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A B S T R A C T

This paper deals with the uncertainty analysis of the cardiac system described by a mathematical model. The
model is composed of three-coupled nonlinear oscillators with time-delayed connections. The main idea is
to investigate heart dynamics using the Random Matrix Theory, modeling uncertainties and establishing the
impact of the probabilistic model on the dynamic response of the system Two advantages of the proposed
methodology should be pointed out: model uncertainties are taken into account considering, for instance,
connection among different oscillators; and the uncertainty level is controlled by only one parameter. Results
show that, in general, the model is able to capture the main dynamic behaviors of the cardiac system. It is
also observed that pathological behaviors can evolve from normal rhythms due to random couplings.
. Introduction

A representative and widespread signal of cardiac rhythm is the
lectrocardiogram (ECG) that records the heart electrical activity in
he form of waves. It is possible to represent the electrical current
n different areas of the heart allowing a comprehension about heart
hythms, elucidating the difference between normal or pathological
ignals.

The human heart is divided into 4 cavities: 2 atria and 2 ventricles
Fig. 1a). The conduction of the electrical impulse in the cardiac system
an be understood as a network of self-excitatory elements formed
y sinoatrial node (SA), atrioventricular node (AV) and His–Purkinje
omplex (HP) ([1,2]). The initial excitation occurs in the SA node,
atural pacemaker, and propagates as a wave, stimulating atria. Upon
eaching the AV node, it initiates a pulse that excites the bundle of His
nd, afterward, the Purkinje fibers. The fibers distribute the stimulus
o the myocardial cells, causing the ventricles contraction [3]. Fig. 1b
resents a schematic picture of a normal cardiac cycle, showing the
ain waves: P wave that represents the impulse generated by the SA
ode; the QRS complex that is formed by ventricular contraction; and
he T wave that reflects ventricular repolarization. In addition, it should
e pointed out an important characteristic of the ECG, the RR interval
hat can vary in an apparently regular behavior.

A relevant analysis from ECGs is the based on instantaneous heart
ate variations using RR interval time series to define the so-called heart
ate variability (HRV) [4], which can be considered one of the best
redictors of arrhythmic events [5]. Unavoidable noise contamination
emands reliable signal processing techniques and, among them, it is
mportant to cite the detection of R-peaks ([6,7]) and calculation of
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heart and breathing rate variability [4,8]. HRV can be considerably
different even in the absence of physical or mental stress and this
information has been applied for clinical and research purposes. The
existence of HRV points that, besides nonlinear characteristics, heart
system can present some random behavior.

Deterministic chaos and random noise of the heart rhythm analysis
are compared by Kantz and Schreiber [9]. Bozóki [10] developed a
data acquisition method for fetal heart rate suitable to be used by both
power spectral analysis (statistical) and chaos theory (deterministic).
An analysis of canine ECGs made by Kaplan and Cohen [7] suggested
that fibrillation is similar to a random signal. It is also shown that
a deterministic dynamical system can generate random-looking, non-
chaotic behavior. The challenges to make decision between determinist
or statistical analysis to treat human cardiovascular behavior are pre-
sented by Yates and Benton [11]. Deng et al. [12] presented an ECG
identification framework via deterministic dynamic neural learning
mechanism for human cardiac pattern classification. According to a
symbolic analysis in atrial fibrillation surrogate data made by Aronis
et al. [13], pathological response is not driven by a rescaled linear
stochastic process or a fractional noise. They supported the develop-
ment of deterministic or nonlinear stochastic modeling. Son et al. [14]
developed a stochastic cardiovascular-pump model representing the
effects of left ventricular assist devices on heart hemodynamics. Based
on these references, it is possible to conclude that deterministic and
random aspects are important for the comprehension of heart system
dynamics.

