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This article discusses the Lyapunov exponent estimation of non-linear hysteretic systems
by adapting the classical algorithm by Wolf and co-workers [Wolf, A., Swift, J.B., Swinney,
H.L., Vastano, J.A., 1985. Determining Lyapunov exponents from a times series. Physica D
16, 285–317.]. This algorithm evaluates the divergence of nearby orbits by monitoring a
reference trajectory, evaluated from the equations of motion of the original hysteretic sys-
tem, and a perturbed trajectory resulting from the integration of the linearized equations of
motion. The main issue of using this algorithm for non-linear, rate-independent, hysteretic
systems is related to the procedure of linearization of the equations of motion. The present
work establishes a procedure of linearization performing a state space split and assuming
an equivalent viscous damping in order to represent hysteretic dissipation in the linearized
system. The dynamical response of a single-degree of freedom pseudoelastic shape mem-
ory alloy (SMA) oscillator is discussed as an application of the proposed algorithm. The res-
titution force of the oscillator is provided by an SMA element described by a rate-
independent, hysteretic, thermomechanical constitutive model. Two different modeling
cases are considered for isothermal and non-isothermal heat transfer conditions, and
numerical simulations are performed for both cases. The evaluation of the Lyapunov expo-
nents shows that the proposed procedure is capable of quantifying chaos capturing the
non-linear dissipation of hysteretic systems.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Hysteretic behavior occurs in different physical systems associated with phenomena such as phase transitions, plasticity,
ferroelectricity, and superconductivity. Shape memory alloys (SMAs) represent a class of materials with a strong hysteretical
behavior in their thermomechanical response. SMAs have the property of recovering apparently permanent strains when
subjected to a proper thermomechanical loading path. The key property that drives the shape recovery is the martensitic
phase transformation that takes place in SMAs. Pseudoelasticity is one of the thermomechanical behaviors caused by the
martensitic phase transformation exhibited by SMAs, and is associated with a large recoverable strain upon a thermome-
chanical loading path (Otsuka and Wayman, 1999).

The hysteretic behavior of pseudoelastic SMAs results in a high dissipation capacity that can be used to attenuate unde-
sired vibrations of a mechanical system or structure (Williams et al., 2002; Salich et al., 2001; Saadat et al., 2002; Lagoudas
et al., 2005; Machado et al., 2006). Even though SMA evolving thermomechanical properties and high dissipation capacity are
very interesting characteristics to be explored in passive vibration isolation systems, they can also lead to a very complex
dynamical response, in some cases leading to chaotic response. Chaotic responses imply that two very close but different
orbits can diverge over the course of time, and consequently, chaos is related to long-term unpredictability. Therefore, it
. All rights reserved.
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is of fundamental importance to study the non-linear dynamical response of SMA systems. Many researchers have
investigated the complex dynamical response of SMA systems, including the possibility of chaotic responses. Feng and Li
(1996), for example, numerically and experimentally investigated the dynamical response of a mechanical system consisting
of a mass, a SMA bar and a linear viscous damper. The constitutive model proposed by Graesser and Cozzarelli (1991) was
used to simulate the behavior of the SMA bar. The effect of stress-induced phase transformation on the resonance frequency
and peak response near the resonance was also investigated. In particular, period-three response was found for some forcing
parameters, as well as a period-doubling cascade, in which chaotic motion was observed in the presence of a bias load.

Savi and co-workers (Savi and Braga, 1993; Savi and Pacheco, 2002; Machado et al., 2004) also studied the dynamical re-
sponse of a single-degree of freedom (S-DOF) oscillator composed of a mass, a linear damper, and an SMA element, with spe-
cial attention to chaotic motions. A polynomial constitutive model, proposed by Falk (1980), was used to describe the
restitution force of the SMA. Lyapunov exponents were used to quantify chaotic motion of the SMA oscillator for certain
ranges of excitation force and temperature. Savi and Pacheco (2002), and Machado et al. (2003) analyzed coupled shape
memory oscillators, considering a two-degree of freedom oscillator, for free and forced vibration cases. It was shown that
chaos, and even hyper-chaos, can be associated with the presence of one or more positive Lyapunov exponents. It is impor-
tant to mention that the polynomial model proposed by Falk (1980) is a non-linear polynomial model that establishes the
thermomechanical equilibrium curve due to a change of crystallographic phase, but does not properly describe the hysteretic
behavior of the SMA. The damping effect related to the SMA material was considered by assuming a linear viscous damping
representing the amount of damping for a steady state solution. Therefore, the estimation of the Lyapunov exponents was
performed by directly employing the algorithm by Wolf et al. (1985). Alternatively, Savi et al. (2008) have numerically inves-
tigated the dynamic response of a S-DOF SMA oscillator, where the restitution force was described by a constitutive model
with internal constraints (Paiva et al., 2005). Tensile-compressive asymmetry of the SMA behavior was also studied, present-
ing chaotic-like and multi-stability response of the SMA oscillator.

Lacarbonara et al. (2004) investigated the non-linear response and bifurcations of an S-DOF shape memory oscillator. A
thermomechanical model based on the work by Ivshin and Pence (1994) was utilized to describe the non-linear constitutive
behavior of the shape memory element of the oscillator. It was shown that a rich class of solutions, including discontinuity of
frequency responses, quasi-periodicity and chaos could arise in nearly adiabatic conditions. Bernardini and Rega (2005) also
studied the non-linear dynamics of a single-degree of freedom pseudoelastic SMA oscillator. A constitutive model for the
oscillator restoring force developed in a thermomechanical framework that allows the prediction of temperature variations
due to dynamical loading was proposed. The authors have shown that non-regular responses occur around the jumps
between different branches of frequency–response curves. Bifurcation diagrams were used to describe the transition from
periodicity to chaotic motion.

Khan et al. (2004) and Lagoudas et al. (2004) investigated the pseudoelastic response of shape memory alloys on passive
vibration isolation through numerical simulation and experimental correlation. A physically based simplified SMA model
and an empirical model based on system identification (Preisach model) were adapted to simulate the force–displacement
response of pseudoelastic SMA tubes (modeled as non-linear hysteretic spring elements). An extensive parametric study on a
non-linear hysteretic dynamic system, representing an actual SMA damping and on a passive prototype device, was con-
ducted. Several tests were performed to explore the response of the SMA vibration isolation device. The results have shown
that variable damping and tunable vibration isolation response can be achieved based on a combination of different param-
eters such as excitation levels, mass and pre-compression of the pseudoelastic SMA spring elements.

