for G23 and 29 data for ν12. The references for 
these data are presented in Table 1, as well as the type of fiber and 
matrix. The calibrated parameters of the novel ROMm are presented in 
Table 2. 

The most traditional form to compare different micromechanical 
models with experimental data is plot the effective property according to 
the fiber volume fraction. The experimental results are plotted together 
with markers. However, this graphic only can be useful for qualitative 
comparison. Fig. 2 shows a comparison between all the analytical 
models and a set of experimental data. It is impossible to allege, in a 
quantitative sense, which model obtain the best prediction. Moreover, if 
the comparison includes a broad range of fibers and matrices types, 
many figures are required. 

The comparison considers two different approaches for each effec-
tive property: the absolute value of the average error, which one is able 
to present the general estimative; and the ranges of error, that are 
classified as smaller than 10%, between 10% and 20%, between 20% 
and 30%, between 30% and 40%, between 40% and 50% and higher 
than 50%. 

Fig. 3 and Fig. 4 present results of E1 and ν12, respectively. It should 
be pointed out that for most of the models based on the ROM, they 
employ the same estimative of the ROM and therefore, they are not 
presented in the comparison. Two main conclusions may be highlighted: 
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i) all the models obtained a good approximation for E1, once the 
constituents work very similar to elements in parallel for longi-
tudinal loads (at least in elastic regime);  

ii) despite all the models also get closer predictions for ν12, the 
Chamis model obtained a small improvement when the void 
volume fraction is considered, indicating a possible modeling 
improvement;  

iii) an experimental measurement of ν12 has many dificults, for 
instance due to material inomogeneity, and the data are very 
scattered;  

iv) since all the models’ prediction are acurate for E1 and none of the 
presented a significant improvement for ν12, the most reco-
mendable estimation for these properties are those presented in 
Eq.(1) and (2) by the ROM due to its simplicity. 

For the other properties the conclusions are discussed individually 
because the ROMm is also included and a more significant disagreement 
between models’ prediction is realized. For the transversal elastic 
modulus, E2, results are presented in Fig. 5. The following points are 
highlighted: 

i) for E2 the ROMm obtained the best prediction in both method-
ology with the average error equal to 10.6% and 61.1% of the 
estimations with error smaller than 10% compared with the 
experimental data;  

ii) the modification of the HT model, HTm, do not present an 
improvement on the original model capability;  

iii) the AHs obtained closer predictions of the experimental data than 
AHh, indicating that the methodology proposed by Ref. [8]; 
where an initially square array is modified according to the de-
gree of nonuniformity, may be very relevant for numerical 
simulation;  

iv) once the fiber distribution is highly influenced by manufacture 
process, uncertainty quantification related to the degree of 
nonuniformity of each manufacture process seem to be a prom-
ising improvement in relation to the traditional finite element 
procedures. 

For the in-plane shear modulus, G12, results are presented in Fig. 6 
and the main conclusions are:  

i) for G12 all the models have a very close prediction, indicating that 
the influence of the fiber distribution has not a considerable in-
fluence in this property;  

ii) it is well know the nonlinear behavior of unidirectional laminae 
for high in-plane shear stress-strain level [71], becoming a hard 
task properly measure G12 and, consequently, it is expected 
higher error for this properties;  

iii) due to this nonlinearity, the micromecanical elastic modulus 
discussed in this paper must be considered for lower in-plane 
shear stress-strain level;  

iv) as a consequence of this issue, the models based on the ROM 
obtained a closer prediction than thoses elasticity-based once the 
novel ROMm and HT contain calibrated parameters and Ch has a 
semi-empirical basis proposed also to adjust the estimation ac-
cording to experimental data. 

Finally, for out-of-plane shear modulus, G23, the following conclu-
sions are pointed out: 

i) for G23 the ROMm obtained the best agreement with experi-
mental data, where the average error is equal to 7.19% and 
84.6% of the prediction has a error smaller than 10%;  

ii) the Br and AHs also have an excelent estimations for G23, both 
with average error smaller than 10% and more than 75% of the 
cases with error smaller than 10%;  

iii) smaller amount of experimental data for G23 is reported on the 
literature because the most traditional modeling procedure for 
laminate plates, the Classical Laminate Theory, assumes plane- 
stress in each layer [71];  

iv) with the advantage of computational tools, through thickness 
effecst have been regarded and its influence in laminate failure 
becomes more relevant to modeling delamination and notched 
plates, for example [72];  

v) as the out-of-plane load can be considered as a biaxial tension- 
compression equivalent load, include the degree of nonunifor-
mity for numerical modeling also is suggested for further studies. 

5. Conclusions 

An overview of 10 micromechanical models to estimate the effective 
elastic properties of unidirectional laminae is presented. Four of these 
models are based on the ROM and five are elasticity based. Also, a new 
modified ROM model is proposed. It is formulated by a simple set of 
equations. This modified ROM model provides the effective macro-
mechanical properties that better agree with the experimental data. 
Results of 10 micromechanical models are compared with 188 experi-
mental data from 25 references. Among the models, the AHs resulted in 
the best predictions. The novel ROMm model proves to be an interesting 
approach but it needs to be adjusted for the specific material. The cali-
brated parameters are just for carbon and glass fibers with epoxy matrix. 
Comparing ROMm and AHs, the ROMm has the advantage to be a simple 
set of equations, but it needs an additional adjustment for different 
materials. On the other hand, AHs has more complex equations but it 
does not require any calibration. In summary, ROMm gives the best 
correlation with the experimental data among the ROM-based models, 
while AHs presents the best predictions among the elasticity-based 
models. 
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