An alternative for the heart dynamics analysis is the consideration
of mathematical models. Grudzinski and Zebrowski [15] proposed
ttps://doi.org/10.1016/j.ijnonlinmec.2020.103653
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Fig. 1. Human heart. (a) Anatomy of the heart. (b) Schematic ECG response representing a normal cardiac cycle.
Fig. 2. Conceptual model of the normal heart functioning.

modifications on the original Van der Pol oscillator in order to present
a more suitable description of the natural pacemaker. Dos Santos et al.
[16] presented a simplified cardiac system model considering two
asymmetrically coupled modified Van der Pol oscillators, representing
the behavior of the two cardiac pacemakers, SA and AV nodules. Gois
and Savi [1] proposed a three-coupled oscillator model in order to
represent ECG signals. Besides, SA and AV nodules, HP complex is also
considered in system modeling. Each oscillator is based on the model
due to Grudzinski and Zebrowski [15] and the system has bidirectional
and asymmetric time-delayed couplings to represent the time spent
on impulse transmissions. Cheffer and Savi [17] improved the three-
coupled oscillator model proposed by Gois and Savi [1] and introduced
2

random connections among oscillators. Basically, results pointed that
the combination of nonlinearities and randomness can provide a great
variety of possibilities of the heart dynamics. Jawarneh and Staffeldt
[18] developed a study of bifurcations on a modified van der Pol os-
cillator applying Conley index methods. Cardarilli et al. [19] proposed
a model with four modified Van der Pol oscillators representing the
groups: SA and AV nodes, Right and Left bundle branches. This model
is based on Fitz-Hugh–Nagumo equations [20] and is motivated as an
improvement to simulate branch blocks.

Concerning stochastic modeling, several approaches can be applied
for uncertainty quantification. Probabilistic approach is widely used in
structural dynamics [21]. In this regard, the parametric probabilistic
approach considers uncertainties in the model parameters, and there-
fore, a probabilistic model is constructed to each parameter of the
system. On the other hand, nonparametric probabilistic approach [22]
considers uncertainties in the model itself, and probabilistic model is
constructed directly for the generalized matrices of the system. The
rationale behind the idea of considering Random Matrix Theory (RMT)
to take into account model uncertainties can be found in [22] and [23].
A historical review of the Random Matrix Theory can be found in [24].

Uncertainties in heart dynamics are treated in some research efforts.
Christini et al. [25] found similar levels of spectral uncertainties for
both experimental heart rate data and synthetic autoregressive time
Fig. 3. Normal ECG. (a) Experimental (physionet.org) and simulated response: (b) times series, (c) phase plane and (d) RR histogram.
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Fig. 4. Stochastic analysis of 𝑲𝐵𝐷 with 𝜎𝑀 = 0.01: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms.

Fig. 5. Stochastic analysis of 𝑲𝐵𝐷 with 𝜎𝑀 = 0.1: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms. (d) Incomplete bb and (e) incomplete
bb with variable T-wave . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Stochastic analysis of 𝑲𝐵𝐷 with 𝜎𝑀 = 1.0: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms. (d) Complete bb, (e) ventricular
lutter, (f) low-voltage QRS and (g) ventricular fibrillation type 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)
eries by applying Monte Carlo analysis. Johnstone et al. [26] dis-
ussed uncertainty quantification in cardiac action potential models
nd experimental canine action potential models. Pathmanathan et al.
27] presented a novel action potential model that includes input
ariability for all parameters and performed uncertainty quantification
nd sensitivity analysis for a range of behaviors with physiological
elevance.

This work deals with a probabilistic approach that relies on RMT
28] and Gaussian Orthogonal Ensemble (GOE) [23,29] to describe
ncertainties of the cardiac system. Random matrices have been used
o represent model inadequacy, for instance, in the context of chemical
inetics [30], and in voice signals with pathologies [31].

The main idea of the present work is to use the mathematical
escription proposed by Gois and Savi [1] and introduce random
4

matrices to describe uncertainties in some operators, that introduce
coupling terms that were not there before. Under this assumption,
the cardiac system is described by a system of delayed differential
equations that represents three oscillators connected by delayed and
random terms. Model uncertainties are taken into account considering
only one parameter that controls the uncertainty level. This is a special
advantage since the alternative strategy is to consider individually,
eighteen uncertain coupling parameters. Different kinds of connec-
tions are evaluated establishing situations where pathological behaviors
evolve from normal rhythm due to random aspects.