Lagoudas et al. (2005) conducted numerical and experimental investigations on a passive vibration and isolation damping
device where the main elements were pseudoelastic SMA wires. The device, a mass connected to a frame by two preten-
sioned SMA wires, was subjected to a series of continuous sinusoidal acceleration functions in the form of a sine sweep. Fre-
quency responses and transmissibility of the device were analyzed. The temperature of the wires during the dynamic test
were also measured. The experimental results have shown that the transmissibility curves present a discontinuity related
to the non-linear damping introduced by the hysteretic behavior of the SMA wires. In addition, temperature variations of
the wires were observed, related to the stress induced martensitic phase transformation. The numerical simulations of a the-
oretical one-degree of freedom SMA oscillator were conducted. The configuration of this theoretical oscillator was based on
the experimental device, where a thermomechanical constitutive model proposed by Boyd and Lagoudas (1996) was imple-
mented to simulate the constitutive behavior of the SMA wires. Machado et al. (2006) revisited the experimental results pre-
sented in Lagoudas et al. (2005) and compares them with numerical simulations of a SMA oscillator where the behavior of
the SMA elements where described by a modified version of the constitutive model proposed by Machado et al. (2006). This
modified version of the constitutive model predicts the strong thermomechanical coupling behavior of the SMAs caused by
the presence of the latent heat of transformation. The thermomechanical coupling leads to a time-dependent behavior of the
SMA device, even though the constitutive model is rate-independent, where the temperature variations caused by stress-in-
duced phase transformation were also predicted. Machado et al. (2004) evaluated the dynamical response of an S-DOF SMA
oscillator using the same simplified model proposed by Khan et al. (2004) to simulate the SMA behavior. As a consequence of
the non-linearities exhibited by the SMA, the oscillator response was shown to be complex, where chaotic behavior is also
observed.

Lyapunov exponents have proven to be the most useful dynamical diagnostic tool for chaotic behavior (Wolf et al., 1985).
These exponents evaluate the sensitive dependence on initial conditions by estimating the exponential divergence of nearby
orbits (Wolf et al., 1985; Nayfeh and Balachandran, 1995). The signs of the Lyapunov exponents provide a qualitative picture
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of the system’s dynamics and any system containing at least one positive exponent presents chaotic behavior. The determi-
nation of Lyapunov exponents of dynamical system with an explicitly mathematical model that can be linearized is well-
established. The algorithm proposed by Wolf et al. (1985) is a well-known method to compute the spectrum of Lyapunov
exponents and evaluates the divergence of nearby orbits monitoring a reference trajectory, evaluated from the equations
of motion, and a perturbed trajectory integrated by a linearized system.

The current work discusses Lyapunov exponent estimation by using an adapted version of the algorithm by Wolf et al.
(1985) for hysteretic systems. The main issue when implementing the original algorithm for hysteretic systems is related
to the linearization process, where information about the rate-independent hysteretic damping may be lost during the lin-
earization process. Therefore, a procedure to linearize the equations of motion is proposed by defining equivalent stiffness
and also an equivalent viscous damping. As an application of the proposed procedure, the dynamical response of a single-
degree of freedom pseudoelastic SMA oscillator is discussed. The oscillator restitution force is provided by a pseudoelastic
SMA element described by a rate-independent thermomechanical constitutive model (Boyd and Lagoudas, 1996; Qidwai
and Lagoudas, 2000; Machado et al., submitted for publication). The model is developed under the same thermomechanical
framework introduced by Boyd and Lagoudas (1996) but with a new hardening function that guarantees continuous and
smooth transitions between elastic and transformation regimes (Machado et al., submitted for publication). Due to the con-
tinuity and smoothness of the phase transitions, the model is suitable to simulate the behavior of trained polycrystalline
pseudoelastic SMAs (Machado et al., submitted for publication). Numerical simulations of the SMA oscillator are carried
out for free and forced vibrations, where two different analyses are of concern: isothermal and non-isothermal conditions.
Non-isothermal conditions consider the thermomechanical coupling in the constitutive model. Special attention is given to
chaotic responses of the oscillator, where the proposed procedure of Lyapunov exponent estimation is employed to quantify
chaos.

The current work is divided into five sections. Section 2 presents the S-DOF pseudoelastic SMA oscillator. The equations of
motion of the oscillator are introduced and then reduced to a non-dimensional form. This section also discusses the rate-
independent constitutive model for SMAs with smooth transformation hardening that is used to simulate the constitutive
behavior of the hysteretic SMA element. Section 3 presents the numerical implementation of the integration of the equations
of motion, including the constitutive model. The operator split technique is of special interest at this point. Here the equa-
tions of motion are integrated via the Newmark method while solution of the constitutive equations require a form of the
return mapping algorithm. The numerical simulations of the SMA oscillator are presented in Section 4. Free and forced vibra-
tions of SMA oscillators are simulated for the case of isothermal conditions. Non-isothermal conditions are also considered
for forced vibrations. Section 5 presents the Lyapunov exponents. The process of linearizing the equations of motion is pre-
sented in this section, as well as a procedure to determine an equivalent viscous damping for the hysteretic system. Finally,
the estimation of the Lyapunov exponents using the proposed procedure is conducted, verifying periodic or chaotic motion
for certain parameters of the system.

2. Single-degree of freedom hysteretic oscillator

The hysteretic system analyzed in this article is a single-degree of freedom oscillator (Fig. 1), which consists of a mass m
attached to a hysteretic element, assumed to be a prismatic bar of length L and cross-section area A. The system is harmon-
ically excited by a force F sinðxtÞ.

The equation of motion of the oscillator is given by
m€yþ FH ¼ F sinðxtÞ; ð1Þ
where y is the mass displacement from its reference position, relative to an inertial frame, x is the forcing frequency, F is the
amplitude of the excitation force and FH is the force exerted by the hysteretic element on the mass.

A non-dimensional version of Eq. 1, can be obtained by assuming that the hysteretic element restitution force is equally
distributed at all points of the SMA element. We can then define r :¼ FH=A, where r represents the nominal uniaxial stress in
the hysteretic element, and e :¼ y=L, where e is a non-dimensional displacement of the mass, also corresponding to the axial
strain of the hysteretic element. The equation of motion of the oscillator, Eq. 1 then results in the following form:
Fig. 1. Single-degree of freedom hysteretic oscillator. (a) Hysteretic oscillator and (b) free body diagram.
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€eþ rA
mL
¼ F

mL
sinðxtÞ: ð2Þ
In addition to the normalized displacement, the following non-dimensional variables are introduced:
x0 :¼

ffiffiffiffiffiffiffiffi
EAA
mL

s
; bF :¼ F

mLx2
0

;

t̂ :¼ x0t; x̂ :¼ x
x0

; r̂ :¼ r
EA

ð3Þ
where EA represents a general modulus with units of stress (it could be identified with the elastic Young’s
modulus of the hysteretic element, e.g., in the case of an SMA, the elastic modulus of austenite) and x0 is
related to the natural frequency of the system (it could be identified as the natural frequency of the system,
when the SMA element is in fully austenitic phase). With the above definitions, and after introducing the deriv-
ative with respect to non-dimensional time, e0 :¼ de=dt̂, the equation of motion, Eq. 2, can be re-written in a
non-dimensional form as
e00 þ r̂ ¼ bF sinðx̂t̂Þ: ð4Þ
A state vector can now be introduced as
x :¼ ðx1; x2Þ :¼ ðe; e0Þ; ð5Þ
which will reduce Eq. 4 from a second-order ordinary differential equation form to a first order system as follows:
x01 ¼ x2;

x02 ¼ bF sinðx̂t̂Þ � r̂:
ð6Þ
The specific expression for r̂ depends on the constitutive modeling of the hysteretic material. Of course, this description may
be related to other internal variables changing the system dimension. As a specific application of hysteretic behavior, an SMA
material system is considered, described by a rate-independent thermomechanical constitutive model presented in the next
section.

2.1. Constitutive model for polycrystalline SMAs with smooth transformation hardening

This section presents the constitutive model used in this work to simulate the SMA hysteretic behavior. The model is
developed under the same thermomechanical framework proposed by Boyd and Lagoudas (1996). The main difference be-
tween the model by Boyd and Lagoudas (1996) and the model presented here is the hardening function employed to describe
the transformation hardening behavior of SMAs. This new hardening function allows smooth transitions between the mar-
tensitic and austenitic phases.

Since the SMA element is a one-dimensional element, we present here only the one-dimensional form of the constitutive
model. Moreover, we present the Gibbs free energy in a non-dimensional form. The constitutive model introduces a non-
dimensional Gibbs free energy, bG, of a polycrystalline SMA, as a function of the independent state variables: stress r̂, and
temperature bT , and also of the internal state variables: martensitic volume fraction n, and transformation strain et . Note that
in this constitutive model the martensitic volume fraction is assumed to be a scalar quantity, and it includes the volume frac-
tions of all martensitic variants. The one-dimensional form of the normalized Gibbs free energy (Qidwai and Lagoudas, 2000)
has the following form:
bGðr̂; bT ; n; etÞ ¼ �1
2
bSr̂2 � r̂½âðbT � bT 0Þ þ et � þ ĉ ðbT � bT 0Þ � bT ln

bTbT 0

 !" #
� ŝ0

bT þ û0 þ f̂ ðn; n0Þ; ð7Þ
where the non-dimensional quantities are defined as follows:
bG :¼ qG

EA ; bSA :¼ SAEA; bSM :¼ SMEA; âA :¼ aAAs; âM :¼ aMAs; bT :¼ T
As

; bT 0 :¼ T0

As
; ĉA :¼ q

EA AscA;

ĉM :¼ q
EA AscM; ŝA

0 :¼ q
EA AssA

0 ; ŝM
0 :¼ q

EA AssM
0 ; ûA

0 :¼ q
EA uA

0 ; ûM
0 :¼ q

EA uM
0 ; f̂ :¼ f

EA :

ð8Þ
In the above equation bT 0 is the non-dimensional reference state temperature. The function f̂ ðn; n0Þ is the non-dimensional
hardening function that defines the interaction between the austenitic and martensitic phases, and will be discussed later.
The non-dimensional material constants bS; â; ĉ; ŝ0; û0 are, respectively, the non-dimensional effective compliance coefficient,
non-dimensional effective thermal expansion coefficient, non-dimensional effective heat capacity coefficient, non-dimen-
sional effective specific entropy at the reference state, and the non-dimensional effective specific internal energy at the ref-
erence state. These non-dimensional effective material properties can be defined in terms of the martensitic volume fraction,
n, by the rule of mixtures, as follows:
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bS ¼ bSA þ nðbSM � bSAÞ ¼ bSA þ nDbS; ð9Þ
â ¼ âA þ nðâM � âAÞ ¼ âA þ nDâ; ð10Þ
ĉ ¼ ĉA þ nðĉM � ĉAÞ ¼ ĉA þ nDĉ; ð11Þ
ŝ0 ¼ ŝA

0 þ nðŝM
0 � ŝA

0Þ ¼ ŝA
0 þ nDŝ0; ð12Þ

û0 ¼ ûA
0 þ nðûM

0 � ûA
0Þ ¼ ûA

0 þ nDû0; ð13Þ
where the superscript A stands for the austenitic phase, and the superscript M stands for the martensitic phase. Notice that
Dð:Þ ¼ ð:ÞM � ð:ÞA.

Constitutive relations are obtained by following a standard thermodynamic procedure, where the Gibbs free energy and
the internal energy, which are related through the Legendre transformation, are substituted into the first and second law of
thermodynamics as expressed in the Clausius–Duhem inequality (Coleman and Gurtin, 1967). The total infinitesimal strain
tensor and entropy are derived as follows:
e ¼ � obG
or̂
¼ bSr̂þ âðbT � bT 0Þ þ et; ð14Þ

ŝ ¼ � obG
obT ¼ r̂âþ ĉ ln

bTbT 0

 !
þ ŝ0: ð15Þ
After defining the expressions for the strain and non-dimensional entropy, we have as the remaining of the local dissipation
inequality the following expression:
� obG
oet

 !
ðetÞ0 þ � obG

on

 !
n0 P 0: ð16Þ
The evolution of the martensitic volume fraction during forward and reverse transformation (flow rule) can be expressed by:
ðetÞ0 ¼ Hsgnðr̂Þn0; ð17Þ
where H is the maximum uniaxial transformation strain.
Substituting the flow rule, Eq. 17 into the local dissipation inequality, Eq. 16 we obtain
� obG
oet Hsgnðr̂Þ � obG

on

 !
n0 ¼ bPn0 P 0; ð18Þ
where bP is the thermodynamic force conjugated to n, and it has the following form:
bP ¼ jr̂jH þ 1
2

DbSr̂2 þ r̂DâðbT � bT 0Þ þ �Dĉ ðbT � bT 0Þ � bT ln
bTbT 0

 !" #
þ Dŝ0

bT þ Dû0 �
of̂
on
: ð19Þ
Next, we introduce the hardening function that is used to describe the interaction between the austenitic and martensitic
phases and martensitic variant themselves. The new hardening function is a general polynomial hardening function, which
allows smooth transitions between the elastic and transformation regimes. The new hardening function is constructed in
such a way that it has continuous derivatives and it has the following form:
f̂ ðn; n0Þ ¼

1
2

â1 nþ nn1þ1

ðn1 þ 1Þ þ
ð1� nÞn2þ1

n2 þ 1ð Þ

 !
; n0 > 0

1
2

â2 nþ nn3þ1

ðn3 þ 1Þ þ
ð1� nÞn4þ1

ðn4 þ 1Þ

 !
; n0 < 0

8>>>>><>>>>>:
ð20Þ
where â1 and â2 are material parameters that are defined as functions of other material parameters, such as transformation
temperature. The definition of â1 and â2 will be given later. The exponents n1; n2;n3 and n4 can assume values as either inte-
gers or rational numbers. Machado et al. (submitted for publication) has shown that for 0 6 n1;n2;n3;n4 6 1 the hardening
function is smooth and has continuous derivatives.