The paper is organized as follows. A mathematical model is pro-
posed in terms of matrix blocks in order to use the random matrix
theory in Section 2. Afterward, numerical simulations are developed
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Fig. 7. Stochastic analysis of 𝑲𝐵𝐷 with 𝜎𝑀 = 3.0: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms. (d) Ventricular flutter and fibrillation
combination and (e) inverted T-wave . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Stochastic analysis of 𝑲𝐵𝐼 with 𝜎𝑀 = 0.01: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms.

5



A. Cheffer, T.G. Ritto and M.A. Savi International Journal of Non-Linear Mechanics 129 (2021) 103653

t

Fig. 9. Stochastic analysis of 𝑲𝐵𝐼 with 𝜎𝑀 = 0.1: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms . (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Stochastic analysis of 𝑲𝐵𝐼 with 𝜎𝑀 = 1.0: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
i
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showing some heart behaviors, highlighting their aspects on ECG and
state space. Final remarks are presented in the sequence.

2. Mathematical model

A mathematical model to describe heart dynamics can be formu-
lated considering three coupled nonlinear oscillators that represent the
electrical behavior of the sino-atrial (SA) node, the atrio-ventricular
(AV) node, and the His–Purkinje complex (HP). SA node is the natural
cardiac pacemaker, while AV node is a secondary pacemaker. Each
oscillator is based on the model due to Grudzinski and Zebrowski
[15] and the system has bidirectional and asymmetric time-delayed
 𝒙

6

couplings to represent the time spent on impulse transmissions. In
this regard, the governing equations can be written in matrix form as
follows [17]:

�̇� = 𝑯 (𝒙) + 𝑭 (𝑡) +𝑲𝒙 +𝑲𝜏𝒙𝜏 (1)

where 𝒙 is the state space vector; 𝒙𝝉 is the delayed state space vector;
𝑯 (𝒙) is the system vector field; 𝑭 (𝑡) represents external stimulus; 𝑲
s the coupling matrix; and 𝑲𝜏 is the delayed coupling matrix. The
efinition of each one of these terms is presented in the sequence based
n the original model of Cheffer and Savi [17] and Gois and Savi [1]
,𝒙𝝉 ,𝑯 𝒙 ,𝑲 ,𝑲𝝉 are given in Box I,
( )
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𝒙 =
[

𝑥1 𝑥3 𝑥5 𝑥2 𝑥4 𝑥6
]𝑻 ;

𝒙𝝉 =
[

𝑥𝜏𝐻𝑃−𝑆𝐴
5 𝑥𝜏𝑆𝐴−𝐴𝑉1 𝑥𝜏𝐴𝑉 −𝐻𝑃
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Box I.
By assuming that indexes 𝑚 and 𝑛 represent SA, AV or HP, and
≠ 𝑛, the terms of the governing equations are explained: 𝑥𝜏𝑚−𝑛𝑖 =

𝑖(𝑡 − 𝜏𝑚−𝑛) are delayed terms where 𝜏𝑚−𝑛 is the time delay; 𝑘𝑚−𝑛 and
𝜏
𝑚−𝑛 are coupling coefficients between 𝑚 and 𝑛 nodes.

In addition, the delayed coupling term, 𝑲𝝉 , can be split into matrix
locks as follows:

𝝉 =

[

𝟎 𝟎

𝑲𝑩𝑫 𝑲𝑩𝑰

]

, (2)

here 𝑲𝑩𝑫 and 𝑲𝑩𝑰 represent diagonal matrix blocks that can be
nterpreted, respectively, as direct and inverse directions of signal
ransmission among oscillators.

The ECG is represented by a combination of the signal of each one
f the oscillators, being formed by a linear combination of the state
ariables given by [1].

= 𝐸𝐶𝐺 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥3 + 𝛽3𝑥5, (3)

here 𝛽0, 𝛽1, 𝛽2 and 𝛽3 are constants. Therefore,

̇ = 𝑑
𝑑𝑡

(𝐸𝐶𝐺) = 𝛽1𝑥2 + 𝛽2𝑥4 + 𝛽3𝑥6. (4)

The fourth order Runge–Kutta method with linear interpolation of
time-delayed variables is used to integrate the system (1) [32]. In order
to treat the DDEs system, it is necessary to approximate their solutions
in time instants before 𝜏𝑗 . A Taylor series expansion is proposed [1,33].