Since the constitutive model is constructed under a rate-independent formulation, the model assumes that the mar-
tensitic phase transformation will proceed whenever the thermodynamic force bP, Eq. 19, reaches a critical value, bY �
(Boyd and Lagoudas, 1996). Instead of prescribing an evolution equation for n0, one can then use Eq. 19 to directly obtain
the value of n. The assumption of a critical thermodynamic force is implemented in such a way that the second law of
thermodynamics is satisfied for all possible thermodynamical loading paths. Therefore, the forward phase transformation
will occur whenever bP ¼ bY �. Conversely, the reverse phase transformation will take place when the thermodynamic
force reaches the value of bP ¼ �bY �. Eqs. 21 and 22 show the form of the thermodynamic force bP during forward
and reverse phase transformation, respectively
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jr̂jH þ 1
2
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bTbT 0

 !" #
þ Dŝ0

bT þ Dû0 �
1
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jr̂jH þ 1
2

DbSr̂2 þ r̂DâðbT � bT 0Þ � Dĉ ðbT � bT 0Þ � bT ln
bTbT 0

 !" #
þ Dŝ0

bT þ Dû0 �
1
2

â2ð1þ nn3 � ð1� nÞn4 Þ ¼ �bY �; n0 < 0

ð22Þ
where bY � is defined to be the critical value for thermodynamic force to cause martensitic phase transformation. It is
important to mention that even though there are two different branches to account for the forward and the reverse
phase transformation, the current constitutive model is derived in such a way that it guarantees smooth transitions be-
tween the elastic and transformation regimes. The proof of the smoothness is given in Machado et al. (submitted for
publication).

It has been experimentally observed that the SMAs have a strong thermomechanical coupling, due to generation of latent
heat during phase transformation. The thermomechanical coupling can cause the self-heating and self-cooling of the mate-
rial during phase transformation, altering the material behavior. Therefore, it is fundamental that the constitutive model be
able to capture temperature variations of the SMA due to phase transformation. It is even more important to consider the
thermomechanical coupling when the SMA is subjected to dynamical loadings. Such cyclic loading can lead to consecutive
phase transitions, and consequently to large temperature variations.

The thermomechanical coupling is incorporated in the constitutive model through the heat equation. The fully thermo-
mechanical coupled heat equation can be derived by combining the total strain (Eq. 14), entropy (Eq. 15) and the first law of
thermodynamics with the time derivative of the entropy, where the dissipation inequality is satisfied at all times. The only
form of heat transfer considered in the current work is due to heat convection. It is assumed that no heat flux occurs within
the SMA element and that there is no heat transfer due to radiation. Therefore, after algebraic manipulation, the one-dimen-
sional form of the heat equation is given by
bT âr̂0 þ ĉbT 0 þ bT r̂Dâ� DĉbT ln
bTbT 0

 !
þ Dŝ0

bT !
n0 ¼ ĥðbT � bT1Þ; ð23Þ
where the first term on the left-hand side, which is related to the thermoelastic coupling, expresses how the tempera-
ture changes due to a variation of the stress level. The second term is related to the thermal energy, while the third
term of the left-hand side expresses how the SMA temperature changes due to phase transformation. The term of the
right-hand side is related to the heat transfer condition due to convection, where bT1 is the non-dimensional surround-
ing environment temperature, and ĥ is the non-dimensional heat convection coefficient. Isothermal conditions can be
simulated by assuming an infinite heat convection coefficient ĥ in Eq. 23, whereas adiabatic conditions can be achieved
by assuming ĥ equal to zero. Any value of the ĥ between zero and infinity is considered, in the present work, as non-
isothermal heat transfer conditions. The non-dimensional form of ĥ is defined by ĥ :¼ As

VEAx0
h, where V is the volume of

the SMA element.

2.2. Equations of motion

Now that the constitutive model with the thermomechanical coupling has been presented, we can return to the equations
of motion. Since the non-dimension stress is given by
r̂ ¼ 1bS ½e� âðbT � bT 0Þ � et �; ð24Þ
Eq. 6 can be written as follows:
x01 ¼ x2;

x02 ¼ bF sinðx̂t̂Þ � 1bS ½x1 � âðbT � bT 0Þ � et�:
ð25Þ
At this point, it is important to discuss the dimension of the dynamical system. The state variables are the normalized dis-
placement, e, the normalized velocity, e0, the normalized temperature, bT , and martensitic volume fraction n, in addition to
normalized time, t̂. Therefore, it is a five-dimensional system and the evolution equations are established by the equations
of motion and by the constitutive equations. This system may be written as follows:
w0 ¼ HðwÞ; ð26Þ
where H is a five-dimensional continuous differentiable vector function. The state space may be convenient split into three
parts: the phase-plane subspace, related to normalized displacement and velocity: x :¼ ðx1; x2ÞT ¼ ðe; e0ÞT ; the neutral direc-
tion represented by the normalized time, t̂; and the constitutive subspace, composed by the normalized temperature, bT , and
martensitic volume fraction n.
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This split is convenient both for numerical and for analytical purposes. Numerically speaking, this can be understood as
the operator split technique that transforms the coupled original space in a sequence of uncoupled subspaces (Ortiz et al.,
1983). By analyzing the complete set of equations of motion, notice that the state variables x are found by solving the equa-
tions of motion, Eq. 25. Concerning the constitutive variables, bT is found by solving heat equation (Eq. 23) while n or et are
found by integrating the evolution equation, Eq. 17, together with the transformation function, Eqs. 21 or 22. Moreover, bS
and â can be calculated from Eqs. 9 and 10, respectively. Under these assumptions, each subspace may be treated separately
using proper numerical procedures to each part. The next section describes this procedure.

3. Numerical implementation of the constitutive model and integration of the equations of motion

In order to deal with non-linearities of the equations of motion, an iterative procedure based on the operator split tech-
nique (Ortiz et al., 1983) is employed. A predictor step is obtained by assuming that no phase transformation has occurred.
Under this assumption, the value of the variables et and bT assume a trial value that is equal to the values of these variables at
the previous time instant. Therefore, equations of motion may be integrated by some classical method such as the Newmark
method, for example.