𝑥𝜏𝑖 = 𝑥𝑖 − 𝜏
(𝑥𝑖+1 − 𝑥𝑖

ℎ

)

. (5)

Model uncertainties are taken into account by randomly perturbing
some operators of the system. The considered probabilistic model is
based on Gaussian Orthogonal Ensemble (GOE), as employed by Ritto
 c

7

and Fabro [23] in the context of structural dynamic analysis. In or-
der to preserve the symmetry, the following random germ matrix is
considered:

𝑮𝑠 =
(

𝑮 +𝑮𝑇 ) ∕2 (6)

where 𝑮 is a random matrix with dimension m×m, composed of in-
dependent and identically distributed normal random variables, with
zero mean and standard deviation 𝜎𝑀 , algebraically 𝐺𝑖𝑗 ∼ 𝑁(0, 𝜎2𝑀 ).
Therefore, only one parameter controls the level of uncertainty of the
stochastic system.

The deterministic symmetric system matrix 𝑿𝑑𝑒𝑡 is perturbed by
the symmetric random matrix germ 𝑮𝑠 yielding the symmetric random
matrix 𝑿𝑆 :

𝑿𝑆 = 𝑿𝑑𝑒𝑡 +𝑮𝑠 (7)

Note that 𝑿𝑆 is symmetric by construction, and its mean value
is 𝑿𝑑𝑒𝑡. By applying the described stochastic modeling to the system
matrices 𝑲𝐵𝐷 and 𝑲𝐵𝐼 , uncertainties are introduced not only in the
main diagonal, but also in the extra diagonal terms. Hence, it is possible
to analyze effects of eighteen uncertainty elements of these matrices by
varying just one parameter: the standard deviation 𝜎𝑀 .

3. Numerical simulations

Numerical simulations of the cardiac system are performed with
the objective of presenting different system behaviors. Parameters are
chosen in order to match experimental data and different cardiac
rhythm are of concern. All experimental data are based on PhysioBank
ATM (physionet.org). In all simulations, the following parameters [1]
are used: 𝛽0 = 1 mV, 𝛽1 = 0.06 mV, 𝛽2 = 0.1 mV, 𝛽3 = 0.3 mV. A
onvergence analysis reveals that time steps smaller than 10−3 presents
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(

Fig. 11. Stochastic analysis of 𝑲𝐵𝐼 with 𝜎𝑀 = 3.0: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms. (d) Ventricular fibrillation type 2 .
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Stochastic analysis of 𝑲𝐵𝐷 and 𝑲𝐵𝐼 with 𝜎𝑀 = 0.01: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
error of the order of 10−6, considered satisfactory. The following initial

conditions are applied, once again in order to match experimental data
8

[1]:
[ 2 ]𝑇
𝑥0 = −0.1 0.025 − 0.6 0.1 − 3.3

3
(8)
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Fig. 13. Stochastic analysis of 𝑲𝐵𝐷 and 𝑲𝐵𝐼 with 𝜎𝑀 = 0.1: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 14. Stochastic analysis of 𝑲𝐵𝐷 and 𝑲𝐵𝐼 with 𝜎𝑀 = 1.0: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
p
n
w
e
p
p
𝜇

v
s
i
T

Normal heart rhythm has unidirectional couplings in such a way
hat the electrical impulse is conducted from SA node to AV node
nd then, from AV node to HP complex. The conceptual model of
his behavior is schematically represented in Fig. 2. Table 1 shows
he system parameters related to this conceptual model, vanishing all
ther parameters that are not presented. This means that the system
oes not present external stimuli. Moreover, only the couplings 𝑘𝑆𝐴−𝐴𝑉 ,
𝐴𝑉 −𝐻𝑃 , 𝑘𝜏𝑆𝐴−𝐴𝑉 and 𝑘𝜏𝐴𝑉 −𝐻𝑃 and the time delays 𝜏𝑆𝐴−𝐴𝑉 , 𝜏𝐴𝑉 −𝐻𝑃 do
ot vanish.

Fig. 3 presents normal rhythm and some of its representations.
ig. 3a presents an experimental ECG of normal rhythm. A simulated
ormal ECG is shown in Fig. 3b that captures the main features of
he experimental data, presenting P, QRS and T waves. State space
 t

9

rojection is presented in Fig. 3c showing subspace {𝑋, �̇�}, from
ow on called phase plane. A first analysis reveals closed curves that
ould be associated with periodic behavior. Nevertheless, Lyapunov
xponents estimation, excluding the exponent associated with time,
oints to null values that characterize quasi-periodic response. Fig. 3d
resents a histogram of the normal rhythm RR interval showing a mean
= 6.403, and standard deviation, 𝜎 = 0.001.

Stochastic modeling is applied on 𝑲𝐵𝐷 and 𝑲𝐵𝐼 in order to in-
estigate effects of their uncertainties, which are measured by the
tandard deviation 𝜎𝑀 , on heart model response for three cases: 𝑲𝐵𝐷
s stochastic; 𝑲𝐵𝐼 is stochastic; and both 𝑲𝐵𝐷 and 𝑲𝐵𝐼 are stochastic.
his analysis is motivated by a physiology interpretation that points
hat some pathologies are driven by stimulus propagation in a certain
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Fig. 15. Stochastic analysis of 𝑲𝐵𝐷 and 𝑲𝐵𝐼 with 𝜎𝑀 = 3.0: (a) ECG Monte Carlo response samples; (b) respective state spaces and (c) RR histograms . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
able 1
ardiac system parameters [17].

SA oscillator HP oscillator

𝛼𝑆𝐴 3 𝛼𝐻𝑃 7

𝜈𝑆𝐴1
1 𝜈𝐻𝑃1

1.65

𝜈𝑆𝐴2
−1.9 𝜈𝐻𝑃2

−2

𝑑𝑆𝐴 1.9 𝑑𝐻𝑃 7

𝑒𝑆𝐴 0.55 𝑒𝐻𝑃 0.67

AV oscillator Couplings

𝛼𝐴𝑉 3 𝑘𝑆𝐴−𝐴𝑉 3

𝜈𝐴𝑉1
0.5 𝑘𝐴𝑉 −𝐻𝑃 55

𝜈𝐴𝑉2
−0.5 𝑘𝜏𝑆𝐴−𝐴𝑉 3

𝑑𝐴𝑉 4 𝑘𝜏𝐴𝑉 −𝐻𝑃 55

𝑒𝐴𝑉 0.67

Time delays

𝜏𝑆𝐴−𝐴𝑉 0.8

𝜏𝐴𝑉 −𝐻𝑃 0.1

direction. Cheffer and Savi [17] showed that random coupling can
induce different kinds of pathologies that evolve from normal rhythm.
Therefore, since 𝑲𝐵𝐷 and 𝑲𝐵𝐼 represent different directions of prop-
gation, it is reasonable to consider each matrix as random and both
ombined in order to represent different kinds of pathologies.

As a first approach, only diagonal terms of 𝑮𝑆 are summed to 𝑲𝐵𝐷
and 𝑲𝐵𝐼 . In this case, there is no additional coupling considered in the
analysis. In order to analyze results, time series and phase plane {𝑋, �̇�}
are presented. Monte Carlo simulations are employed: 100 simulations
for each case and gray-shaded regions that defines the bounds of all
responses are constructed. RR histograms are also constructed with
Monte Carlo procedure, where 100 histograms are superimposed and
10
each one has its mean 𝜇𝑖. The mean 𝜇, standard deviation, 𝜎, and
coefficient of variation (𝐶𝑉 = 𝜎

𝜇 ) of this set of 100 𝜇𝑖 are calculated
from simulations. Convergence analysis shows that 100 simulations
are enough to obtain converged behaviors of state spaces and RR
histograms (including respective mean and standard deviation).

3.1. Stochastic 𝑲𝐵𝐷

Uncertainty analysis starts by considering that only 𝑲𝐵𝐷 is modeled
as stochastic. Fig. 4 brings results of this analysis showing ECG, state
spaces and RR histograms from Monte Carlo procedure. Note that for
small values of 𝜎𝑀 , only normal rhythm is appearing. Time series
seem desynchronized but state space shows that they are in the same
orbit. RR histograms show, for each response, single peaks close to
deterministic normal case. The calculated RR statistics are 𝜇 = 6.4110,
𝜎 = 0.1548 and 𝐶𝑉 = 0.0241.