Afterwards, the displacement is used as an input for the constitutive model equations. The implementation of the con-
stitutive model follows the same procedure described in Qidwai and Lagoudas (2000). In general, given an increment of
strain and temperature, the incremental form of the SMA constitutive model provides an increment of stress as an outcome.
The increment of stress is calculated by implementing a return mapping algorithm. The return mapping algorithm solves the
thermoelastic-transformation problem defined by the total strain relation, Eq. 14, the flow rule, Eq. 17 and the Eqs. 21 or 22,
by dividing it into two problems using an additive split (Qidwai and Lagoudas, 2000). At first, a thermoelastic prediction
problem, assuming that the increment of the transformation strain vanishes, is attempted. If the predicted thermoelastic
state violates the condition that bP ¼ �bY �, during forward or reverse transformation, a transformation correction problem
takes place to restore the condition. The present work uses the closest point projection algorithm as the corrector algorithm.
The algorithm is based on the backward Euler integration rule of the transformation strain flow rule, which results in a set of
non-linear algebraic equations solved using Newtons iteration method (Qidwai and Lagoudas, 2000).

After the constitutive calculation, the equations of motion need to be reevaluated with the updated values of the et and bT .
Notice that under these assumptions, the coupled equations of motion are solved in an uncoupled form considering two
steps: dynamical problem and constitutive model. An iterative procedure needs to be performed until a prescribed tolerance
is assured.

In deriving this constitutive model, it was necessary to introduce some material parameters that cannot be directly de-
rived from experimental data. These material parameters are defined as a function of other material parameters such as
transformation temperatures bMf ; bMs; bAs and bAf , and the entropy difference between the phases Dŝ0. Table 1 presents the
expressions describing these SMA material parameters. The procedure for deriving the material parameters given in Table
1 can be found in Lagoudas et al. (in press).

As an example of how the SMA behavior can change due to different heat transfer conditions, Fig. 2 shows normalized
stress versus strain and normalized temperature versus non-dimensional time curves of a SMA subjected to isothermal, adi-
abatic, and non-isothermal conditions. The material parameters of a typical NiTi SMA wire, which will be used in this work,
are given by Table 2. The non-dimensional transformation temperatures at zero-stress are defined bybMs :¼ Ms=As; bMf :¼ Mf =As, and bAf :¼ Af =As. The heat transfer coefficient for this simulation is selected to be
ĥ ¼ �4:423� 10�2, while the temperature of the surrounding environment is chosen to be bT1 ¼ 1:258.

Fig. 2 shows the case of complete phase transformation under loading and unloading. It can be noticed in Fig. 2a that non-
isothermal conditions tends to increase the energy dissipation as the area of the hysteresis loop enlarges. Fig. 2b show the
temperature variation during loading and unloading. The difference in the temperature variation of the adiabatic and non-
isothermal heat conditions, and the impact of the temperature variation on the stress versus strain response of the SMA is
quite evident.

4. Numerical simulations

In order to analyze the dynamical response of a single-degree of freedom pseudoelastic SMA oscillator, free and forced
vibrations are carried out by employing the numerical procedure discussed in the previous section. The SMA material param-
eters are given by Table 2, representing a typical NiTi alloy.
Table 1
SMA model parameters

bY � ¼ 1
2 Dŝ0ð bMs � bAf Þ

â1 ¼ 1
2 Dŝ0ð bMf � bMsÞ

â2 ¼ 1
2 Dŝ0ð1� bAf Þ

Dû0 ¼ 1
2 Dŝ0ðbAf þ bMsÞ

n1 ¼ 0:21;n2 ¼ 0:25;n3 ¼ 0:11; n4 ¼ 0:13



Fig. 2. Stress vs. strain and temperature vs. time curves: comparison of isothermal, non-isothermal and adiabatic cases. (a) r̂vs:e and (b) bTvs:̂t.

Table 2
Values of SMA material constants

bSA ¼ 1:0 bSM ¼ 1:333
âA ¼ 0:00513 âM ¼ 0:00513
ĉA ¼ 0:00216 ĉA ¼ 0:00216
H ¼ 0:03 or̂

obT ¼ 0:0416bT 0 ¼ 1:258 Dŝ0 ¼ �8:113bMf ¼ 0:914 bMs ¼ 1:154bAs ¼ 1:0 bAf ¼ 1:258
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4.1. Free vibration

Free vibrations are first considered by vanishing the forcing term of the right-hand side of Eq. 1, and by giving appropriate
initial conditions to the oscillator. Fig. 3 shows results related to the free vibration of the isothermal SMA oscillator. Results
are presented in the form of stress versus strain and phase plane curves. For a high energy initial condition
ðx1ð0Þ; x2ð0ÞÞ ¼ ð0:0;0:04Þ, and bT ¼ 1:258 the system dissipates energy due the hysteresis loop. The level of energy dissipated
per cycle is equivalent to the area of the hysteresis loop, defined by the amount of phase transformation that the SMA under-
went. However, in the course of time, as the SMA dissipates energy, the system converges to the elastic regime. Since there is
no phase transformation during the elastic regime, no energy dissipation due to hysteresis takes place. The oscillator motion
converges to a limit cycle. Similar results may be found for non-isothermal heat transfer conditions.

4.2. Forced vibrations

The focus now shifts to forced vibrations. The SMA oscillator is subjected to a harmonic forcing excitation and two dif-
ferent situations are considered: isothermal and non-isothermal conditions. First, let us consider isothermal conditions.
Fig. 3. Free response of the SMA oscillator: stress vs. strain and phase portrait curves. (a) r̂vs:e and (b) e0vs:e.
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4.2.1. Forced vibration – isothermal conditions
Forced vibration of the pseudoelastic SMA oscillator is investigated by considering a fixed amplitude of the excitation

force and different values of the excitation frequency. Since, at first, we are assuming isothermal conditions, the temperature
of the SMA element is fixed at bT ¼ 1:258. In addition, the amplitude of the excitation force is selected to be bF ¼ 0:008 for all
simulations.

Fig. 4a presents the bifurcation diagram of the SMA oscillator subjected to isothermal conditions, for the range of frequen-
cies of 0:24 < x̂ < 0:76. One can observe that Fig. 4 contains regions of clouds of points separated by regions with lines. Usu-
ally the regions of clouds of points are associated with chaotic regime, and the regions of lines are related to periodic regime.
Fig. 4b shows an enlargement of Fig. 4a for the interval of 0:35 < x̂ < 0:55.

It is important to mention that if we consider two linear undamped oscillators, with elastic properties of austenite and
martensite, the resonance frequencies of the these oscillators would be x̂A ¼ 1:0 and x̂M ¼ 0:866, respectively.

At this point, we select two certain values of excitation frequencies to investigate the dynamical response of the SMA hys-
teretic oscillator. First a frequency expected to provide periodic response is chosen. Fig. 5 shows the oscillator dynamic re-
sponse during steady state, for the case of bF ¼ 0:008 and x̂ ¼ 0:356. The stress versus strain and the phase plane curves are
shown in Fig. 5a and b, respectively, while Fig. 5c presents the Poincaré map. Notice that the Poincaré map of Fig. 5c shows
three points that are related to a period-3 motion.