By increasing the standard deviation to 𝜎𝑀 = 0.1, normal, incom-
plete branch block (bb) rhythms and a mix of them are identified in
Fig. 5. The normal response (blue) presents an orbit similar to previous
case, but the RR mean is reduced, as can be seen on RR histogram.
Two responses for incomplete bb are shown. One is the incomplete bb
(red) characterized by double R wave and two peaks on histogram.
The other one (green) is composed of incomplete bb, double R wave
and T-waves with variable amplitude, generating a histogram with
three peaks. Responses different from normal are highlighted in Fig. 5d
(incomplete bb) and 5e (incomplete bb and variable T-wave), being
compared with respective typical experimental data. In this case, RR
statistics are 𝜇 = 4.7634, 𝜎 = 1.6536 and 𝐶𝑉 = 0.3471.

Fig. 6 presents responses to 𝜎𝑀 = 1.0. Six rhythms can be identified:
normal (black), incomplete bb (red), complete bb (blue), ventricular
flutter (purple), a variation of normal with small QRS (yellow) and one
type (called in this work type (1) of ventricular fibrillation (green). Be-
sides rhythms previously described, the three new identified responses
are highlighted and compared with experimental data. Complete bb
(Fig. 6d) is characterized by the absence of R-waves, presenting small
region loops on state space and a zero horizontal line on histogram.
Ventricular flutter (Fig. 6e) is a tachycardia caused by a single ec-
topic focus, or peripheral reentry mechanisms, being usually caused

by chronic processes (hypertensive, atherosclerotic, rheumatic), but can
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be induced by acute myocardial infarction. This rhythm presents state
space with orbits around larger loop of normal case and one peak on
RR histogram, indicating the presence of one frequency in response.
The response with small QRS (Fig. 6f) exhibits state space with a
closed curve with three loops: a smaller representing P and T waves,
a larger referring to normal QRS and an intermediary generated by
abnormal QRS. RR histogram presents a peak to the left of reference
period, representing the interval between two normal QRS. Ventricular
fibrillation (Fig. 6g) is a disordered myocardial contraction due to
the chaotic activity of several ectopic foci located in the ventricles.
This behavior results in total heart pumping inefficiency and, from the
hemodynamic point of view, corresponds to cardiac arrest [34]. This
rhythm presents a denser state space around the largest loop and a
distribution of peaks in the interval [1, 1.7] in histogram. For this case
RR statistics are 𝜇 = 2.8148, 𝜎 = 1.5964 and 𝐶𝑉 = 0.5671.

Fig. 7 considers even a bigger standard deviation, 𝜎𝑀 = 3.0. Some
ariations of the previous responses can be identified: incomplete bb
blue), complete bb (red), ventricular flutter (black) and ventricular
ibrillation (green). In addition, two new rhythms are observed: com-
osition of ventricular flutter and fibrillation (purple, Fig. 7d) and a
ariation of normal with inverted T-wave (yellow, Fig. 7e). Inverted
-wave exhibits state space close to normal case but with the bigger

oop a little bit smaller and one peak on RR histogram. The calculated
R statistics are 𝜇 = 2.3473, 𝜎 = 1.1055 and 𝐶𝑉 = 0.4710.

.2. Stochastic 𝑲𝐵𝐼

A new coupling characteristic is now of concern treating the case
here 𝑲𝐵𝐼 is stochastic. Analogous to the previous case, small values of
𝑀 tends to be associated with normal rhythm, with a desynchronized
ime series and the same orbit on state space. Fig. 8 shows the system
esponse for 𝜎𝑀 = 0.01 together with RR histograms that show single
eaks, but with mean 𝜇 greater than previous cases with statistics
= 6.4590, 𝜎 = 0.1581 and 𝐶𝑉 = 0.0245.

By increasing the standard deviation to 𝜎𝑀 = 0.1, normal (green),
variation of normal (blue) and incomplete bb (red) are identified

Fig. 9). The variation of normal rhythm presents a T-wave with greater
mplitude and can be seen on spaces states as the wider loop around
0, 0). The calculated RR statistics are 𝜇 = 4.9733, 𝜎 = 1.5817 and
𝑉 = 0.3180.

In Fig. 10 are responses for 𝜎𝑀 = 1.0 where it is possible to identify
ive rhythms: normal (black), incomplete bb (green), complete bb (red),
entricular flutter (blue) and ventricular fibrillation type 1 (purple). For
his case RR statistics are 𝜇 = 2.6187, 𝜎 = 0.8275 and 𝐶𝑉 = 0.3542.

Fig. 11 shows the case with 𝜎𝑀 = 3.0, presenting four kinds of
esponse: incomplete bb (blue), complete bb (red), ventricular flutter
purple) and a different type of ventricular fibrillation (green, Fig. 11d),
alled here type 2. Now it exhibits different orbits also around smaller
oop on spaces states and several peaks spread over a larger interval
n RR histogram. Histogram statistics in this case are 𝜇 = 2.0587,
= 0.4929 and 𝐶𝑉 = 0.2394.

.3. Stochastic 𝑲𝐵𝐷 and 𝑲𝐵𝐼

A general random situation is now concerned considering that
oth 𝑲𝐵𝐷 and 𝑲𝐵𝐼 have stochastic characteristics. Initially, a small
alue of standard deviation is treated 𝜎𝑀 = 0.01 inducing pathologi-
al responses, different from the previous cases. Fig. 12 shows three
dentified rhythms: normal (blue), a variation of normal with greater
-wave (green) and incomplete bb (red), whose characteristics have
een already explained. The calculated RR statistics are 𝜇 = 6.3536,

𝜎 = 0.5406 and 𝐶𝑉 = 0.0851.
By increasing the standard deviation to 𝜎𝑀 = 0.1, normal (black)

with slightly higher RR mean, two incomplete bb (blue and green) and
complete bb (red) are identified (Fig. 13). Both incomplete bb responses

have double R-peaks, but with different frequencies. These results can
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be confirmed by different peaks location on histograms. The calculated
RR statistics are 𝜇 = 3.6296, 𝜎 = 1.4812 and 𝐶𝑉 = 0.4081.

Fig. 14 presents responses for 𝜎𝑀 = 1.0, showing five kinds of
hythms: normal with a lower RR mean (black), incomplete bb (blue),
omplete bb (red), ventricular flutter (purple) and ventricular fib-
illation type 2 (green), which exhibit same response characteristics
reviously described. Histogram statistics are 𝜇 = 2.2685, 𝜎 = 0.9756
nd 𝐶𝑉 = 0.4301.

Fig. 15 considers a bigger standard deviation, 𝜎𝑀 = 3.0, showing
ncomplete bb (purple), complete bb (red), ventricular flutter (yellow),
entricular fibrillation type 2 (green) and a composition of incom-
lete bb and bradycardia (blue). The ventricular flutter now identified
resents a closed curve with four loops on state space. Bradycardia
esignates a decrease in heart rate, which can be related to long RR
nterval observed on histogram. In this case RR statistics are 𝜇 = 2.7472,
= 2.3288 and 𝐶𝑉 = 0.8477.

4. Conclusions

A stochastic model is proposed to analyze uncertainties in a car-
diac dynamical model composed of three-coupled nonlinear oscillators
with time-delayed connections. The matrices related to the direct and
inverse directions of signal transmission among oscillators are model
as random. This strategy has the advantage of taking into account
model uncertainties since it generates couplings that are not possible
to obtain varying only the parameters of the system; hence, it goes
beyond the usual parametric probabilistic approach. In addition, just
one parameter (standard deviation) is needed to control the level of
uncertainty of the system, controlling the matrix random perturbation.
Monte Carlo simulations are carried out for different values of this
uncertainty level parameter. The increase of the uncertainty level tends
to generate signals with pathologies. Among the possible pathologies,
the following cases are observed: incomplete and complete branch
block (bb), bradycardia, atrial fibrillation, inverse T-wave, larger T-
wave, small QRS, ventricular flutter and ventricular fibrillation. In
general, it is possible to conclude that the proposed stochastic model
is consistent, being able to generate cardiac pathological dynamical
responses that evolve from normal rhythm.
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