The next analysis is concerned to the oscillator’s motion when the excitation frequency is x̂ ¼ 0:397. This is seen in Fig. 4
to be a possible chaotic response frequency. Fig. 6a presents stress versus strain curve, while Fig. 6b presents phase plane
curve. The Poincaré section is shown in Fig. 6c. This time, the Poincaré map presents a cloud of points that can be associated
with chaotic motion. However, only after the evaluation of the Lyapunov exponents one can claim that it is really chaos.

4.2.2. Forced vibrations – non-isothermal conditions
At this point, non-isothermal conditions are considered. The bifurcation diagram for non-isothermal conditions is pre-

sented in Fig. 7. The heat transfer coefficient for this simulation is selected to be ĥ ¼ �4:423� 10�2, while the temperature
of the surrounding environment is chosen to be bT1 ¼ 1:258. From the analysis of the bifurcation diagram, one can also iden-
tify regions with clouds of points and regions associated with periodic motion. Fig. 7b shows an enlargement of Fig. 7a for the
interval of 0:35 < x̂ < 0:55.

In a similar way to the previous dynamic analysis of the SMA oscillator for isothermal heat transfer conditions, the excit-
ing force amplitude is selected to be bF ¼ 0:008, while the two single frequency excitation cases are considered to be
x̂ ¼ 0:356 and x̂ ¼ 0:397, respectively. Fig. 8 shows the dynamic response of the oscillator during steady state for the case
of bF ¼ 0:008 and x̂ ¼ 0:356. Fig. 8a shows the stress versus strain curve, while Fig. 8b presents the phase plane curve. Fig. 8c
presents the Poincaré map, while the time history of the temperature is presented in Fig. 8d. It can be observed that the Poin-
caré map of Fig. 8c presents a cloud of points that in principle, could be related to a chaotic motion.

Next, we analyze the oscillator’s motion when the excitation frequency is x̂ ¼ 0:397. Fig. 9a presents the stress versus
strain curve, while Fig. 9b shows the phase plane curve. Fig. 9c shows the Poincaré section, and the time history of the tem-
perature is presented in Fig. 9d. Notice that the Poincaré map presented in Fig. 9c might appear as a period-5 motion, since
there are apparently 5 points in the Poincaré map. Fig. 9d presents the temperature variation of the SMA element for this
simulation, after it has reached steady state.

5. Lyapunov exponents

Lyapunov exponents evaluate the sensitive dependence to initial conditions, verifying the divergence of nearby
orbits. In order to understand the idea related to these exponents consider an N-sphere of states that is transformed
Fig. 4. Bifurcation diagram for isothermal conditions. (a) Interval: 0:2 < x̂ < 0:8 and (b) interval: 0:35 < x̂ < 0:55.



Fig. 5. Forced response of the SMA oscillator for bF ¼ 0:008 and x̂ ¼ 0:356, isothermal conditions (a) r̂vs:e, (b) e0vs:e and (c) Poincaré map: e0vs:e.
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by the system dynamics in an N-ellipsoid. Lyapunov exponents are related to the expanding and contracting nature of
different directions in phase space. The evaluation of the divergence of two nearby orbits is done by considering the
relation between the initial N-sphere and the N-ellipsoid related to a reference trajectory (Nayfeh and Balachandran,
1995; Savi, 2006). Therefore, the ith exponent of the Lyapunov exponent spectrum is defined as follows (Wolf
et al., 1985) (Fig. 10):
ki ¼ lim
t̂!1

1
t̂

ln
di ð̂tÞ
diðt̂0Þ

 !
: ð27Þ
The signs of the Lyapunov exponents provide a qualitative picture of the system’s dynamics and any system containing at
least one positive exponent presents chaotic behavior. Notice that chaos may be geometrically understood considering a se-
quence of contraction–expansion-folder transformations, known as Smale horseshoes (Savi, 2006). The expansion is related
to an unstable direction being associated with a positive exponent. Beside the signs of the exponents, their magnitudes also
provide information on the system’s dynamics. Greater positive values, associated with greater divergence of nearby orbits,
are related to greater instabilities.

The Lyapunov exponents estimation may be implemented by monitoring the evolution of the N-sphere principal axes
evolving with the non-linear equations of motion. One problem with this approach is that chaotic behavior presents an
exponential divergence of nearby orbits. As pointed out by Wolf et al. (1985), this problem may be avoided with the use
of a phase space plus tangent space approach. A reference trajectory defines the N-sphere of states and the evolution of
the N-sphere surface points are defined by the action of the linearized equations of motion. This procedure requires cal-
culation of the reference trajectory by integrating the non-linear equations of motion and, simultaneously, the linearized
equations of motion are integrated for different initial conditions defining an arbitrary oriented frame of N orthonormal
vectors. Since each vector will diverge in magnitude, and in a chaotic behavior, each vector tends to fall along the local
direction of most rapid growth, it is necessary to repeatedly use the Gram–Schmidt reorthonormalization procedure on
the vector frame, as shown in the schematic drawing of Fig.11.

Hence, new initial conditions need to be defined for each step allowing the evaluation of the exponents as follows



Fig. 6. Forced response of the SMA oscillator for bF ¼ 0:008 and x̂ ¼ 0:397 Hz, isothermal conditions. (a) r̂vs:e, (b) e0vs:e and (c) Poincaré map: e0vs:e.

Fig. 7. Bifurcation diagram for non-isothermal conditions. (a) interval: 0:2 < x̂ < 0:8 and (b) interval: 0:35 < x̂ < 0:55.
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ki ¼
1

t̂n � t̂0

Xn

k¼1

ln
diðt̂kÞ

d0i
ðt̂k�1Þ

 !
; ð28Þ
where n is the total number of steps.

5.1. Linearization process of an SMA dynamical hysteretic system

Based on the previous discussion, the use of the algorithm due to Wolf et al. (1985) requires a system linearization in
order to follow the nearby perturbed trajectory. The main assumption is that it is possible to evaluate the Lyapunov expo-



Fig. 8. Forced response of the SMA oscillator for bF ¼ 0:008 and x̂ ¼ 0:356, non-isothermal conditions. (a) r̂vs:e, (b) e0vs:e, (c) Poincaré map: e0vs:e and (d)bTvs:̂t.

1280 L.G. Machado et al. / International Journal of Solids and Structures 46 (2009) 1269–1286
nents by analyzing one of the subspaces of the general state space: the phase plane subspace. Therefore, from the general
state space,
w0 ¼ HðwÞ: ð29Þ
The phase plane subspace will be used for Lyapunov exponent estimation:
x0 ¼ FðxÞ: ð30Þ
In order to evaluate the divergence of nearby orbits, a small perturbation f from a fiducial trajectory, /, is considered:
x ¼ /þ f: ð31Þ
Substituting Eq. 31 into Eq. 26, and linearizing the resulting equation around the perturbation (Nayfeh and Balachandran,
1995) gives the perturbed equation:
f0 ¼ Jf; ð32Þ
where J is the Jacobian matrix of the phase plane subspace given by
J ¼ oF
ox
: ð33Þ
Under this assumption, for each time step, the divergence of nearby orbits is verified by considering a reference orbit gov-
erned by the system equations of motion, and a perturbed orbit governed by the linearized equations of motion. Therefore,
the linearized system is governed by the following equation:
f01 ¼ f2

f02 ¼ �k̂f1 þ F sinðĥÞ;
ð34Þ



Fig. 9. Forced response of the SMA oscillator for bF ¼ 0:008 and x̂ ¼ 0:397, non-isothermal conditions. (a) r̂vs:e, (b) e0vs:e, (c) Poincaré map: e0vs:e and (d)bTvs:̂t.

Fig. 10. Lyapunov exponents.

L.G. Machado et al. / International Journal of Solids and Structures 46 (2009) 1269–1286 1281
where ĥ ¼ x̂t̂.
The non-dimensional linearized stiffness, k̂, can be directly obtained from the derivative of r̂ with respect to e from Eq. 24,

and it has the following form:
k̂ ¼ o

oe
ðr̂Þ ¼ 1bS ¼ 1bSA � nðbSM � bSAÞ

: ð35Þ



Fig. 11. Lyapunov exponents calculation.
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Notice that, the state space split employed for the Jacobian calculation is not able to capture the dissipation char-
acteristics of the hysteretic system, since it is related to the constitutive subspace. As a consequence, the effect of
the hysteretic dissipation is not contemplated in the linearized system. Since this is an essential issue, it is important
to introduce some information from the constitutive subspace into the linearized phase plane subspace in order to
capture dissipative effects. Therefore, an equivalent viscous damping is considered that dissipates the same amount
of energy as the hysteretic SMA. The linearized system with the addition of the equivalent viscous damping is writ-
ten as
f01 ¼ f2;

f02 ¼ �b̂f2 � k̂f1 þ F sinðĥÞ;
ð36Þ
where b̂ is the equivalent viscous damping coefficient.
The equivalent viscous damping is considered in the linearized system and does not alter the solution of the original sys-

tem. It is used only to compute the Lyapunov exponents. The procedure for obtaining the equivalent viscous damping is pre-
sented in the next section.

5.2. Equivalent viscous damping

The linearized dissipation concerning the hysteretic behavior is performed by establishing a comparison of the dissipated
energy in one motion cycle of the non-linear hysteretic motion with a linear viscous damping motion (Inman, 1994). The
idea is to define an equivalent viscous damping that dissipates the same amount of energy as the hysteretic system. There-
fore, it is assumed that the response of the oscillator is given by:
eð̂tÞ ¼ �e sinðx̂t̂Þ; ð37Þ
where x̂ is the frequency of the damper’s response and �e is cycle amplitude related to the hysteresis loop.
The non-dimensional total energy dissipated by an SMA element during one cycle of tensile-compressive loop of hyster-

esis is defined as
bESMA
D ¼ 2

I
p̂dn

� �
¼ 2

Z 1

0

bY �dnþ 2
Z 0

1
�bY �dn

� �
¼ 4bY �: ð38Þ
On the other hand, the non-dimensional energy dissipated by a linear viscous damping during one cycle can be calculated as
follows:
bEV
D ¼

I
Fdde ¼

I
be0de ¼

Z 2p
x̂

0
b̂ _e2dt̂ ¼ pb̂�e2x̂: ð39Þ
Therefore, by equating the above result with the SMA hysteretic dissipation in Eq. 38, it is possible to define a non-dimen-
sional equivalent viscous damping coefficient as follows:
b̂ ¼ 4bY �
�e2x̂p

: ð40Þ
It should be emphasized that the SMA can also undergo partial phase transformations, which leads to a variable energy dis-
sipation. Consequently, we need to consider the amount of phase transformation that the SMA element underwent in every
cycle. This aspect is considered by assuming a variation of variables n and �e. Therefore, the energy dissipated by an SMA ele-
ment is given by



Fig. 12
x̂ ¼ 0:3
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bESMA
D ¼ 2

Z n

0

bY �dnþ 2
Z 0

n
�bY �dn

� �
¼ 4bY �Dn: ð41Þ
The equivalent viscous damping can be redefined as
b̂ ¼ 4bY �
D�e2x̂p

Dn: ð42Þ
The equivalent viscous damping coefficient, b̂, is not a constant and its value depends on the phase transformation level,
which is evaluated by the terms Dn and D�e. The variable Dn is a measure of the amount of phase transformation occurring
in one cycle. For the full phase transformation the value of Dn is equal to one, while during partial phase transformation it
varies between 0 and 1. The variable De is related to the amplitude of the displacement of the oscillator.

5.3. Lyapunov exponents estimation

Next, we revisit the results from Section. 4 for the cases of forced vibration under isothermal and non-isothermal heat
transfer conditions, since the analysis of the dynamical behavior of the SMA oscillator is completed by the estimation of
the Lyapunov exponents.

5.3.1. Forced vibrations – isothermal conditions
Fig. 12 shows the estimation of the Lyapunov exponents for isothermal heat transfer conditions, for the cases with exci-

tation frequencies of x̂ ¼ 0:356 and x̂ ¼ 0:397. The Lyapunov exponent time history shows two negative converged values
of ðk1; k2Þ ¼ ð�0:0038;�0:0723Þ for the case of x̂ ¼ 0:356 (Fig. 12a), confirming that the oscillator is undergoing a periodic
motion, as indicated by the Poincaré map in Fig. 5. The time history of the Lyapunov exponents for the case of an exciting
frequency of x̂ ¼ 0:397 under isothermal conditions is shown in Fig. 12b. For this simulation there is a positive exponent in
the spectrum of the Lyapunov exponents ðk1; k2Þ ¼ ðþ0:021;�0:074Þ, indicating that the oscillator is undergoing a chaotic
motion consistent with the Poincaré map of Fig. 6. It should be pointed out that the exponent calculation captures the dis-
sipation characteristics of the motion since the sum of Lyapunov spectrum is less than zero. This is an important aspect since
all dissipative phenomena are completely associated with the hysteresis loop and therefore, the proposed linearization cap-
tures this essential characteristic of the dynamical system.

In order to verify if the approach to compute the Lyapunov exponents provides a correct analysis of the behavior of the
system, Fig. 13 revisits the bifurcation diagram of Fig. 4b and superimposes the estimated value of the Lyapunov exponent
(larger points) for selected normalized frequencies. For simplicity, only the largest exponent is shown for each frequency.
Note that the obtained values of the Lyapunov exponents are consistent with the behavior of the dynamical response ob-
served in the bifurcation diagram. The Lyapunov exponents with positive values correspond to the regions with clouds of
points in the bifurcation diagram, whereas the Lyapunov exponents with negative values are associated with periodic
responses.

5.3.2. Forced vibrations – non-isothermal conditions
The next analysis is related to non-isothermal heat transfer conditions. Fig. 14a presents the estimation of the Lyapunov

exponents for the case of x̂ ¼ 0:356. The analysis of the spectrum of the Lyapunov exponents confirms a chaotic motion,
showing that converged values are ðk1; k2Þ ¼ ðþ0:020;�0:086Þ, consistent with the Poincaré map of Fig. 8. Therefore, for
the same value of frequency and force excitation amplitude, but different heat condition from Fig. 5, the system response
. Lyapunov exponents for isothermal conditions, bF ¼ 0:008 and different frequencies: x̂ ¼ 0:356 and x̂ ¼ 0:397. (a) Lyapunov exponents for
56 and (b) Lyapunov exponents for x̂ ¼ 0:397.



Fig. 13. Lyapunov exponents and bifurcation diagrams assuming isothermal conditions.

Fig. 14. Lyapunov exponents for non-isothermal conditions, bF ¼ 0:008 and different frequencies: x̂ ¼ 0:356 and x̂ ¼ 0:397. (a) Lyapunov exponents for
x̂ ¼ 0:356 and (b) Lyapunov exponents for x̂ ¼ 0:397.
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has changed from a periodic to a chaotic one, confirmed by the estimated values of the Lyapunov exponents. Once again, the
dissipative system characteristics is captured by the Lyapunov exponent spectrum since the summation is less than zero.

Fig. 14b shows the Lyapunov exponents analysis for the case of x̂ ¼ 0:397, under non-isothermal conditions. By analyzing
the converged values of the Lyapunov exponents, one can see that highest exponent has a positive value
ðk1; k2Þ ¼ ðþ0:03;�0:078Þ. This suggests that the oscillator is experiencing a chaotic motion, while the Poincaré map of
Fig. 9 possibly indicates otherwise. Similar to the case of isothermal conditions, Fig. 15 revisits the bifurcation diagram
for non-isothermal conditions shown in Fig. 7b and superimposes the largest Lyapunov exponent obtained for different nor-
malized excitation frequencies.

Clearly the great majority of the obtained values of the Lyapunov exponents are consistent with the behavior of the
dynamical response observed in the bifurcation diagram. In other words, the Lyapunov exponents with positive values cor-
respond to the regions with clouds of points in the bifurcation diagram, whereas the Lyapunov exponents with negative val-
ues are associated with periodic responses.

It is important to mention that there are a few Lyapunov exponents that seem to disagree with the bifurcation diagram
results. These Lyapunov exponents correspond to frequencies that are located in complex regions of the bifurcation diagram.
These regions are characterized by the change in the response behavior from chaotic to periodic and back to chaotic again
over a very small range of frequencies. This fast changing response makes it more difficult to estimate the appropriate Lyapu-
nov exponents of the dynamical system for the non-isothermal case, mainly due to the accuracy of the equivalent viscous
damping assumption used in the linearization process. However, as shown in the results presented in Fig. 15, the Lyapunov
exponents estimation agrees with results presented in the bifurcation diagram for regions of periodic motion for the non-
isothermal case.

Finally, it should be observed that the bifurcation diagrams, produced using the numerical integration of the equations of
motion for the dynamical system, do not always provide a definite decision whether the system is behaving chaotically or



Fig. 15. Bifurcation diagram with Lyapunov exponents for the case of non-isothermal conditions.
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not. Bifurcation diagrams only provide a qualitative analysis of the type of motion experienced by the oscillator. One could
misinterpret the type of the oscillator motion by only evaluating bifurcation diagrams. For example, the bifurcation diagram
of an oscillator undergoing quasi-periodic motion might be nearly indistinguishable from a bifurcation diagram of an oscil-
lator in chaotic motion.

The Lyapunov exponents, on the other hand, provide a quantitative measure for evaluating the oscillator behavior since a
positive value of the largest exponent is associated with chaotic motion. In the ideal case, the bifurcation diagram and the
Lyapunov exponent method would have yielded identical results (i.e., prediction of chaotic or periodic behavior) for all fre-
quencies, but this seems to have been achieved only for the isothermal case in the present work. It should be reiterated that
this paper proposes a way of computing the Lyapunov exponents for a non-linear continuous differential-algebraic hyster-
etic dynamical system by assuming some approximations related to the damping effects of the model and it was these
approximations that made it possible to compute the Lyapunov exponents. Furthermore, the constitutive model presented
in this paper introduces a thermomechanical coupling, effectively increasing the non-linearity of the model and making it
even more challenging to estimate the Lyapunov exponents. The results of Fig. 15 are the manifestation of such challenges
and future work will hopefully address the remaining issues related to correspondence between the bifurcation diagram and
the Lyapunov exponent estimation methodology for strongly non-linear systems with hysteresis exhibiting thermomechan-
ical coupling.

6. Conclusions

This article discussed the Lyapunov exponent estimation of non-linear hysteretic systems by adapting the classical algo-
rithm by Wolf and co-workers. The main issue of using this algorithm for non-linear, rate-independent, hysteretic systems is
related to the linearization procedure of the equations of motion. A state space split is proposed and the linearization is per-
formed in the phase plane subspace. Information of the constitutive subspace is incorporated by assuming an equivalent vis-
cous damping where the energy dissipation is related to the energy dissipated through the hysteresis loop. As an application
of the general procedure, the non-linear dynamics and chaos of a single-degree of freedom pseudoelastic SMA oscillator is
analyzed. The restitution force is provided by an SMA element described by a hysteretic, rate-independent constitutive mod-
el built upon the Boyd–Lagoudas model that establishes smooth transitions between the elastic and transformation regimes.
Numerical simulations are carried out showing complex behaviors of the SMA pseudoelastic oscillator, due to evolving ther-
momechanical properties and hysteresis. The proposed procedure was able to capture the dissipation characteristics of the
hysteretic motion, allowing the estimation of the Lyapunov exponents from this subspace. It was shown that periodic and
chaotic responses can exist and that a change in heat transfer conditions can dramatically alter the system dynamics. The
results of the current approach to estimate the Lyapunov exponents seem to be compatible with the bifurcation diagram
results for most cases investigated. Further work on the full state space could provide further insight into the results and
conclusions discussed in this paper.
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